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ATPase, a key enzyme involved in energy metabolism, has not yet been well studied in
Clostridium acetobutylicum. Here, we knocked down the atpG gene encoding the ATPase
gamma subunit in C. acetobutylicum ATCC 824 using a mobile group II intron system and
analyzed the physiological characteristics of the atpG gene knockdown mutant, 824-
2866KD. Properties investigated included cell growth, glucose consumption, production
of major metabolites, and extracellular pH. Interestingly, in 2-L batch fermentations, 824-
2866KD showed no significant difference in metabolite biosynthesis or cell growth
compared with the parent ATCC 824. However, the pH value in 824-2866KD cultures
at the late stage of the solventogenic phase was abnormally high (pH 6.12), compared with
that obtained routinely in the culture of ATCC 824 (pH 5.74). This phenomenon was also
observed in batch cultures of another C. acetobutylicum, BEKW-2866KD, an atpG-
knockdown and pta-buk double-knockout mutant. The findings reported in this study
suggested that ATPase is relatively minor than acid-forming pathway in ATP metabolism in
C. acetobutylicum.
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INTRODUCTION

Clostridium acetobutylicum is a strictly anaerobic, gram-positive bacterium that survives in hostile
environments by producing endospores (Shao et al., 2007). C. acetobutylicum possesses industrially
applicable metabolic properties, notably including the production of organic solvents, such as
acetone, butanol, and ethanol (Kwon et al., 2020; Shin et al., 2021). C. acetobutylicum produces the
solvents through biphasic pathway, which is divided into an acidogenic phase and a solventogenic
phase (Shao et al., 2007; Im et al., 2021). During the acidogenic phase, which corresponds to the
initial growth phase, most carbon sources are used to produce acetate, butyrate, and carbon dioxide
(Jang et al., 2012). As cell growth enters the stationary phase, the metabolism of C. acetobutylicum
shifts to the solventogenic phase (Lütke-Eversloh, 2014), during which organic acids are re-
assimilated, and most of the carbon sources are used to produce butanol, acetone, and ethanol
as final products (Jang et al., 2012).

The reason for this biphasic fermentation is closely related to the energy and redox metabolism in
C. acetobutylicum (Figure 1) (Jang et al., 2014a; Lütke-Eversloh, 2014). In these bacteria, ATP is
primarily produced from glucose through glycolysis (Externbrink et al., 2000). During the initial
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growth phase in C. acetobutylicum, additional ATP is produced
through substrate-level phosphorylation, which is coupled to the
production of acetate and butyrate (Externbrink et al., 2000). At
that time, to regenerate NAD+, NADH could be oxidized via not
only two enzymes 3-hydroxybutyryl-CoA dehydrogenase (HBD)
and butyryl-CoA dehydrogenase (BCD) responsible for butyrate
formation, but also hydrogenase (HYD) coupled with ferredoxin
oxidoreductase (PFOR; Figure 1) (Du et al., 2021; Jiang et al.,
2021). As the acidogenic phase progresses, the external pH is
continuously lowered to nearby 4.5, and NADH also
accumulates, both of which have adverse effects on C.
acetobutylicum (Jang et al., 2012; Lütke-Eversloh, 2014). At
this point, the metabolism of C. acetobutylicum shifts from the
acidogenic phase to the solventogenic phase (Jang et al., 2012; Li
et al., 2020; Thi et al., 2020). After such phase transition, the
function of hydrogenase is turned-off, and NAD+ is regenerated
by 4 and 2 dehydrogenases for butanol and ethanol biosynthesis,

respectively (Tremblay et al., 2012; Fast and Papoutsakis, 2018)
(see Figure 1 for details). Continuous acid re-assimilation and
carbon flux toward solvent production cause the lowered external
pH to rise (Kim et al., 2020; Li et al., 2020).

Despite such perfect metabolism for energy and redox
regulation through biphasic fermentation, the atp operon
encoding ATPase was reported in C. acetobutylicum genome
(Nölling et al., 2001; Cho et al., 2017). The fully sequenced atp
operon in C. acetobutylicum has been shown to include the
atpIBEFHAGDC (F-type ATPase) (Externbrink et al., 2000).
F-type ATPases, which are conjugated to the inner membrane
in microbes, generally mediate ATP synthesis through oxidative
phosphorylation (Externbrink et al., 2000; Mukherjee and
Warshel, 2015; Zharova and Vinogradov, 2017; Kang et al.,
2019). F-type ATPases require the proton motive force (PMF)
to produce ATP from ADP and inorganic phosphate (Pi);
however, neither the electron transport chain nor Rnf complex

FIGURE 1 | Schematic presentation of the energy and redox metabolism inC. acetobutylicum. In C. acetobutylicum, F-type ATPase is encoded by the atp operon
(atpIBEFHAGDC). In general, F-type ATPases require the proton motive force to produce ATP; however, neither the electron transport chain (yellow) nor Rnf complex
(brown) has been reported in C. acetobutylicum (Tremblay et al., 2012). The Rnf complex is commonly reported in other clostridia such as Clostridium beijerinkii,
Clostridium saccharobutylicum andClostridium saccharoperbutylacetonicum, but it is usual that the Rnf is not found inC. acetobutylicum (Poehlein et al., 2017). In
this situation, meanwhile, 2 mol of ATP are produced from a glucose through glycolysis. During the initial growth phase (namely, acidogenic phase), additional ATP is
produced through the routes for the production of acetate and butyrate. At that time, NADH could be re-oxidized via two routes: 1) a cascade reaction for butyrate
formation involving 3-hydroxybutyryl-CoA dehydrogenase (HBD) and butyryl-CoA dehydrogenase (BCD); 2) hydrogen production reaction catalyzed by hydrogenase
(HYD) coupled with ferredoxin oxidoreductase (PFOR). During solventogenic phase (gray arrows), the function of hydrogenase is turned-off, and NAD+ is regenerated by
4 (HBD, BCD, ALDH, and ADH) and 2 (ALDH and ADH) dehydrogenases for butanol and ethanol biosynthesis, respectively. Abbreviations: ACK, acetate kinase; ADC,
acetoacetate decarboxylase; ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase; BUK, butyrate kinase, CoAT, CoA transferase; CRT, crotonase; THL,
thiolase; PTA, phosphotransacetylase; and PTB, phosphotransbutyrylase.
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has been reported in C. acetobutylicum (Tremblay et al., 2012;
Shin et al., 2021) (Figure 1). Although physiological effects of
disrupting ATPase have been analyzed in other organisms, such
as Escherichia coli (Jensen and Michelsen, 1992; Causey et al.,
2003; Shah and Duncan, 2015; Burger et al., 2020), Lactococcus
lactis (Koebmann et al., 2000; Koebmann et al., 2002a),
Rhodobacter capsulatus (Borghese et al., 1998), Saccharomyces
cerevisiae (Weber et al., 1995; Zhang and Zhang, 2019),
Corynebacterium glutamicum (Sekine et al., 2001; Koch-
Koerfges et al., 2012), and Bacillus subtilis (Santana et al.,
1994), the consequences of ATPase mutation in C.
acetobutylicum ATCC 824 have not yet been investigated.
Here, to reveal the main function of F-type ATPase in C.
acetobutylicum, we constructed ATPase-knockdown strains
and performed a physiological characterization of resulting
ATPase-knockdown strains.

MATERIALS AND METHODS

Bacterial Strains, Plasmids, and Culture
Conditions
E. coli strains and recombinants were grown in Luria-Bertani
(LB) broth at 37°C (An et al., 2020; Lone et al., 2020). C.
acetobutylicum ATCC 824 and the engineered strain BEKW
and mutants were grown in clostridial growth medium (CGM)
or 2X YTG agar in an anaerobic chamber (Forma Scientific,
Marietta, OH, United States) under 4% hydrogen and 96%
nitrogen at 37°C (Jang et al., 2012). Ampicillin (50 μg/ml),
chloramphenicol (34 μg/ml), or erythromycin (40 μg/ml) was
added to the medium, as required.

Construction of Knockdown Mutants
The mobile group II intron system was used to construct atpG-
knockdownmutants of C. acetobutylicum (Heap et al., 2007; Shao
et al., 2007; Jang et al., 2012; Jang et al., 2014b; Kim et al., 2015;
Kwon et al., 2020). The atpG-targeted intron for knockdown was
amplified by overlap extension PCR using the following primers:
2866-IBS, 5′-AAAAAAGCTTATAATTATCCTTAATAGCCGA
CCGTGTGCGCCCAGATAGGGTG-3′; 2866-EBS1, 5′-CAG
ATTGTACAAATGTGGTGATAACAGATAAGTCGACCGTG
CTAACTTACCTTTCTTTGT-3′; 2866-EBS2, 5′-TGAACG
CAAGTTTCTAATTTCGGTTGCTATCCGATAGAGGAAAGT
GTCT-3′; EBS universal, 5′-CGAAATTAGAAACTTGCGTTC
AGTAAAC-3′ (Supplementary Table S1). The amplified PCR
fragment (∼0.5 kb) was double-digested using restriction
enzymes BsrGI and HindIII, and then ligated into pCACYS3
(Jang et al., 2012) digested using the same enzymes, yielding the
recombinant plasmid, pCAC2866KD. Plasmid pCAC2866KD
was consecutively transformed into E. coli TOP10 (pAN1)
containing the plasmid pAN1, which harbors the
methyltransferase gene, φ3TI (Mermelstein and Papoutsakis,
1993). Thus, the recombinant plasmid, pCAC2866KD, is
methylated by the methyltransferase in the resulting E. coli
strain. C. acetobutylicum ATCC 824 and its pta-buk double
mutant BEKW (Jang et al., 2012) were subsequently
transformed with the methylated recombinant plasmid,

yielding the atpG-knockdown mutant strains, 824-2866KD
and BEKW-2866KD, respectively. The resulting
atpG-knockdown mutants, in which the targeted intron was
inserted in the sense strand, were validated by PCR using
primers atpG-F and atpG-R (Supplementary Table S1). The
intron insertion into the target site on the atpG gene was further
confirmed by sequencing the DNA fragments obtained from PCR
with primers atpG-seq-F and atpG-seq-R using total DNA of the
mutant (Supplementary Table S1).

Batch Fermentation
C. acetobutylicum ATCC 824 and its mutants were inoculated
into 500-ml Erlenmeyer flasks containing 200 ml CGM and then
cultured anaerobically to an optical density at 600 nm (OD600) of
1.0 at 37°C (Jang et al., 2012). The resulting seed cultures were
transferred into a 5-L Liflus GX bioreactor (Biotron, Gyunggi-do,
South Korea) containing 1.8 L CGM for fermentation. The
bioreactor was set at an agitation speed of 200 rpm, a nitrogen
gas flow rate of 0.25 vvm, and a temperature of 37°C. The pH was
automatically maintained above 5.0 with ammonia solution but
was not controlled when pH became higher than the set value.
Samples were periodically withdrawn from the culture medium
for analysis of cell growth and concentrations of glucose, organic
acids, and organic solvents.

Analytical Methods
Samples were collected for monitoring cell growth, glucose
consumption, pH, and production of metabolites, including
acetate, butyrate, acetone, ethanol, and butanol. Batch
fermentations of each strain were independently performed in
duplicate. Cell growth was monitored by measuring OD600 using
an Ultrospec 3000 spectrophotometer (Pharmacia Biotech,
Uppsala, Sweden). The concentrations of acetate, butyrate, and
glucose were determined using a high-performance liquid
chromatography (HPLC) system (Prostar; Varian, Palo Alto,
CA, United States) equipped with a packed column (Metacarb
87H; MetaChem Technologies, Torrance, CA, United States) and
refractive index detector (RI-27; Shodex, Japan). The mobile
phase consisted of 0.01 N H2SO4 (Im et al., 2019; Chun and
Sang, 2020; Lee et al., 2020). The concentrations of acetone,
butanol, and ethanol were determined using a gas
chromatography system (Agilent 7890; Agilent Technologies,
California, United States) equipped with a packed column (80/
120 Carbopack BAW glass column; Supelco, Bellefonte, PA,
United States) and flame ionization detector (Jang et al., 2012;
Baek et al., 2019). Helium gas was used for the mobile phase.

RESULTS AND DISCUSSION

Construction of the atpG-Knockdown C.
acetobutylicum Mutants
CAC2866 (atpG encoding ATPase gamma subunit), one of nine
ATPase-coding genes found in C. acetobutylicum, is an important
part of the ATPase enzyme (Externbrink et al., 2000). The
ATPase gamma subunit forms the central shaft, which forms
the connection between the F0 rotary motor and the F1 catalytic
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complex (Figure 1; Mukherjee andWarshel, 2015). Disruption of
the gamma subunit of F-ATPase in other organisms decreases
ATPase activity and ATP levels, resulting in cell growth

inhibition and a shift in metabolism (Iwamoto et al., 1990;
Shin et al., 1992; Lai-Zhang et al., 1999). Accordingly, to
investigate the effects of ATPase knockdown on physiological

FIGURE 2 | Inactivation of C. acetobutylicum atpG gene by the intron insertion using mobile group II intron system. (A) Schematic diagram of the mutated atpG
gene (blue) constructed by intron (orange) insertion. The intron was inserted between 459th and 460th nucleotides in the wild-type atpG gene, which was confirmed by
sequencing using primers atpG-seq-F (green arrow) and atpG-seq-R (reverse green arrow; Supplementary Table S1). The mutated atpG gene was schematically
aligned with DNA sequencing chromatograms (yellow arrows; see Supplementary Figures S1, S2 for detailed chromatogram). (B,C) Validation of the atpG gene
mutation in strains 824-2866KD (B) and BEKW-2866KD (C). The atpG-knockdown mutants, 824-2866KD and BEKW-2866KD were validated by PCR using primers
atpG-F and atpG-R (Supplementary Table S1). (B) M, 100-bp marker; lane #1, ATCC 824; lane #2, 824-2866KD. (C) M, 100-bp marker; lane #1, BEKW; lane #2,
BEKW-2866KD.

FIGURE 3 | Comparison of batch fermentation profiles between C. acetobutylicum ATCC 824 (blue) and its mutant 824-2866KD (red). Fermentation parameters
are cell growth (OD600) glucose consumption, acids (acetate and butyrate) production, and solvents (acetone, butanol, and ethanol) production. Merged version of batch
fermentation profiles of C. acetobutylicum 824-2866KD are shown in Supplementary Figure S3A. Other reproduced bioreactor cultivation profiles are shown in
Supplementary Figure S3B.
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characteristics of C. acetobutylicum, we constructed atpG-
knockdown mutant strains, 824-2866KD and BEKW-2866KD
fromwild-type ATCC 824 and the pta-buk double mutant BEKW
strains, respectively, by using mobile group II intron system
(Figure 2; Supplementary Figures S1, S2).

Effects of atpG Knockdown on Cell Growth,
Glucose Consumption, and Metabolite
Production
To see the effects of atpG knockdown on physiological
characteristics, we first analyzed and compared cell growth
between ATCC 824 and 824-2866KD (Figure 3;
Supplementary Figure S3). There was no apparent difference
in growth between ATCC 824 and 824-2866KD (Figure 3), even
though disruption of ATPase is known to reduce ATPase activity
and ATP level, which in turn inhibits cell growth in non-clostridia
strains (Iwamoto et al., 1990; Ferrandiz and De La Campa, 2002;
Causey et al., 2003; Cipriano et al., 2006; Kim et al., 2020).

The effects of atpG knockdown in C. acetobutylicum were also
assessed by examining glucose consumption, which is known to
be affected by ATP levels (Koebmann et al., 2002b; Dai et al.,
2020). Glucose concentration decreased steadily during
exponential and stationary phases in both ATCC 824 and 824-
2866KD (Figure 3; Supplementary Figure S3). After 28 h,
glucose consumption in ATCC 824 was 66.5 g/L and was
maintained at 39.5 g/L (Figure 3). 824-2866KD showed a
similar decrease in glucose consumption rate, which reached
70.5 g/L at 28 h and was maintained at 34.5 g/L (Figure 3).
Thus, these results show no significant changes in glucose
consumption in atpG-knockdown C. acetobutylicum mutant
comparing with the parent ATCC 824 strain.

The effects of atpG knockdown were further investigated by
analyzing the production of metabolites (Figure 3;
Supplementary Figure S3). The highest concentrations of
acetate and butyrate in 824-2866KD culture were 3.9 g/L and
4.0 g/L, respectively, representing 91.6 and 88.9% of
concentrations in ATCC 824 fermentation (Figure 3). During
the solventogenic phase, the final concentrations of acetate and
acetone in 824-2866KD were also similar to those in ATCC 824
(Figure 3). However, residual butyrate in the fermentation using
824-2866KD was slightly lower than that of the ATCC 824, with a
difference of exactly 0.98 g/L at the endpoint (Figure 3). The lack
of change (or minor change) in acid and acetone concentrations
indicates that acid re-assimilation is also not majorly affected by
ATPase knockdown. The production of ethanol and butanol in
824-2866KD culture were 1.4 g/L and 12.4 g/L, respectively,
which were also similar to the corresponding concentrations
of 1.0 g/L and 11.3 g/L in ATCC 824 fermentation (Figure 3).
Previous studies have reported that disruption of ATPase shifts
metabolic flux toward byproducts because ATPase-disrupted
mutants produce ATP through substrate-level
phosphorylation, not by oxidative phosphorylation (Koebmann
et al., 2002a; Koebmann et al., 2002b). It seems that as most ATP
in C. acetobutylicum is produced through substrate-level
phosphorylation, the ATPase-knockdown mutant showed no
significant changes in acidogenic or and solventogenic phases.

Effect of atpG Knockdown on
Extracellular pH
The effect of atpG knockdown was also analyzed by comparing
extracellular pH between ATCC 824 and 824-2866KD (Figure 3;
Supplementary Figure S3). Throughout the entire fermentation
period, the bioreactor controller adjusted the external pH to
maintain it above 5.0. During the acidogenic phase, ATCC 824
and 824-2866KD reached pH 5.0 and maintained it by adding
ammonia solution to avoid decreasing pH values by the
production of organic acids. During the subsequent
solventogenic phase, pH rose as a result of acid re-assimilation
in both ATCC 824 and 824-2866KD cultures (Figure 3). The pH
rose steadily after 20 h, reaching pH 5.74 in ATCC 824 culture
(Figure 3). On the other hand, pH rose steadily for more than
40 h in 824-2866KD culture, reaching a value of 6.12 at the late
stage of the solventogenic phase, a value significantly higher than
that in ATCC 824 fermentation (Figure 3). These results show
that ATPase activity is affected to the extracellular pH in C.
acetobutylicum fermentation.

Effect of atpG Knockdown on Physiological
Characteristics of C. acetobutylicum BEKW
Our previous work (Jang et al., 2012) showed that C.
acetobutylicum BEKW exhibited higher butanol production
(16.0 g/L) than C. acetobutylicum ATCC 824 (11.8 g/L). Two
enzymes including phosphotransacetylase and butyrate kinase
encoded by the pta and buk, respectively, operate primarily in the
acidogenic phase to synthesize the organic acids, acetate and
butyrate, respectively, in addition to producing ATP through
substrate-level phosphorylation (Lütke-Eversloh, 2014). To
determine the effects of atpG knockdown in BEKW, we
cultured the mutant, BEKW-2866KD in 2-L bioreactor
(Figure 4A; Supplementary Figure S4).

First, we compared cell growth and glucose consumption of
BEKW-2866KD with that in BEKW. Glucose concentration
decreased steadily during exponential and stationary phases in
BEKW-2866KD (Figure 4A). Glucose consumption ceased by 38 h
and was maintained at 39.91 g/L (Figure 4A). Ultimately, total
glucose consumption was 56.60 g, which was not significantly
different from that in BEKW (Jang et al., 2012). Consistent with the
similar glucose consumption in BEKW and mutant strains, cell
growth was also unaffected by atpG knockdown (Figure 4A; Jang
et al., 2012). Production of the metabolites, acetate, butyrate,
acetone, ethanol, and butanol, by BEKW-2866KD, was also
analyzed and compared with that of BEKW (Jang et al., 2012).
This analysis could be not confirmed significant changes in
physiological characteristics (Figure 4). Furthermore, we found
that the identified difference in residual butyrate between ATCC
824 and 824-2866KD was not repeated in the comparison between
BEKW and BEKW-2866KD (Figure 4D).

The extracellular pH of BEKW and BEKW-2866KD, cultured
while maintaining the pH above 5.0, was comparatively analyzed.
During the solventogenic phase, pH steadily rose because of acid re-
assimilation in both BEKW and BEKW-2866KD fermentations.
The extracellular pH in BEKW cultures reached 5.9, a value that was
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maintained after 39 h (Jang et al., 2012). BEKW-2866KD reach a
higher pH value of pH 6.54, which was maintained after 46 h
(Figure 4B). In other reproduced bioreactor cultivation, pH 6.89
was observed at 46 h (Supplementary Figure S4). These results are
similar to those obtained in comparisons between ATCC 824 and
824-2866KD, described above. The finding that atpG knockdown
caused no significant differences in cell growth, glucose
consumption, or metabolites production indicates that ATPase is
relatively minor than acid-forming pathway in ATP metabolism in
C. acetobutylicum. However, the fact that ATPase knockdown
similarly affected extracellular pH in atpG knockdown strains
indicates that ATPase is affected to extracellular pH at the late
stationary phase in C. acetobutylicum fermentation. Taken together,
it seems that the external pH was affected by not only the residual
acids but also other effectors, such as inhibition of proton pumping
by ATPase. Depending on the situation, F-ATPase can reversibly
synthesize or degrade ATP (Löbau et al., 1998; Bowler et al., 2006;
Hayashi et al., 2012). ATP is hydrolyzed to create a proton gradient
through the plasma membrane, while PMF is used for ATP
synthesis (Costa et al., 2021). The increase in extracellular pH
shown in this study is presumed to be due to inhibition of
proton pumping across the membrane by knockdown of the
atpG gene. This seems to be closely related to the recent report
that ATPase is inhibited by butanol, which resulted in a low
intracellular pH and reduction of PMF (Costa et al., 2021).

In this study, we first constructed the atpG knockdown strains
using the mobile group II intron system to investigate the role of
the ATPase in C. acetobutylicum. Although other ATPase-
disrupted non-clostridia organisms show prominent
differences in ATP synthesis and cell growth, the atpG
knockdown mutants of C. acetobutylicum ATCC 824 and

BEKW, 824-2866KD and BEKW-2866KD, respectively,
showed no significant changes in physiological characteristics
except extracellular pH. The inference is that most ATP is
produced through substrate-level phosphorylation in glycolysis
and the acid-forming pathways in C. acetobutylicum. Detection of
the ATP level may help to explain the phenomenon found in this
work. As ATP and redox metabolism is complexly combined to
biphasic fermentation in C. acetobutylicum, however, it is needed
to approach it with a more elaborate strategy.
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