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Abstract

Repeated exposure to threatening stimuli alters sensory responses. We investigated the underlying neural mechanism by re-
analyzing previously published simultaneous electroencephalogram-functionalmagnetic resonance imaging (EEG-fMRI) data
from humans viewing oriented gratings during Pavlovian fear conditioning. In acquisition, one grating (CS+) was paired with
a noxious noise, the unconditioned stimulus (US). The other grating (CS-) was never paired with the US. In habituation, which
preceded acquisition, and in extinction, the same two gratings were presented without US. Using fMRI multivoxel patterns
in primary visual cortex during habituation as reference, we found that during acquisition, aversive learning selectively
prompted systematic changes in multivoxel patterns evoked by CS+. Specifically, CS+evoked voxel patterns in V1 became
sparser as aversive learning progressed, and the sparsified pattern appeared to be preserved in extinction. Concomitant with
the voxel pattern changes, occipital alpha oscillations were increasinglymore desynchronized during CS+ (but not CS-) trials.
Across acquisition trials, the rate of change in CS+-related alpha desynchronization was correlated with the rate of change
in multivoxel pattern representations of CS+. Furthermore, alpha oscillations co-varied with blood-oxygen-level-dependent
(BOLD) data in the ventral attention network, but not with BOLD in the amygdala. Thus, fear conditioning prompts persistent
sparsification of voxel patterns evoked by threat, likely mediated by attention-related mechanisms
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Introduction

Accurate detection and evaluation of threat and danger is crucial
to survival. Themammalian brain has evolvedmechanisms that
bias perceptual systems towards sensory cues that predict aver-
sive outcomes (Pessoa andAdolphs, 2010). For example, neurons
in human primary visual cortex (V1) alter their tuning proper-
ties to selectively amplify visual threat cues (Miskovic and Keil,
2012). Across species, sensory neurons in rodents also undergo
selective plasticity to better represent threat cues, both in the

visual cortex (Shuler and Bear, 2006) and in the auditory cortex
(Weinberger, 2004). These observations suggest that associative
learning of contingencies between a conditioned visual stimu-
lus (CS+) and an aversive unconditioned stimulus (US) prompts
changes in the sensory neural representation of CS+.

Paralleling conditioned auditory receptive field plasticity
in rats (Headley and Weinberger, 2011), sensory changes in
response to aversive conditioning can be characterized as selec-
tively heightened population gain for the critical CS+ feature
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(Li et al., 2019). For example, if CS+and CS- differ in orienta-
tion, a plasticity-based view predicts that differential aversive
conditioning selectively biases orientation tuning of visuocorti-
cal neurons to optimize population coding for the CS+ (Miskovic
and Keil, 2012; Miskovic and Anderson, 2018). A growing body
of work has converged to support this hypothesis (McTeague
et al., 2015; Antov et al., 2020). What is not known, however, is
how such changes in visuocortical tuning are implemented in
visual cortex as aversive learning progresses. Possible hypothe-
ses include (1) an increase in visuocortical population activ-
ity when viewing a threat-associated cue (Morris et al., 1998a;
Phelps et al., 2006) and (2) the emergence of highly connected
visuocortical networks that provide efficient and sparse cod-
ing of CS+ features, through Hebbian mechanisms (Simoncelli
and Olshausen, 2001; Miskovic and Keil, 2012; Headley and
Weinberger, 2013). Testing of these competing views in human
observers has been elusive. This is partly due to the interpreta-
tional ambiguity of scalp recorded electrophysiological signals,
which typically rely on trial averaging. Trial averaged responses
increase with the amount of activated neural tissue, but they
can also increasewith growing phase similarity across trials (e.g.
Moratti et al., 2007). Efficiently operating sparse networks are
predicted to produce temporally precise evoked mass responses
that are similar across trials (Keil et al., 2007). Thus, evoked
responses such as the early visual evoked potentialmay increase
in amplitude as a result of overall increased neural activity or
as a result of the formation of sparse networks yielding tem-
porally precise activation. In terms of fMRI, sparsification in
neural representation prompted by aversive experience would
be reflected in increasingly altered voxel patterns for CS+, but
not for CS-, during fear conditioning, characterized by decreas-
ing numbers of voxels contributing to the representation of
the CS+. Heightened population responses when viewing the
CS+would, however, result in heightened BOLD in a larger
number of voxels. Thus, we addressed the two competing the-
oretical notions of learning-related population activity increase
versus learning-related sparsification in neural representation
by re-analyzing EEG-fMRI data from a previous published study
(Yin et al., 2018) and quantifying the evolution of fMRI patterns
evoked by conditioned stimuli.

Recent work shows that autonomic orienting responses (e.g.
heart rate [HR]) to conditioned threat attenuate, along with
CS+-related response in the limbic structures, as aversive learn-
ing progresses (Yin et al., 2018). To what extent this process is
accompanied by enhanced attentional orienting is not clear. We
measured EEG concurrently with BOLD so that we could use EEG
alpha band activity (8–12 Hz) as an index of visual attention
engagement with the conditioned stimuli. Transient suppres-
sion of spectral power in the alpha band (i.e. event-related
desynchronization or ERD) has been taken to index attentive
engagement of visual cortex in processing task-relevant stimuli
(Klimesch, 2012; Zumer et al., 2014), and the more task-relevant
the stimuli, the stronger the alpha ERD (Klimesch et al., 2011;
Auksztulewicz et al., 2017). We hypothesized that as threat cues
acquire increased task-relevance through conditioning, alpha
power would show greater ERD after CS+ stimuli compared to
CS- stimuli, reflecting enhanced CS+-related attentional ori-
enting, and this effect would become stronger as learning
progressed.

BOLD responses in V1 and visual alpha oscillations can
both be modulated by attention control networks (Posner and
Gilbert, 1999; van Diepen et al., 2016). Alpha power reduc-
tions index target selection during a range of selective atten-
tion tasks (e.g. Rohenkohl and Nobre, 2011). However, in fear

conditioning, the higher-order structures contributing to the
selective visuocortical changes remain unclear. Two potential
sources of modulatory bias signals are the ventral attention
network (VAN) and limbic emotion-modulated circuits centered
around the amygdala (Yates et al., 2010; McHugo et al., 2013). The
VAN, including right temporal-parietal junction (rTPJ) and right
ventrolateral prefrontal cortex (rVLPFC), is involved in directing
attention toward salient stimuli (Corbetta and Shulman, 2002;
Armony and Dolan, 2002), whereas the amygdala encodes infor-
mation about the motivational significance of sensory input
(Amaral et al., 2003; Paton et al., 2006) and may modulate visual
cortex through connections with the basal forebrain (Peck et al.,
2014; Allen et al., 1998) or with parietal and temporal cortex
(Amaral et al., 2003; Keil et al., 2009). We examined these com-
peting possibilities by correlating alpha power fluctuations with
fMRI from the VAN and the amygdala.

Materials and methods

This study is a reanalysis of previously published data (Yin
et al., 2018). The previous study by Yin et al. (2018) was moti-
vated by the observation that selective amygdala activation by
conditioned threat is often not found in human imaging stud-
ies and proceeded to test the amygdala adaptation hypothesis.
The present paper focused on activities in visual cortex and
examined the neural basis of previously reported changes with
aversive learning in visual responses to conditioned fear.

Experimental procedure

Participants. The experimental protocol was approved by the
Institutional Review Board of the University of Florida. Eighteen
healthy college students (aged 17–33 years, 9 females) provided
written informed consent and participated in the study. The par-
ticipants were either paid or given course credits in accordance
with Institutional Review Board guidelines.

Stimuli. Two Gabor patches (sine wave gratings filtered with a
Gaussian envelope, Michelson contrast=1) with the same spa-
tial frequency (1.5 cycles/degree), differing only in orientation
(45◦ and 135◦), were designated as CS+and CS-, respectively;
they were not counterbalanced across subjects (See Figure 1).
Both stimuli were projected onto a back-illuminated screen (60
cm×60 cm) placed 230 cm away from the participant’s head and
viewed through a set of prismatic glasses attached to the radio
frequency head coil. The US was a 1-s human scream delivered
by an MRI compatible headphone at around 95 dB. For CS- tri-
als and CS+ trials where CS+and US were not paired, the Gabor
patches were shown for 1 s. For CS+ trials where CS+and US
were paired, the US started 0.5 s following CS+onset and co-
terminated 1 s later. This approach ensured that CS+and CS-
trials included in the analysis did not differ and that paired
CS+ trials had a sufficient lead time as well as co-termination
with the US as required for classical (delay) conditioning.

Paradigm. The experiment consisted of three blocks: habitua-
tion, acquisition and extinction (Figure 1). Each block comprised
120 trials and lasted about 12 min. During the acquisition block,
one Gabor patch was designated as CS+and the other as CS-. In
the habituation block, which preceded the acquisition block, the
two Gabor patches occurred with equal probability in a pseudo-
random order, determined by a procedure in which the two
Gabor patches were randomly (toss of a fair coin) drawn from
two pools without replacement, under the constraint that not
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Fig. 1. Experimental paradigm. Top: Temporal order of the three blocks. Bottom: timeline and stimuli used during the acquisition block. For the habituation block and

the extinction block, the two Gabor patches and inter-trial interval (ITI) were the same, except that no US was presented.

more than two CSs of one kind (future CS+, future CS-) appeared
in direct sequence, as is typical in fear conditioning work (Lons-
dorf et al., 2017; Auksztulewicz et al., 2017). During acquisition,
the same pseudo-randomization was again applied to result
in a different order with the same constraints as described
for habituation. In addition, acquisition always started with a
CS+ trial, and the first four CS+ stimuli were always paired with
the US to facilitate contingency learning. Subsequently, 25% of
CS+ stimuli were paired with the US. CS- stimuli were never
paired with the US. For analysis, paired CS+ trials were not
included due to fMRI contamination byUS evoked responses. For
notational simplicity, inwhat follows, we use the termCS+ trials
when referring to unpaired CS+ trials in which no US occurred.
In the extinction block, which followed the acquisition block, the
stimuli and procedure were the same as the habituation block,
i.e. the pseudo-randomization procedure was again applied to
result in a pseudo-random order with the constraint that no
more than two CSs of the same type appeared in a row. We
note that, within a given block, the order of trials was the same
for each subject to facilitate trial-by-trial averaging across sub-
jects, which is essential for analyzing the temporal dynamics of
conditioning across trials at a population level (Yin et al., 2018).
For each of the three blocks, the inter-trial interval (ITI) was
randomized between 3, 5 and 7 s (see Figure 1).

Data acquisition

fMRI data. fMRI images were acquired on a 3-Tesla Philips
Achieva whole-body MRI system (Philips Medical Sys-
tems, Netherlands) using a T2*-weighted echoplanar imaging
sequence (echo time (TE)=30ms; repetition time (TR)= 1980ms;
flip angle=80◦). Each whole-brain volume consisted of 36 axial
slices (field of view: 224 mm; matrix size: 64×64; slice thick-
ness: 3.50 mm; voxel size: 3.5×3.5×3.5 mm). A T1-weighted
high-resolution structural image was also obtained from each
participant. For one subject, the fMRI data during habituation

were not properly saved to the disk, and the data from 17 sub-
jects were thus used for fMRI analysis for the habituation block.
For all other analyses, fMRI data from all 18 subjects were used.

EEG data. EEG data was recorded simultaneously with fMRI
using a 32-channel MR-compatible EEG system (Brain Products
GmbH, Germany). Thirty-one sintered Ag/AgCl electrodes were
placed according to the 10–20 system with the reference chan-
nel being FCz during recording. One additional electrode was
placed on the participant’s upper back tomonitor the electrocar-
diogram (ECG). ECG data were used to enable HR analysis and to
aid in the removal of the cardioballistic artifacts. The impedance
from all scalp channels was kept below 10 kΩ during the entire
recording session as recommended by the manufacturer. The
online band-pass filter had cutoff frequencies at 0.1 and 250 Hz.
The filtered EEG signal was then sampled at 5 kHz and digitized
to 16-bit. The EEG recording system was synchronized with the
scanner’s internal clock, which, along with the high sampling
rate, was essential to ensure the removal of the MRI gradient
artifacts.

Regions of interest

Four regions of interest (ROIs) were considered: the primary
visual cortex or V1 (Figure 2A), the rTPJ and the rVLPFC, both
of the VAN (Figure 2B) and the right amygdala (Figure 2C). The
V1 ROI was bilateral and defined using a recently published
template of retinotopic regions of the visual cortex (Wang et al.,
2015); this ROI contained 473 contiguous voxels. The rTPJ and
rVLPFC ROIs were defined to be 6 mm spheres centered at the
previously published coordinates of rTPJ (Geng and Vossel, 2013)
and rVLPFC (Yin et al., 2018); they each contained 33 voxels.
The right amygdala ROI was chosen to be a 6 mm sphere cen-
tered at the previously determined peak-activation voxel from
contrasting US against CS- (Yin et al., 2018); this ROI contained
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Fig. 2. ROI definition. (A) V1 ROI defined according to a recently published retinotopic atlas of the visual cortex by Wang et al. (2015). (B) rTPJ and rVLPFC ROIs defined

according to previously published coordinates (Geng and Vossel, 2013; Yin et al., 2018). (C) Right amygdala ROI defined according to previously published coordinates

based on US activation (Yin et al., 2018).

33 voxels. The left amygdala was not activated in this contrast
and thus not considered further.

Data processing.

fMRI data preprocessing. All fMRI data analyses were per-
formed in Statistical Parametric Mapping (SPM) (http://www.
fil.ion.ucl.ac.uk/spm/). Preprocessing steps included slice tim-
ing, motion correction, and normalization to the Montreal Neu-
rological Institute template. Normalized images were spatially-
smoothed with a 7 mm full width at half maximum Gaussian
kernel. This spatial smoothing step was omitted for the repre-
sentational similarity analysis (RSA) to better preserve spatial
patterns. The BOLD time series were high-pass filtered with a
cutoff frequency at 1/128 Hz.

EEG data preprocessing. There are two major sources of MRI-
related artifacts in EEG that are recorded simultaneously with
fMRI: the gradient artifacts and the cardioballistic artifacts. Gra-
dient artifacts were removed by subtracting an average artifact
template from the data set as implemented in Brain Vision Ana-
lyzer 2.0 (Brain Products GmbH, Germany). The artifact template
was constructed by using a sliding-window approach which
involved averaging the EEG signal across the nearest 41 consecu-
tive volumes. The cardioballistic artifacts were also removed by
an average artifact subtractionmethod (Allen et al., 1998). In this
method, the R peaks were first detected in the ECG recordings
by the algorithm in Brain Vision Analyzer, and then visually
inspected to ensure accuracy. The appropriately detected R
peaks were utilized to construct a delayed average artifact tem-
plate over 21 consecutive heartbeat events. The cardioballistic
artifacts were then removed by subtracting the average artifact

templates from the EEG data. After these two steps, the EEG data
were band-pass filtered between 0.5 and 50 Hz, down-sampled
to 250 Hz, re-referenced to the average reference (Nunez et al.,
1997) and exported to EEGLAB (Delorme and Makeig, 2004) for
analysis.

HR analysis. The time between heart beats (RR interval) was
estimated from the ECG data and transformed into instanta-
neous HR (inverse of RR interval). The time range from 1-s
prestimulus to 5-s post-stimulus was divided into 1-s bins, and
each instantaneous HR was weighted proportionally to the frac-
tion of the bin it occupied (Gatchel and Lang, 1973; Graham,
1980) to yield stimulus-locked HR change times series within
a trial. This single-trial stimulus-locked HR change time series
was then averaged across all trials within a block to assess how,
on average, CS+and CS- affected stimulus-locked HR changes
in habituation, acquisition and extinction.

In addition, for each of the three blocks, the trial-by-trial
relative HR change (deceleration) was estimated by taking the
stimulus-locked HR change in the interval (0.5 s, 1.5 s) from each
trial. Because single-trial HR data are noisy, it was necessary to
apply smoothing to the resulting time series (one HR change
value for each trial). Specifically, the trial-by-trial time series
for CS+and CS- trials were separately smoothed using a mov-
ing window (Gaussian kernel, bandwidth=12). This resulted
in two smoothed time series, one for the CS+and one for the
CS-. For illustration and correlation analyses, we computed the
trial-wise CS+/CS- difference in HR deceleration by subtracting
the CS+HR time series from the CS- HR time series.

Single-trial estimation of BOLD response. The BOLD response
was estimated on a trial-by-trial basis using the beta series

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/


954 | Social Cognitive and Affective Neuroscience, 2020, Vol. 15, No. 9

method (Rissman et al., 2004, 2008). In this method, every stimu-
luswas associatedwith a separate regressor in the general linear
model. Rigid bodymovements were included as regressors of no
interest. Solving the general linearmodel yielded a beta value for
each trial in each voxel. We conducted this analysis separately
for each of the three blocks (Habituation, acquisition and extinc-
tion) and obtained, for each block, 120 single-trial beta values
corresponding to the CS+and CS- trials (Yin et al., 2018). Except
for the 18 CS+ trials that were paired with the US in acquisition,
the remaining single-trial beta values were subjected to RSA,
pattern sparsity and alpha-ERD correlation analysis.

Representational similarity analysis. Multivoxel representa-
tions of CS+and CS- can be studied using RSA (Visser et al., 2011,
2013). To maximally retain information at a finer spatial scale
(Dunsmoor et al., 2014), we applied the beta series method to
the BOLD time series prior to spatial smoothing to obtain single-
trial beta values. For a given ROI, a vector was created from the
beta values of all the voxels to represent the spatial pattern in
response to a single presentation of a stimulus; the length of the
vector equaled the number of voxels in that ROI. Reference rep-
resentations of CS+and CS- for the V1 ROI were generated from
averaging the single-trial multivoxel patterns across all the tri-
als (60 each) in the habituation block. During acquisition and
extinction, to generate the time course of neural representa-
tional changes over trials (i.e. similarity curve), a sliding window
approach was adopted, in which the time window used was
five trials in duration and the step size was one trial. After the
moving average (five-trial average), each trial-averaged vector
in acquisition and extinction was correlated with its reference
representation derived from habituation to assess pattern sim-
ilarity. The correlation coefficients were Fisher-z transformed,
averaged across participants, re-transformed back to correlation
coefficients and plotted as a function of time-on-task to yield the
time course of changes in neural representations of CS+andCS-.
The slope of the time course was estimated by linear fit for each
individual subject’s similarity curve and taken as a measure of
the rate of change in neural representations for that subject. A
paired t-test was used to compare the slopes between CS+and
CS- across participants. It is worth noting that RSA is not a
machine learning technique and does not involve the splitting
of data into training data and testing data (Bach et al., 2011).

Pattern sparsity analysis. To investigate the changes in
stimulus-evoked BOLD patterns vis-à-vis the changes in
stimulus-evoked BOLD magnitude during acquisition, we quan-
tified the change in sparsity of the voxels in the representational
pattern evoked by CS+and CS-. First, to assess the broad tem-
poral change across acquisition, we divided acquisition into an
early time period (t<5.6 mins) and a late time period (t>5.6
mins). Second, for the stimulus type (CS+or CS-) showing sig-
nificant pattern change relative to habituation, we counted the
voxels that represented this stimulus type (i.e. representational
voxels) for each time period. A voxel entered this count only
if it met all of the following three requirements: (1) It showed
larger average activity across trials for this stimulus type (e.g.
CS+) than the other type (e.g. CS-) where the average activity
was defined as the mean of single-trial betas, (2) the average
activity for the stimulus type from the voxel was greater than
the average activity from all the voxels within the ROI and (3)
the standard deviation of the activity across trials from the voxel
was less than the mean of the standard deviation from all the
voxels within the ROI. Thus, a representational voxel defined

this way was a voxel that was selectively, strongly and con-
sistently enhanced for a given stimulus type across trials, and
over neighboring voxels. Finally, the number of representational
voxels and the averaged betas within these voxels were com-
pared between early and late period of acquisition to assess
the changes in stimulus-evoked representational patterns and
in stimulus-evoked BOLD magnitude. The same analysis was
also applied to the habituation block and the extinction block
for comparison and for examining whether the sparsified neural
representations of conditioned threat persisted over the extinc-
tion phase of the experiment.

EEG alpha ERD estimation. ERD of posterior alpha oscilla-
tions (8 to 12 Hz) was taken as an indicator of visual acti-
vation and attention orienting. Alpha ERD was estimated for
each trial as follows. First, the EEG signal was epoched from−1
s to 2 s with 0 s denoting the onset of CS+or CS-. Second,
the EEG signal within each epoch was divided into overlap-
ping moving windows with 200 ms in duration and 20 ms
in step size. Third, the EEG data in each window was zero-
padded to 5 times its original length (250 points after padding)
to enhance spectral resolution from 5 Hz to 1 Hz. Fourth, the
EEG power spectrum for each window was calculated using a
nonparametric multi-taper approach with 3 tapers (Mitra and
Pesaran, 1999), and the alpha power was estimated by aver-
aging the power spectrum between 8 and 12 Hz. The baseline
was defined as the alpha power within the window centered at
stimulus onset across all trials. The single-trial alpha ERD was
calculated by subtracting baseline alpha power from the alpha
power within each moving window and dividing the difference
by baseline alpha power. For a given post-stimulus timewindow,
alpha ERD could be plotted as a function of acquisition trials,
and the slope of this function obtained from a linear regres-
sion analysis provided a rate of change of alpha ERD, which
was taken as a measure of change in visual attention engage-
ment. A paired t-test was used to compare the slopes between
CS+and CS- category across participants. It is worth noting that
the present experimental paradigm lacks an explicit attention
manipulation. Using alpha ERD as an index of visual attention
engagement is indirect and relies on assumptions derived from
prior research (Klimesch et al., 2011; Auksztulewicz et al., 2017).

Alpha-BOLD correlation. To assess which regions of the brain
(rTPJ, rVLPFC or right amygdala) modulated alpha power, two
analyses were carried out for the acquisition block: across-
participant correlation analysis and across-trial correlation
analysis. Across-participant correlation was computed as the
correlation coefficient between differential occipital alpha ERD
(CS+minus CS-) averaged across trials within the acquisition
block and differential beta values from rTPJ, rVLPFC or right
amygdala (CS+minus CS-) averaged across trials within the
acquisition block. Across-trial correlation was assessed by cor-
relating the single-trial alpha ERD averaged across participants
and single-trial BOLD beta values averaged across participants.
We sought converging evidence by performing these two types
of analyses.

Results

HR changes

As shown in Figure 3A and 3B, in both habituation and
extinction, the average event-related HR changes did not
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Fig. 3. Heart rate (HR) analysis. (A) Event-related HR changes during habituation, acquisition and extinction. (B) Statistical comparison of HR between CS+and CS-

at time=1 s (0.5 s to 1.5 s). (C) Time course of relative event-related HR changes (CS+minus CS-) over trials in habituation, acquisition, and extinction. Note: Figure

3A (left and middle), 3B (left and middle) and 3C (left and middle) are adapted from Yin et al. (2018) under CC BY 4.0 and included here for comparison with Figure 3A

(right), 3B (right) and 3C (right).

differ between CS+and CS-. During acquisition, greater HR
deceleration was observed following CS+ compared to CS-,
demonstrating that participants acquired the contingencies of
the experiment, and exhibited defensive orienting to the CS+.
Figure 3C shows the time course of relative event-related HR
change (CS+minus CS-) over trials for the three blocks. During
habituation, as expected, there was no systematic trend in the
differential HR time course across trials. For acquisition, greater
CS+-related HR deceleration was apparent in the early part of
the block, and the difference gradually diminished as learning
progressed and disappeared toward the end of the block (Yin
et al., 2018). There was no systematic trend in event-related HR
change between CS+and CS- over the entire extinction block.

Dynamic changes of neural representations of CS+ in
acquisition

Reference representations for CS+and CS- in V1 were obtained
by averaging single-trial BOLD responses to CS+and CS- across
habituation trials. Applying the moving window approach to
acquisition (window size: five trials; step size: one trial),

CS+and CS- evoked patterns in V1 in each moving window
were correlated with their respective reference representational
patterns (seeMethods: ‘Representational similarity analysis’), to
yield the time courses of RSA pattern similarity changes (simi-
larity curves); see Figure 4A and 4B for example similarity curves
from an individual subject. Across participants, the RSA similar-
ity curve for CS+ showed a decreasing trend, while the similarity
curve for CS- varied unsystematically, resulting in a flat average
slope (Figure 4C and 4D). This demonstrates that the patterns
evoked by CS+during acquisition were systematically depart-
ing from its reference representation pattern, whereas the CS-
evoked patterns did not exhibit any systematic change. The
rate of pattern similarity change for each individual, indexed
by the slope of the linear fit to the similarity curve, is shown in
Figure 4C. Across participants, as shown in Figure 4D, the slopes
of CS+RSA similarity curves were significantly different from
the slopes of CS- RSA similarity curves (P=0.01, d=0.85).

Changes in pattern sparsity during acquisition

To more closely examine the acquisition-related CS+pattern
changes over time and whether the changes were specific to
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Fig. 4. Pattern similarity changes during acquisition in V1. (A) Time course of pattern similarity change in V1 for CS- trials (Subject 8 in (C)). (B) Time course of pattern

similarity change in V1 for CS+ trials from the same subject. (C) Slopes of linear fits to pattern similarity curves such as the ones in (A) and (B) for each participant.

(D) Slopes of similarity curves between CS+and CS- in V1 were significantly different.

acquisition, we divided the habituation block and the acquisi-
tion block into an early period and a late period (the extinction
block was similarly examined; see later). For each time period,
the V1 representational voxels (see Methods: ‘Pattern sparsity
analysis’) for CS+were counted and shown in Figure 5A for
habituation and Figure 5C for acquisition, and the averaged
betas within these voxels, representing average BOLD activa-
tion evoked by CS+ for the ROI, were calculated and plotted
in Figure 5B for habituation and Figure 5D for acquisition. For
habituation, the number of representational voxels for CS+was
not significantly different between the early and the late period
(P=0.17, d=0.26) (Figure 5A), whereas the average CS+-evoked
BOLD response magnitude was also not significantly different
between the two periods (P=0.11, d=0.33) (Figure 5B). For acqui-
sition, the number of representational voxels for CS+was sig-
nificantly lower in the late period relative to the early period
(P=0.004, d=0.97) (Figure 5C), while the average CS+-evoked
BOLD response magnitude did not undergo significant change
from early to late period (P=0.13, d=0.29) (Figure 5D). Figure 5E
illustrates schematically the multivoxel patterns evoked by
CS+with the color of each cube (i.e. voxel) reflecting the beta
value of that voxel; in the late period of acquisition, CS+was

represented by fewer voxels compared to the early period of
acquisition.

EEG alpha-band activity

Stimulus-evoked time course of event-related alpha-band power
(8 to 12 Hz) within a trial was shown in Figure 6A for habituation
as well as for early and late periods of acquisition. Quantifying
alpha ERD using average alpha power in the interval 600 to 1000
ms, there was no significant difference in alpha power between
CS+and CS- in habituation or in early period of acquisition, but
alpha power was significantly lower following CS+ in late period
of acquisition (P=0.03, d=0.67) (Figure 6B). In line with these
findings, a paired t-test revealed greater differential (CS+minus
CS-) alpha ERD in the late compared to the early period of acqui-
sition (P=0.01, d=0.85) (Figure 6B). To further quantify these
cross-trial dynamics, we computed the time course of alpha ERD
changes across trials using the moving window approach men-
tioned earlier (window size: five trials; step size: one trial) and
estimated the slope of the linear fit to alpha ERD changes across
CS+ trials and CS- trials. A Wilcoxon signed-rank test indicated
that the resulting slopes differed significantly (P= 0.01, d=0.85)
(Figure 6C).
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Fig. 5. Pattern sparsity analysis for CS+ trials. (A) No significant difference in number of representational voxels for CS+ in V1 between early and late habituation.

(B) No significant difference in average BOLD activation between early and late habituation. (C) Number of representational voxels for CS+ in V1 was significantly

lower in late acquisition than early acquisition. (D) No significant difference in average BOLD activation between early and late acquisition. (E) Schematic illustration

of increasing sparsity observed during CS+ trials over time: CS+evoked multivoxel patterns of beta values in habituation, early acquisition and late acquisition.

Relation between alpha ERD change over trials and
BOLD pattern similarity change over trials during
acquisition

Exploring the relationship between across-trial changes in alpha
ERD and BOLD pattern similarity changes in CS+evoked pat-
terns inV1 during acquisition, we observed a positive correlation
at r=0.52 (P=0.03, d=1.22) between the differential slope of
alpha power ERD and the differential slope of pattern similarity
curve (Figure 6D). This finding suggests that as aversive learn-
ing progressed, participants with more pronounced representa-
tional voxel pattern changes in V1 tended to show progressively
stronger alpha ERD. It is worth noting that when assessing the
number of representational voxels for CS+as a function of tri-
als using the samemoving window approach, we found that the
slope of such a sparsity change curve and the slope of the alpha
ERD change curve was not significantly correlated at r=0.22
(P=0.4, d=0.45).

Alpha-BOLD correlation during acquisition

Concurrent recordings of EEG and fMRI afforded the opportu-
nity to examine the sources of modulatory signals for alpha

ERD. In acquisition, as shown in Figure 7, alpha power desyn-
chronization was found to be significantly negatively correlated
with the BOLD from rTPJ both across participants (r=−0.51,
P=0.03, d=−1.19) (Figure 7A left) and across trials (r=−0.22,
P=0.02, d=−0.45) (Figure 7B left). For rVLPFC, the same analy-
sis showed that there was a significant across-trial correlation
(r=−0.20, P=0.04, d=−0.41) but not a significant across-
participant correlation (r=−0.15, P=0.56, d=−0.30). Neither
across-participant nor across-trial correlations were found to be
significant between alpha power desynchronization and BOLD
in right amygdala (Figure 7A right and 7B right).

Neural dynamics during extinction

We carried out a similar analysis for the extinction data. Dur-
ing extinction, as shown in Figure 8, slopes of pattern similarity
change time course were not different between CS+and CS-
(P=0.94, d=0.025) (Figure 8A and 8B); the number of represen-
tational voxels for CS+was not different between early and late
period (P=0.72, d=0.03) (Figure 8C) and CS+evoked average
BOLD activation were also not different between early and late
periods (P=0.76, d=0.11) (Figure 8D). Figure 8E and 8F showed
the stimulus-evoked alpha ERD time courses within a trial for
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Fig. 6. Event-related alpha desynchronization during habituation and acquisition. (A) Alpha-band (8–12 Hz) power averaged across CS+ trials and across CS- trials

during habituation, the early period of acquisition and the late period of acquisition. (B) CS+-evoked alpha ERD and the difference in CS+and CS- alpha-band power

for early and late acquisition periods. (C) The slope of linear fit to the time course of alpha-band power across acquisition trials. (D) Relation between the rate of

event-related alpha-band power decrease and the rate of pattern similarity change in V1 (each point in the plot represents one participant).

early and late extinction. Statistical comparisons revealed that
alpha ERD for CS+and CS- were not significantly different both
during early (P=0.3, d=0.35) and late (P=0.57, d=0.19) periods
of extinction.

Additional analyses

First, a closer inspection of Figures 5C and 8C revealed that
the number of representational voxels for CS+during early
extinction (53.0±4.7) was not significantly different from the
number of representational voxels for CS+ in late acquisition
(42.5±5.5) (P=0.17, d=0.47) but was marginally smaller than
the number of representational voxels for CS+ in early acquisi-
tion (71.0±7.7) (P=0.067, d=0.65). This suggested that the spar-
sified neural representations of CS+ reached at the end of acqui-
sition might have persisted in extinction. Second, to formally
test how interactions among experimental blocks reflected the
change in the number of representational voxels for CS+, we
performed a two-factor ANOVA, with one factor being the block
(habituation, acquisition, extinction) and the other being the
period within a block (early, late). The interaction effect was
marginally significant (P=0.055, d=0.68). There was a signif-
icant early-to-late main effect (P=0.02, d=0.85), which was
primarily driven by the reduction in the number of representa-
tional voxels for CS+during acquisition (Figure 5C), and there
was no significant main effect of block (P= 0.91, d=0.04). Note
that this ANOVA tests many additional differences not rele-
vant to the present investigation, which focused on the tem-
poral dynamics in acquisition, with a clear hypothesis of no
CS+/CS- difference during habituation, followed by increased
sparsity only for the CS+. Despite its omnibus characteristic, the
present ANOVA results are consistent with the analyses earlier,
finding strong support for these hypotheses. Third, in addi-
tion to primary visual cortex, the sparsity algorithm was also
applied to the other ROIs considered in this work, including right

amygdala, rTPJ and rVLPFC. We found that there was no sig-
nificant difference in the number of representational voxels for
CS+between the early and the late period of acquisition in rTPJ
and rVLPFC (rTPJ: P=0.79, d=0.07; rVLPFC: P=0.69, d=0.13)
but a significant reduction from early to late acquisition in right
amygdala (P=0.03, d=0.82). There was no significant early-to-
late difference in average CS+evoked BOLD activity in all three
ROIs (amygdala: P=0.51, d=0.36; rTPJ: P=0.85, d=0.03; rVLPFC:
P= 0.19, d= 0.63).

Discussion

In classical fear conditioning, a neutral stimulus (CS+), through
repeated association with an aversive stimulus (US), comes to
elicit defensive responses in the absence of the original aver-
sive stimulus. The sensory neural response to CS+also under-
goes systematic changes in this process. Here, we examined
this problem by recording simultaneous EEG-fMRI from human
participants performing a classic Pavlovian fear conditioning
paradigm and found that: (1) in primary visual cortex (V1),
the representational voxel pattern evoked by the CS+became
sparser as learning progressed, and this sparsification appeared
to persist in extinction; (2) alpha ERD following CS+ (but not
CS-) became more pronounced as learning progressed, suggest-
ing heightened engagement of visual attention in conditioned
fear; (3) the rate of change in V1 representation of CS+was posi-
tively related to the rate of change in alpha ERD and (4) EEG alpha
ERD activity was coupled to BOLD activity in rTPJ and to a lesser
extent, rVLPFC, both of the VAN, but not to BOLD activity in the
right amygdala.

Sharpened visual representation of conditioned threat

Electrophysiological studies in humans have found visuocor-
tical amplification of conditioned threat cues (Moratti et al.,
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Fig. 7. EEG-BOLD coupling in acquisition. (A) Across-participant correlations between alpha ERD and BOLD in the rTPJ and rVLPFC, both of the ventral attention

network, and the right amygdala. A negative correlationwas observed between alpha ERD difference (CS+minus CS-) and the difference in rTPJ beta values (CS+minus

CS-). No correlation was observed between alpha ERD difference and the estimated beta difference in rVLPFC and right amygdala. Each point in the plots represents

a participant. (B) Across-trial correlations between alpha ERD and BOLD in rTPJ, rVLPFC and right amygdala. There was a significant negative correlation between

trial-wise alpha power and trial-wise beta value from rTPJ and rVLPFC, but no correlation between trial-wise alpha power and trial-wise beta from right amygdala.

Each point in the plots represents a trial.

2006; Stolarovaet al., 2006; Miskovic and Keil, 2012; Thigpen
et al., 2017), accompanied by heightened inter-trial and inter-
site phase locking over primary visual cortex (Keil et al., 2007;
McTeague et al., 2015). A recent electrophysiological study in
macaque monkeys also reported very early amplitude enhance-
ment of afferent responses after aversive conditioning (Li et al.,
2019). The present study suggests that such changes reflect
a sparsification process in the neural representation of condi-
tioned threat, in which visual features associated with recur-
ring, predictable threat are increasingly represented by sharp-
ened, efficient and internally tightly coupled visuocortical net-
works, rather than by a generally heightened visual population
response. Specifically, we found that fewer voxels contributed
to the representation of CS+as learning progressed, whereas
the BOLD magnitude evoked by CS+did not change. Sparsifica-
tion of voxel patterns is conceptually consistent with notions
of sharpened, efficient representations emerging as a func-
tion of Hebbian associative mechanisms. Such networks would
be expected to show heightened temporal accuracy and phase
stability across trials, prompting heightened average evoked
responses, which is what has been observed in previous stud-
ies (Miskovic and Keil, 2012). Intracranially, highly connected
and optimally tuned V1 circuits are likewise expected to pro-
duce increased population level firing via a similar mechanism

when stimulated with the threat cue. This prediction is in line
with recent observations in the macaque model (Li et al., 2019),
where CS+gratings prompted fastermulti-unit activity recorded
with multi-electrode arrays, within 40 ms of stimulus onset. To
what extent this increase in neural response is accompanied by
sparsified multivariate neural representation, however, remains
to be further explored.

Notably, the present evidence suggested that sparsification
persisted throughout extinction, despite the finding that the
selective HR orienting response to the CS+was extinguished.
The observation that changes in visuocortical activity are more
resistant to extinction than autonomic or behavioral indices
is consistent with studies on experimental animals as well as
human participants (McTeague et al., 2015). These studies have
shown sustained sensory learning and sensory plasticity dur-
ing extinction, instead of returning to a pre-conditioning, naïve,
state (for a review, see McGann, 2015). Sparsification has been
discussed as a key aspect of such ongoing plasticity because it
minimizes metabolic cost while enabling specific and efficient
representations of predictable threat cues (Miskovic and Keil,
2012; McGann, 2015).

Alternatively, a body of research has suggested that repeat-
ing visual stimuli produces neural activity reduction in the
visual cortex, called repetition suppression, which is potentially
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Fig. 8. Neural dynamics in V1 during extinction. (A) Slopes of linear fits to pattern similarity curves for each participant. (B) Slopes of similarity curves were not

significantly different between CS+and CS-. (C) No significant difference in number of representational voxels for CS+between early and late extinction. (D) No

significant difference in average BOLD activation for CS+between early and late extinction. (E) and (F) Alpha-band ERD for CS+and CS- trials during early extinction

and late extinction. (G) and (H) No significant difference in alpha ERD between CS+and CS- in either early or late extinction.

accompanied by sharpened representations (e.g. Gruber and
Müller, 2002; Gruber et al., 2004; Delorme and Makeig, 2004).
A repetition suppression effect alone is, however, unlikely
to explain the present set of findings because (1) decreasing

activity induced by viewing the same stimulus repeatedly has
been primarily observed with familiar, meaningful objects and
scenes, whereas repetition of unfamiliar stimuli devoid of rich
semantics (such as the gratings used in the present study) may



S. Yin et al. | 961

lead to an increase of neural activity under this perspective
(Conrad et al., 2007), (2) the number of repetitions of the CS+and
CS- was equal across the trial types (60 trials each), thereby rul-
ing out the effect of uneven stimulus exposure and (3) the voxel
pattern difference prompted by the two stimuli persisted during
extinction training in which both CS+and CS- were shown in
identical fashion, with no US given. Furthermore, whereas the
number of voxels that selectively represented the CS+became
smaller as learning progressed, the overall BOLD activity within
these voxels did not change.

Another line of possible argument is that the change and
sparsification of the V1 BOLDpatternsmay simply be a reflection
of diminished engagement with the threat cue over the course
of the acquisition session. The increased alpha ERD for the
CS+with learning, however, is more consistent with the notion
that attention is increasingly directed to the threat cue, contra-
dicting a selective disengagement hypothesis. The present study
also did not counterbalance orientations of the Gabor patches
across participants, such that the same orientation served as
the CS+ for each participant. This could represent a limitation in
that any systematic difference between+45◦ and−45◦ in asso-
ciability or habituation/adaption would influence the current
results. To the extent however that we analyzed RSA changes
relative to a robust voxel pattern based on the entire habitua-
tion block, such a confound seems unlikely to drive the current
findings. Together, the present data support the hypothesis that
associative learning selectively shapes visuocortical represen-
tations of threat in a way that promotes sparser, sharpened
coding of the critical stimulus features (Kok et al., 2012; Ibrahim
et al., 2016).

How do the results reported here relate to the theory of
sparse neural coding? In single unit neurophysiology, sparse
neural coding refers to the representation of a stimulus by a
small set of neurons (Simoncelli and Olshausen, 2001). It is obvi-
ous that fMRI cannot resolve neural activity at the single cell
level. However, if we view the voxel as the unit of measurement
and analysis, some parallels can still be drawn between mul-
tivoxel pattern analysis in fMRI and multiunit pattern analysis
in single unit neurophysiology. In fact, techniques such as sup-
port vector machine (SVM) and RSA are shared between the two
fields. It is interesting to note that the sparse coding hypothesis
has proven to be rather difficult to test in single unit neurophys-
iology (Berkes et al., 2009). The main obstacle is how to define ‘a
small set of neurons.’ In our study, sparsification is defined in the
context of learning, and inferred from the comparison between
the early and late periods of acquisition. It is quite clear that,
without such comparison, the notion of sparsity in fMRIwill also
be difficult to define.

Defensive orienting and EEG alpha ERD

Previous work has shown that the cardiac orienting response
to threat, measured as phasic HR deceleration when viewing
the CS+, is attenuated as learning progresses (Sokolov, 1963;
Bradley, 2009; Yin et al., 2018). This adaptation in HR orient-
ing is concomitant with adaptation in canonical fear circuits
and the salience network, including the amygdaloid complex,
dorsal anterior cingulate cortex and anterior insula (Yin et al.,
2018). By contrast, in the present study, EEG alpha ERD—a
phenomenon associated with visual activation and attentive
stimulus processing—became stronger (increased sensitization)
during the course of acquisition. This is consistent with the

long-held notion that behavioral, autonomic and neurophysio-
logical responses to threat are not linearly related (Lang, 1979),
reflective of their different adaptive functions in addressing the
threat.

A large body of research has shown that the extent of event-
related alpha power reduction or alpha ERD over visual areas co-
varieswith themotivational significance (task-relevance) and/or
perceptual saliency of the event (Ruby et al., 2013). Thus, the
present finding that alpha ERD becomes stronger with condi-
tioning suggests that the selective/attentive processing of the
CS+ is increasing, not decreasing, as learning progresses. Sup-
porting this interpretation, a previous study found the adap-
tation of limbic brain areas to be accompanied by increased
engagement of visual cortex during fear conditioning (Lithari
et al., 2016). Such persistent visuocortical engagement with the
threat cue may be particularly adaptive in conditioning regimes
with intermittent pairing, in which not all CS+ trials include
a US presentation, promoting exploration behavior and scan-
ning of the environment for contingency cues—a hypothesis
that is readily testable in future research and consistent with
extinction-resistant alpha power changes during a 2-day condi-
tioning regimen (Panitz et al., 2019). Notably, heightened atten-
tion to the threat cue is unlikely to explain the cross-species
observation that extensive conditioning over time prompts
selectively heightened visuocortical responses at very short
latencies and in retinotopic visual areas. The present findings
are, however, consistent with earlier work that has emphasized
the role of heightened top-down signaling in selective threat cue
processing (Petro et al., 2017), as plastic changes mediated by
attention selection history can alter the sensitivity of retinotopic
neurons (cf., Li et al., 2019).

Sources of modulatory signals mediating visuocortical
changes

Most contemporary viewpoints agree that heightened visuo-
cortical responses result from interactions between visual and
extra-visual brain regions, with the latter conveying modula-
tory signals that selectively heighten the gain of visual neurons,
individually or at the population level. Two candidate circuits for
providing such re-entrant modulatory feedback to visual cortex
have received the most attention in the literature: the amyg-
dala and the VAN. Two mechanisms have been proposed for
amygdalofugalmodulations of the visual system. One is through
its projections to earlier levels of the visual pathway including
primary and secondary visual cortices to enhance perceptual
processing of emotional stimuli (Amaral et al., 2003). The other
is through its connections with higher order attentional modu-
lation areas such as the intraparietal sulcus (Armony and Dolan,
2002) and VLPFC (Ghashghaei et al., 2007). Consistent with ear-
lier work testing the amygdalofugal re-entry hypothesis in fear
conditioning (Petro et al., 2017), the present study did not find
support for the notion that hemodynamic activity in the amyg-
daloid complex co-varies with selective visuocortical processing
of the CS+, neither at the level of BOLD nor at the level of
scalp-recorded electrophysiology. Targeted studies in the ani-
mal model are needed to characterize the role of the amygdala
in biasing visuocortical processes during fear conditioning.

The VAN consisting of rTPJ and rVLPFC is thought to mediate
the allocation of attention in response to the presence of salient
sensory stimuli (Fox et al., 2006; Vossel et al., 2014). For example,
BOLD activity in areas within the VAN such as the rTPJ is mod-
ulated by tasks that require participants to selectively attend to
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events varying in hedonic valence and/or arousal (Fichtenholtz
et al., 2004; Lee and Siegle, 2012; Klimesch, 2012). Although not
suitable for establishing causality, the present findings support
the hypothesis (Petro et al., 2017) that, even in the absence of
a cognitive task, biasing signals originating in attention-related
brain regions such as rTPJ facilitate the selective visuocorti-
cal processing of conditioned threat cues. Further illustrating
a dissociation of limbic and attention networks, competing
macroscopic networks may be active during different phases of
classical fear conditioning, with limbic and prefrontal networks
being anti-correlated (Marstaller et al., 2016). Future work may
address the extent to which VAN engagement in fear acquisi-
tion is driven by input from threat-modulated regions such as
the amygdala or insula.

Summary and conclusions

The present study showed that extensive fear conditioning
prompts the emergence of sharpened, sparser pattern represen-
tations of the condition threat in visual cortex. These pattern
changes were characterized by decreasing numbers of voxels
showing CS+ specificity. The rate of CS+ representational pat-
tern changes co-varied with the rate of increased CS+evoked
alpha ERD, with alpha ERD being associated with the activ-
ity of VAN, rather than the amygdala. The sparsification of
voxel patterns persisted during extinction training, in line with
electrophysiological work showing lasting changes in affer-
ent visuocortical processing after extensive fear conditioning
(Thigpen et al., 2017), despite the fact that autonomic responses
to CS+and CS- showed no difference. Together, these observa-
tions support the notion that sustained fear learning prompts
plastic changes at the lowest level of visuocortical processing
stream to cope with the demands posed by an ever-changing
environment, and to facilitate the detection and identification
of threats or opportunities, and that attention mechanisms play
a significant role in this process.
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