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Antibodies are critical effector molecules of the humoral immune system. Upon infection or
vaccination, populations of antibodies are generated which bind to various regions of the
invading pathogen or exogenous agent. Defining the reactivity and breadth of this antibody
response provides an understanding of the antigenic determinants and enables the
rational development and assessment of vaccine candidates. High-resolution analysis
of these populations typically requires advanced techniques such as B cell receptor
repertoire sequencing, mass spectrometry of isolated immunoglobulins, or phage display
libraries that are dependent upon equipment and expertise which are prohibitive for many
labs. High-density peptide microarrays representing diverse populations of putative linear
epitopes (immunoarrays) are an effective alternative for high-throughput examination of
antibody reactivity and diversity. While a promising technology, widespread adoption of
immunoarrays has been limited by the need for, and relative absence of, user-friendly tools
for consideration and visualization of the emerging data. To address this limitation, we
developed EPIphany, a software platform with a simple web-based user interface, aimed
at biological users, that provides access to important analysis parameters, data
normalization options, and a variety of unique data visualization options. This platform
provides researchers the greatest opportunity to extract biologically meaningful
information from the immunoarray data, thereby facilitating the discovery and
development of novel immuno-therapeutics.
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INTRODUCTION

Antibodies are critical effector molecules of humoral immunity. Through their ability to recognize
and bind specific targets (epitopes) these proteins serve as a critical line of defence by neutralizing
potential threats while activating higher-level immune responses. Through infection or vaccination,
there is virtually limitless potential to generate antibodies with the capacity to uniquely recognize
different protein sequences and structures, and to form long-lived immune memory. With that, the
antibody population present within mammals offers valuable insight into their past, present, and
future health. This complex and diverse population of antibodies reflects the immunological
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challenges that the organism has encountered, is currently
prioritizing, and is prepared to face. Detailed accounting of
the reactivities represented within this population can identify
biomarkers with utility for diagnostic applications. For example,
shifts in the reactivities of the population in response to a
stimulus, like infection, inform the immunological nuances of
the host-pathogen interaction, information that can be applied to
guide rationale design of vaccines as well as disease diagnosis and
prognosis.

There are several features of antibodies that are well suited for
high throughput omic investigations. These vast, complex, and
dynamic antibody populations are easily sampled at several
minimally invasive anatomical sites (e.g., blood, sputum, feces,
colostrum/milk, saliva, tears, mucus from nose, throat, or genital
area). In terms of the magnitude and complexity of the antibody
population, the immunoglobulin G (IgG) antibody population
has an estimated capability for recognition of greater than 1015

molecular targets (Rees, 2020). This provides the capacity for
highly nuanced immunological responses as well as highly
individualized immunological profiles, important features for
biomarker discovery and application. These antibody
populations are also highly responsive; antibody-secreting cells
can generate 1011 copies of a specific antibody within a week
(Sykes et al., 2013) providing a natural amplification of signal that
benefits efforts to characterize changes within the population.
Finally, structural characteristics of antibodies are ideally suited
for high-throughput investigation in that they consist of unique
complementary-determining regions within the Fab arms at the
amino-terminal end of the molecule that enable specific
recognition of targets, as well as a structurally conserved Fc
region at the C-terminal end that facilitates detection of the
entire population, or a specific isotype, using a common detection
method.

Global characterization of the reactivities present within
antibody populations have largely been performed through
either phage display, NextGen sequencing, or mass
spectrometry (Sykes et al., 2013). While these approaches have
demonstrated degrees of success, they are commonly

disadvantaged by their requirement for highly specialized and
expensive equipment, as well as substantial technical expertise.
Immunoarrays are a promising technology for rapid, global
surveys of the reactivities represented within a population of
antibodies. These arrays measure the reactivity of antibodies
toward an array of peptides representing potential antigenic
determinants. With these arrays, short peptides, typically
ranging from 14 to 26 amino acids in length, are presented on
a scale of thousands of unique sequences, each localized to unique
coordinate on the surface. The immunoarray is fundamentally
related to an enzyme-linked immunosorbent assay (ELISA) in
that peptides affixed to a solid phase are reacted with serum,
plasma, or purified antibodies and antigen-antibody complexes
are detected using reporter-conjugated secondary antibodies
(Figure 1). The higher capacity and superior assay sensitivity
of immunoarrays facilitates more effective high throughput
screening when compared to ELISAs.

The sequences of the peptides on an immunoarray can be
strategically selected to represent potential antigens within the
proteome of a microbe of interest. For example, an array
representing the entirety of the proteome of SARS-CoV-2, as
well as four other pathogenic human coronaviruses, was recently
reported (Holenya et al., 2021). In the case of arrays for
autoimmune disorders, sequences from specific self-proteins
are represented (Hecker et al., 2016). In either scenario,
overlapping peptides can be constructed to enable mapping of
reactivities to specific epitopes. Alternatively, peptide microarrays
representing random sequences enable unbiassed survey of the
reactivities within the antibody population yielding novel
immunosignatures (defined as a pattern of reactivities
generated by circulating antibodies) that accurately diagnose
certain disease states despite the primary sequences of those
peptides having no apparent relationship to protein antigens
involved in the disease (Chapoval et al., 2017).

Immunoarrays have been applied in mapping antigenic
determinants (epitopes) of proteins, antibody signature
profiling, and discovery of disease biomarkers (including of
autoimmune disorders) (Restrepo et al., 2013; Hecker et al.,

FIGURE 1 | Overview of Design and Implementation of Immunoarrays. Custom peptide synthesis and printing onto a solid-phase matrix, with the capacity of over
6,000 unique peptides, is available from several commercial manufacturers. Immunoarray assays are like conventional ELISAs involving incubation with a primary sample
(serum, plasma, or purified antibodies) and detection using a fluorescent-conjugated reporter molecule or antibody. Imaging of peptide arrays requires the use of a
microarray scanner and companion software to translate images into numerical data as GPR or CSV files. The GPR or CSV files are uploaded into EPIphany to
process the array data, perform statistical analyses, examine data characteristics, and generate publication-ready visualizations. The schematic was generated using
BioRender.
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2016) as well as responses to vaccines (Legutki et al., 2010; Legutki
and Johnston, 2013). Within the realm of host-pathogen
interactions, immunoarrays have been applied as diagnostic
tools to determine if exposure to a particular pathogen has
occurred as well as to understand specifics of host antibody
response to a particular pathogen (Holenya et al., 2021).
Immunoarrays can guide the development of vaccines through
identification and translation of neutralizing epitopes that occur
in the context of natural infection into vaccines, as well as
evaluation of the ability of candidate vaccines to induce
antibodies with reactivity to these priority targets. Lastly,
immunoarrays have generated novel observations that have led
to a shift in our fundamental understandings of the antibody-
antigen interaction (Sykes et al., 2013).

The prioritization of linear, or continuous, epitopes by the
immunoarrays also facilitates the rapid translation of these targets
into existing platforms for creation of peptide-based vaccines
(Malonis et al., 2020). Many antibodies generated in response to
infection recognize and bind to their cognate antigen in its folded
or conformational state (i.e., conformational or discontinuous
epitope). While immunoarrays are limited to linear peptide
sequences lacking higher-order structures, there are ample
examples of protective antibody responses which are not
dependent upon conformational epitopes. Recent
computational advancements have even pioneered novel
strategies to design linear peptide sequences that mimic
conformational epitopes which might expand the utility of
immunoarrays into the realm of discontinuous epitopes
(Mayrose et al., 2007). In addition, peptides that mimic
epitopes despite being dissimilar in primary sequence
(mimotopes) have been exploited for their remarkable ability
to bind antigen-specific antibodies with the same affinity as the
cognate epitope and can even mimic the epitope by eliciting
similar humoral immune responses (Riemer et al., 2004). Thus,
peptides have much more potential and value beyond their
primary sequence, despite lacking higher-order structures, that
remains largely unexplored and could contribute to a range of
novel immunotherapeutic applications.

The use of immunoarrays to characterize antibody populations
is an underutilized experimental approach with considerable
opportunities for further refinement and optimization (Szymczak
et al., 2018). Extracting meaningful biological information from the
immunoarray is not a trivial exercise and it is important not to
underestimate the volume, and technical and biological complexity
of the emerging data. Due to similarities in format, immunoarrays
present many of the same challenges as DNA microarrays (e.g.,
multiple hypothesis correction and normalization). However, they
also present several unique difficulties that warrant special software
(e.g., the lack of calibration probes). Several public web applications
analyze user-submitted immunoarray data to identify binding
motifs and profiles, but do not compare binding signatures
across cohorts, including ArrayPitope (Hansen et al., 2017) and
SVM-PEPARRAY (Chen et al., 2009). Additionally, tools such as
rapMad (Renard et al., 2011), pepStat (Imholte et al., 2016), and
pepBayes (Imholte and Gottardo, 2016) are available to compare
binding signatures from different cohorts, but only exist as R
packages. Collectively these resources face several critical

limitations: requirement of computational biology expertise
outside the realms of many biological researchers, the absence of
a web-based interface, the need to be run locally by the user,
insufficient resources for statistical interpretation, an absence of
data normalization options, and a lack of tools for visualization of
the results.

To make immunoarray technology more easily accessible to
researchers of all backgrounds, we have developed a program called
EPIphany (“EPItope arrays Pose Hard ANalYsis problems”) which
provides to the research community a web service featuring an
intuitive user interface to analyze immunoarray data. EPIphany
requires no registration or software installation, provides a simple
user interface online with access to important analysis parameters
and data normalization options, and produces unique data
visualizations. This provides researchers the greatest
opportunities to extract biologically meaningful information
from immunoarray data to facilitate the discovery and
development of novel immuno-therapeutics.

MATERIALS AND METHODS

Data Input
EPIphany expects spot intensity data in one of two formats:
GenePix results (GPR) or CSV (comma-separated values). The
GPR format is ideal if the data is directly from GenePix(R) Pro
Microarray Analysis Software. For all other cases, the data should
be preprocessed to conform to the CSV layout described below.
Files from each cohort (“treatment” vs. “control”) are uploaded in
separate batches so treatment and control metadata is not
explicitly required within the entered files.

The uploaded CSV files must be text files containing the
following four columns in order: 1) an ID (identification)
column uniquely identifying each spot, 2) a peptide sequence
column describing the sequence of the peptide contained at each
spot, and 3) foreground and 4) background columns quantifying
the measured intensity of each spot. Regardless of the format, spot
intensity data from each array (sample) must be uploaded in an
individual file.

EPIphany allows the user to select the nature of calculated spot
(peptide) intensity values. This can be foreground intensity,
background-corrected foreground intensity, or background-
scaled foreground intensity. For background-corrected
foreground intensity, the background intensity value for a spot
(peptide) is subtracted from the given foreground intensity to
yield a peptide-specific intensity value. This technique attempts to
account for localized, systematic variations in spot intensity.
Background scaling is comparable to background subtraction
except that prior to the difference calculation, both intensities are
first divided by the ratio between the local background intensity
and the median background intensity of the entire array (Eq. 1).

fs � fl
(bl/bm)

− bl
(bl/bm)

� flbm
bl

− bm (1)

fs is the scaled final foreground intensity for the target peptide (f).
fl and bl represent the original local foreground and background
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intensities for f and bm is the median background intensity of the
entire array.

This ratio is an additional factor accounting for location bias
by considering the relationship between the local background (for
the peptide under consideration) and the background across the
entire array.

Data Normalization
The distribution of peptide reactivity across arrays may differ
significantly due to uncontrolled experimental variables, which
is an inherent problem with microarrays. Two assumptions can
be invoked, which lead to two possible normalization methods.
The first is that the distribution of peptide reactivity in the
different arrays is approximately the same. The natural
normalization technique under this assumption is quantile
normalization (Schmid et al., 2010). The second assumption
is that peptide reactivity is an affine transformation of the
ground truth. The variance stabilizing normalization (VSN)
(Huber et al., 2002) furnishes the appropriate technique
under this assumption, while also correcting
heteroscedasticity; however, a precondition for accurate
fitting of the VSN transformation is that many peptides are
not differentially reactive. EPIphany also provides the option of
no normalization.

Synoptic Analysis
EPIphany combines the uploaded datasets and performs the
selected normalization using the specified type of intensity
values (foreground, background-corrected foreground, or
background-scaled foreground). It also performs a Mann-
Whitney U-test for each spot (peptide) to determine
whether the distribution of peptide intensities in the
treatment datasets is the same as the distribution of peptide
intensities in the control datasets. The null hypothesis is that,
for a given peptide, the two distributions are the same while the
alternate hypothesis is that they are different. A p-value is
calculated using the U-test. Since multiple hypotheses are being
tested using the same datasets, an adjustment for this is
provided using a Benjamini-Hochberg correction. The user
can select a tolerated false discovery rate (FDR) of 0.01,
0.05, 0.10, or 0.25, and adjusted p-values are produced. Two
of these thresholds are higher than “typical” because, in this
application, false negatives are more problematic than false
positives. This data manipulation is a screening exercise to find
candidates rather than a verification exercise to confirm
candidates and there are subsequent stages of analysis with
which to eliminate false positives. With that, more tolerant
p-value thresholds are useful. The results of this initial synoptic
analysis can be downloaded by the user for local offline analysis
using a regular spreadsheet program. The results can also be
utilized for subsequent, targeted visualization. Synoptic
analysis also provides a number of plotting options (e.g.,
boxplot, clustering plot, mean vs. variance plot, and mean
vs. median plot) to both visualize and analyze characteristics
of the entire dataset. In addition, the initial analysis available at
this stage can generate heatmaps, swarm plots, and
dendrograms focusing on specific subsets of the data formed

based on the degree of differential reactivity of peptides,
statistical significance, or both.

Targeted Visualization
EPIphany can produce additional visualizations that require
information beyond that in the initial GPR or CSV files with
spot intensities that are restricted to a small subset of peptides (to
yield a legible plot). This supplementary information includes
identity of the pathogen involved in the experiment, the protein
from which peptides are derived, and the start and end positions
of a peptide within its source protein. In addition, the subset of
peptides to consider is explicitly specified by the user rather than
being automatically selected as in the synoptic visualizations. To
obtain these additional visualizations then, the user must upload a
targeting file with this supplementary information. Upon upload
the user can then select from a line graph, an epitope map, as well
as an enhanced heat map and strip plot. For the first three types of
plots, the targeting file should specify a contiguous sequence of
positions within a single protein. For a strip plot, on the other
hand, the targeting file can specify a collection of arbitrary
peptides (i.e., not necessarily in contiguous positions) from a
given protein.

The characteristics of the four types of visualizations are as
follows. The heatmap is similar to that produced within the
synoptic analysis. However, since position information is now
provided to EPIphany in the targeting file, the y-axis of the
heatmap can correspond to peptide position within the specified
source protein rather than a perhaps arbitrary spot ID.

The line graph uses three panels to show the trend in control
and treatment cohort intensities for the peptides specified in the
uploaded targeting file. In the first two panels, a band shows the
range of intensity values for the specified peptide positions. The
center of the band is shown in white and indicates the mean value,
while the edges of the band are ±1 standard deviation from the
mean. The third panel shows the effect size; i.e., the treatment
mean less the control mean.

The strip plot not only shows the distribution of sample values
for each specified peptide color-coded to indicate whether it is
from a control or treatment sample, but also maintains a
correspondence between the sources for the data points. That
is, the dot in position n (from the right or left) within each strip is
always from the same sample (dataset).

Lastly, the epitope map shows the location of each peptide on
its source protein, with the representation of each peptide color-
coded according to its effect size (treatment mean less control
mean).

Peptide Microarrays and Biological
Samples
Peptide microarray data was provided from an independent study
(Facciuolo et al., manuscript in preparation). GPR files from that
study were used to demonstrate the utility and functionality of
EPIphany. Thus, only a subset of data from that analysis is
reported and shown in the current study. Briefly, RepliTope™
Antigen Collection Pan-Coronavirus (Product Code: RT-HD-
CoV2) microarrays were purchased from JPT Peptide
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Technologies (Berlin, Germany). Each array consists of 4,416
peptides covering the full proteome of SARS-CoV-2, and spike
glycoprotein, nucleoprotein, envelope small membrane protein,

and membrane protein of SARS-CoV, MERS-CoV, and human
coronaviruses HCoV-229E and HCoV-OC43. Each protein is
represented by 15-mer peptides with 11 amino acid overlap and

FIGURE 2 | EPIphany Workflow and User-Interface. (A) EPIphany provides an easy-to-use interface for uploading data, selecting data preparation methods, (B)
performing primary analyses to determine the most differentially reactive peptides, and (C) generating plots to examine data characteristics (PCA plot, M/V plot, etc.). (D)
Additionally, EPIphany offers follow-on, targeted data visualizations using user-specified data subsets. All the features can be accessed and executed without the need
for any higher-level computational expertise. (E) Sample table displaying the first five rows of the CSV file that is provided to the user after synoptic analysis of
uploaded datasets.
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printed in triplicate. Each individual array was incubated with
serum from humans diagnosed with COVID-19 5 months prior
(n � 22) or from humans with no previous exposure to COVID-
19 (n � 20).

Immunoarray Assay
All incubation steps were performed at room temperature on a
rotating shaker. Peptide microarrays were blocked in Tris-buffered
saline (TBS), pH 7.2 supplemented with 0.05% v/v Tween-20 (TBS-
T) and 3%w/v bovine serum albumin fraction V (BSA; diluent) for
30 min. Serum was diluted 1:100 in diluent and incubated for 2 h.
Each array was washed with 5 exchanges of TBS-T, and once with
sterile deionized distilled water. Primary antibody was detected
using Alexa Fluor 647 conjugated secondary antibody diluted to
1 μg/ml in diluent and incubated for 45min in the dark. Washes
were carried out as described above, and slides dried by
centrifugation for 5 min at 800 × g.

Immunoarray Image Acquisition
Peptide arrays were imaged using a GenePix Professional 4200A
microarray scanner (MDS Analytical Technologies, Toronto, ON,
Canada) equipped with a 635 nm laser and fluorescence captured
using a 655–695 nm filter. Images were scanned at 10 µm
resolution and data acquired using GenePix software (version 6.0).

RESULTS

A schematic illustrating the immunoarray pipeline from peptide
design to implementation is shown (Figure 1). EPIphany offers a
simple user-interface (Figure 2) and workflow (Supplementary
Figure 1) in which primary, or synoptic, analyses and deeper,
targeted analysis can be performed. Synoptic analysis includes steps
such as data processing and generating informative graphs (e.g.,
cluster plots, mean-variance plots) to describe data characteristics
as well as providing part of the input for the targeted analysis
(Figures 2A–D). Supplementary Table 1 details the Python
library functions used for the major analyses and visualizations
provided by EPIphany, and the important parameters in those
function calls; parameters not mentioned are left at their default
values. On the EPIphany server, a collection of files is produced
with the results of the synoptic analysis. The most important of
these is a CSV file with columns that include the spot ID and
peptide sequence from the input GPR or CSV files, plus columns
for the potentially adjusted and normalized intensity value from
each sample, mean for control and treatment samples, variance for
control and treatment samples, “delta RFU” (effect size, in this case
the treatment mean less the control mean), raw p-value (from the
Mann-Whitney U-test), and adjusted p-value (after FDR
correction) (Figure 2E). If visualizations are selected by the
user, both synoptic and targeted analyses can result in graphics
files being produced. All results files are returned to the user
by email.

Synoptic Visualizations
The user can select from several visualization (plotting) options
without requiring further data input. Examples of these plots are

given in Figure 3. The plots include a boxplot (Figure 3A), a
dendrogram (Figure 3B), mean vs. variance plots (Figure 3C),
and two types of clustering plots (Figure 3D), in addition to
swarm or strip plots, heat maps, and mean vs. median plots. For
dendrograms and clustering plots, for a given sample (dataset),
the intensity values for each peptide (suppose N of them) are
interpreted as the coordinates of an N-dimensional point (in an
N-dimensional space) representing that sample.

If datasets are very large, generating a heat map or swarm plot
from the data can be computationally challenging and the resultant
image can have poor resolution of detail. The user must therefore
select a subset of results to visualize the data using these plots. Via
the “Rank Cutoff” setting, the usermust restrict the subset to 20, 50,
or 100 peptides. In addition, the subset can involve only those
peptides where intensity increased or decreased in treatment over
control, or any peptide irrespective of direction of intensity change.
The latter is controlled by the parameter headed by “Restrict”.
Suppose 50 peptides and a direction of “Down” are specified.
Swarm plots and heat maps are then produced using the peptides
with the 50 lowest corrected p-values; the peptides having the 50
least effect sizes (equivalently, the 50 peptides where control mean
less treatment mean is greatest); and the 50 peptides with the least
effect size and that have corrected p-values less than the FDR
threshold.

The boxplot (Figure 3A) is created using the uploaded
datasets, and all peptides within each dataset. Control samples
are shown in red, and treatment samples are portrayed in white. A
boxplot allows a user to quickly see the overall characteristics of
their data, and, if any sample (dataset) has a distinctly different
distribution of values from other samples in the same cohort.

The dendrogram (Figure 3B) shows hierarchical clustering for
each sample (dataset), irrespective of whether it is in the treatment
or control cohorts. The peptides used to represent each sample
(dataset) shown in the dendrogram are those that satisfy the subset
restriction as described earlier. For example, if 20 peptides and a
direction of “Up” are specified, then the values for the peptides with
the 20 largest effect sizes and with corrected p-values that meet the
FDR threshold are used to determine the coordinates (in a 20-
dimensional space) for each sample. The hierarchical clustering of
samples is then computed using “average” linkage (the UPGMA
algorithm) and Euclidean distance, and the result plotted.

Clustering of samples (datasets) is performed using the
intensity values for each peptide as coordinates in an
N-dimensional space representing that sample, where N is
the total number of peptides. Two types of clustering are
performed followed by PCA (principal component analysis)
to present the clusters. Hierarchical (agglomerative)
clustering is performed using Euclidean distance and
“average” linkage. Since the samples are from two cohorts,
the first two clusters (from the first bifurcation) are then
selected for plotting. In addition, k-means clustering is
performed with k � 2. To portray the clusters, the points
in N-dimensional space are subjected to PCA (principal
component analysis) and the clusters plotted within the
first two axes of the resultant space. The clustering and
PCA are performed using all input peptides without
applying the previously described subset restrictions. Since
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it is known which sample values are “control” and
“treatment” respectively, plots are shown with and without
this coding. An example of the resultant plot is given

(Figure 3D). Finally, the “quality” of the clusterings is
evaluated using Davies-Bouldin, Silhouette, and Calinski-
Harabasz indices, and the values provided in tables.

FIGURE 3 | Synoptic Visualizations Available in EPIphany. EPIphany provides a number of visualizations that are available after its initial analysis. These include: (A)
boxplots or box-and-whisker plots, which show the distribution of all peptide values for each sample (dataset); (B) dendrograms, which show hierarchical clustering of
samples (input datasets) based on response intensity across a subset of peptides; (C)mean vs. variance plots, through which a user can check for heteroscedasticity;
and (D) PCA (principal component analysis) plots of k-means clustering of control and treatment samples. The samples under consideration label the x-axis in the
boxplot (A) and y-axis in the dendrogram (B). Intensity is shown on the y-axis in the boxplot (A) and x-axis in the mean-variance plot (C). In the boxplot (A), the rectangle
indicates the extent of the first and third quartiles, with the line crossing the rectangle indicating the median. Lines extending beyond the rectangle (“whiskers”) indicate
observations prior to the first quartile and after the third quartile. Dots beyond the whiskers indicate outliers. For the k-means clustering (D), k is set to 2 reflecting the
situation that the samples come from two cohorts, treatment and control. The clustering is performed prior to the PCA.
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The final plots that can be selected at this stage are mean vs.
median and mean vs. variance plots. One of each type of plot is
produced for the control cohort (collection of datasets) and
treatment cohort. The plots are produced using all input
peptide values; no restrictions or filtering is applied. An
example of this plot is given (Figure 3C).

To further support the end-user in data analysis and
visualization, EPIphany provides subsequent, targeted data
analysis and visualization tools. As with all technologies that

generate large-scale datasets, a major hurdle for the utilization of
the platform is having the necessary tools to extract meaningful
biological data. As such, we have tailored the development and
implementation of additional visualization tools in EPIphany
that uniquely address the needs in displaying immunoarray
data. These visualizations are often only available as
programming packages thus requiring computational
expertise or paid software. In both cases, this can present
a major barrier to the adoption of this technology.

FIGURE 4 | Targeted Analyses and Visualizations Available in EPIphany. EPIphany offers follow-on data visualizations by allowing user-defined tables to be
uploaded and choice among the four representative plots. The uploaded tables specify the peptides to be selected for visualization, as well as the pathogen, protein, and
peptide position (within that protein) of each peptide. (A) Heat maps allow for the visualization of each individual sample reactivity. Peptides listed on the y-axis are
arranged N-terminus to C-terminus. (B) Line graphs generate an immunosignature by displaying the mean intensity ± 1SD for the control and treatment cohorts,
with an additional panel displaying effect size (“delta RFU” or the difference in mean signal intensity between the two cohorts). (C) Strip plots show the distribution of spot
intensities with more precision than the other types of plots. (D) In scenarios where overlapping peptides are used to identify and locate antigenic regions within a
polypeptide or protein, epitope maps show the location of individual peptides on an index sequence with effect size of the peptides colour-coded. Epitope maps provide
a simple yet effective means to identify the core regions of antibody reactivity.
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Targeted Visualizations
In this initial version of EPIphany we focused on the development
of four unique visualization tools that best display meaningful
biological data and generate publication-ready figures (Figure 4)
for the end-user. For each of these unique visualizations, the user is
instructed to simply upload two CSV files: one with the unmodified
results of the synoptic analysis and an additional file (targeting file)
containing supplementary information about a subset of data for
further analysis (Figure 2D). The targeted heat maps in EPIphany
arrange peptides along the y-axis representing their spatial position
along the linear protein sequence (Figure 4A). The user specifies a
consecutive set of positions to consider in the targeting file. This
facilitates either a global, comparative overview of the signal
intensity across the full-length protein for each individual
sample tested, or a more focused analysis if a subset of the
protein is specified. Alternatively, peptide reactivity across a
linear protein sequence can be represented using line graphs
(Figure 4B) which display a continuous signal intensity line
generating a distinct “immunosignature”. In EPIphany,
immunosignatures are generated for the mean ± 1 standard
deviation for the control samples and experimental samples.
Additionally, a third panel generated alongside these line graphs
augments the immunosignature by showing the effect size
[calculated by subtracting the baseline control mean from the
experimental (or treatment) mean] allowing for the quick visual
identification of antigenic regions that are differentially reactive
between two datasets.

In scenarios where overlapping peptides are employed to map
antigenic regions, EPIphany offers the user an epitope mapping
visualization tool whereby each peptide is mapped along an index
sequence (i.e., full length protein sequence, or contiguous portion
thereof) and displayed as a function of its effect size, a color-coding
similar to a heat map (Figure 4D). This allows a user to identify the
core reactive region among a set of overlapping peptides. Lastly, as
the aforementioned tools provide a global visualization of peptide
reactivities against the backdrop of a linear protein sequence,
EPIphany also provides the user with the option of generating
strip plots to facilitate a more detailed perspective of how each
sample within the population tested reacts with peptide(s) of interest
(Figure 4C). Thus, EPIphany provides a range of visualization tools
from global analysis tomore detailed perspectives that dually serve to
provide the end-user with both publication ready figures and enable
a superior visual analysis of peptide reactivity.

DISCUSSION

Immunoarrays offer tremendous potential to characterize complex
populations of antibodies, including specific application to
understand host-pathogen interactions, to enable the discovery
and application of diagnostic biomarkers as well as for strategic
design of vaccines. While the most notable potential contribution
of the immunoarrays to vaccine development is within the context
of identifying vaccine targets, they can also inform strategies of
formulation and delivery, including adjuvant selection, to impact
the magnitude, breadth, and specificity of the humoral immune
response. Immunoarrays also provide a valuable tool to assess the

vaccine-induced reactivities of antibodies to naturally occurring
variants of a particular pathogen.

Immunoarrays are yet to reach their full potential, both in terms
of utilization and quality of information provided. Ease of use and
efficiency of extraction of meaningful biological information
associated with large-scale datasets, such as peptide microarrays,
are a major barrier to enabling the widespread adoption of this
technology. Notably, we identified and addressed a similar
deficiency for the use and application of peptide arrays for
kinome analysis a decade ago (Li et al., 2012). The software
platforms we developed for the design (Trost et al., 2013a; Trost
et al., 2016) and interpretation (Li et al., 2012; Trost et al., 2013b) of
peptide arrays for kinome analysis have found widespread
utilization (Facciuolo et al., 2020). Our goal with EPIphany is to
provide a similar resource for any novice to experienced end-user
to capture and analyze data emerging from the use of peptide
arrays, and in particular offer the user valuable tools for data
manipulation and visualization for immunoprofiling. In turn, this
will help to accelerate the use of this high-throughput technology
for analysis of antibody responses and serve as a catalyst for the
next stage of evolution for peptide microarrays.

For data manipulation, EPIphany provides the user with the
opportunity to apply three different strategies of data
normalization: no normalization, VSN, and quantile. Several
papers describe immunoarray results obtained in the absence of
data normalization that have been validated through independent
techniques, and arguments have been presented against the need
for any normalization (Hecker et al., 2012). Other reports have
demonstrated added value in applying various normalization
methods (i.e., linear model and Bayesian hierarchical modeling)
and data pre-processing methods (i.e., correcting for spatial and
systematic biases) for discriminating binding signatures between
cohorts in a vaccine study (Renard et al., 2011; Imholte et al., 2016;
Imholte and Gottardo, 2016). At the present time, we feel it is
premature to discount the value and appropriateness of data pre-
processing and normalization methods given there is no consensus
among the current end-users. It is unclear which, if any, data
normalization approaches will be most appropriate for peptide
microarray data and the question warrants further study. While
each approach has demonstrated utility for various types of omic-
associated biological data, the data emerging from different omic
approaches have distinct biological and technical characteristics.
The motivation behind including the three normalization
approaches is to provide opportunity for users to investigate
different approaches to determine which is the most effective for
extracting meaningful biological information from their
immunoarray datasets. The “correctness” of a normalization
approach could be evaluated by the ability of the manipulated
datasets to cluster based on a particular phenotype (for example,
infected individuals vs. non-infected controls) or by more targeted
validation of the results of individual epitopes through ELISA. As a
consensus emerges of which normalization and data pre-processing
approaches are the most appropriate, EPIphany will be modified to
reflect that consensus, through addition/elimination of the other
normalizations and presenting a specific approach as the default.

For data visualization, EPIphany offers several tools that
rapidly allow the user to identify overall trends with the
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datasets, including different immunoprofiles corresponding to
different treatment groups (for example, control vs. infected), as
well as different phenotypic outcomes, such as severity of
infection. Visualizations of reactivities within specific proteins
enable the user to rapidly assess hot spots of reactivity, the extent
of cross-reactivity of the same protein from related species, and
the nature and specificity of antibody responses emerging from
either vaccination or infection. Similar visualization tools are
available using R peptStat package (Imholte et al., 2016) in
addition to other R add-on packages. However, access to these
tools is limited to those with advanced computational
backgrounds and places the use of these tools out of reach for
many biological end-users. EPIphany was designed with the
intent of placing these tools in the hands of biological
researchers, and to present “publication ready” figures to
facilitate the rapid decimation of results.

This is an ideal time for the development of a user-friendly
platform for analysis and presentation of immunoarray data.
Firstly, while the application of the technology has been
largely limited to a small number of labs, the findings to
date highlight the potential of the approach and will
inevitably attract new adopters. EPIphany will lower some
of the activation barriers associated with incorporating a new
technology into a research program and will serve as a
platform for discussion to help generate a consensus on
standards and protocols for the handling and interpreting
of peptide microarray data to ensure accuracy and
reproducibility across labs. The COVID-19 pandemic is
also likely to spur further interest in high-throughput,
low-technology approaches that enable global survey of
antibody populations. Notably, in response to the pandemic
JPT generated and marketed a customized array representing
the entirety of the proteome of SARS-CoV-2 as well as that of
other human coronaviruses including SARS-CoV, MERS-CoV,
and two human coronaviruses associated with the common
cold. Finally, we believe that the technology will soon be
challenged with questions of greater biological complexity that
will require more sophisticated data analysis tools. In particular,
there will be priority to address questions regarding the specificity,
cross-reactivity, and cross-protection of antibodies.

A positive consequence of the COVID-19 pandemic is the
acceleration of the field of vaccinology. This is most apparent in
new mechanics of vaccine technologies, most notably with
approval of mRNA vaccines. This is also evident in a shift in
the priorities and philosophies of vaccine development. The
pandemic has raised appreciation of the importance that the
speed at which a vaccine can be developed is measured not only in
months spent but also lives lost. It was extremely fortuitous that
the Spike protein proved a safe and effective vaccine target, but
there is also appreciation that other emerging threats may not
offer such readily apparent targets. In those instances, it will be
critical to have technologies that can rapidly assess the antibody
response associated with a protective response to enable rapid
translation to vaccines; peptide immunoarrays hold such
potential. There is also appreciation of the importance of the
cross-reactivity of the induced antibodies. There are situations
where vaccine antigens associated with limited cross-reactivity to

proteins of relatedmicrobes would be of priority. In other situations,
such as efforts to develop vaccines which offer greater range of
protection within a microbial family, for example corona or
influenza viruses, vaccines could be manufactured in advance to
help control outbreaks caused by emerging species of a particularly
pathogenic family. Peptide immunoarrays could be a valuable tool
for identification of these cross-reactive antigens to enable the
creation of “next generation” vaccines.

Availability and Implementation
EPIphany was implemented in Python using the Flask webserver
framework (http://flask.pocoo.org). EPIphany is available at https://
epiphany.usask.ca/epiphany/. The server is “stateless”. Any data
uploaded to EPIphany is not retained. Therefore, the user needs to
re-upload their data to repeat an analysis, and needs to upload the
results froma synoptic analysis for targeted analysis. This policy ensures
all data uploaded to EPIphany remains confidential. The source-code
for a local-install version can be made available upon request.
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