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SUMMARY
New substances intended for human consumption must undergo extensive preclinical safety pharmacology
testing prior to approval. These tests encompass the evaluation of effects on the central nervous system,
which is highly sensitive to chemical substances. With the growing understanding of the species-specific
characteristics of human neural cells and advancements in machine learning technology, the development
of effective and efficient methods for the initial screening of chemical effects on human neural function using
machine learning platforms is anticipated. In this study, we employed a deep learning model to analyze cal-
cium dynamics in human-induced pluripotent stem cell-derived neural progenitor cells, which were exposed
to various concentrations of four representative chemicals. We report that this approach offers a reliable and
concisemethod for quantitatively classifying the effects of chemical exposures and predicting potential harm
to human neural cells.
INTRODUCTION

The central nervous system (CNS) is highly susceptible to expo-

sure to a variety of substances including alcohol, medications,

chemicals in the environment, and even food additives.1 New

substances intended for human use or consumption must un-

dergo extensive assessment for safety and toxicity before

approval. Unique to the CNS is that, even if the overall cellular

health is stable after exposure to a substance, behavioral abnor-

malities can occur through changes in neural function. Therefore,

there is a critical need for an efficient platform for the initial

assessment of pharmacological effects of various substances

on neural cells (i.e., neurons, glia, and neural progenitor cells

[NPCs]) prior to in vivo testing.

To investigate the effects of chemicals on neural cells in vitro,

various assays for diverse indicators, including cell viability,

morphology, and function,2 have been developed. Electrophys-

iological recording is one such functional assay that has been

applied to test the pharmacological and toxicological properties

of test substances.3 Although the patch-clamp recording tech-

nique has been used to accurately measure a variety of physio-

logical characteristics of neurons and other cells, its low

throughput nature has been an inevitable challenge.4 Thus,
iScience 27, 111298, Decem
This is an open access article under the CC BY-NC-ND
higher-throughput techniques such as multielectrode array

(MEA) recording and calcium imaging have attracted attention

as alternative approaches.5

MEA allows simultaneous recording of electrical activities from

multiple cells to evaluate neural networks6,7,. Leveraging the

scalability of MEA, several algorithms have been developed to

extract features from extracellular recording data. These fea-

tures are utilized in machine learning models for various applica-

tions, including the classification of neuronal cell types,8 predic-

tion of seizure probability by chemical exposure at different

concentrations,5 and detection of pathological cellular re-

sponses.9 Popular classifiers employed with extracted MEA fea-

tures include support vector machines (SVMs) and convolutional

neural networks (CNNs). While novel feature extraction algo-

rithms combined with these classical classifiers have enabled

new insights, limitations of MEA technology include difficulties

in recording intracellular electrophysiological dynamics and

challenges in detecting heterogeneous activities among cells.10

For instance, signals from a single cell have various manifesta-

tions depending on the distance of the electrode from the

soma, but these are difficult to capture with MEA.

Calcium imaging, using sensing dyes or genetic tools, has

been used as a method to directly observe heterogeneous
ber 20, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Characterization of human iPSC-derived NPCs used for calcium imaging

(A) Immunostaining for an NPC marker Nestin shows its expression in the majority of D1 (A) and D2 (A0) NPCs. Scale bar, 50 mm.

(B) The percentage of Nestin-positive cells were not significantly different between the two NPC lines (p = 0.4513 two-tailed t test). Data were presented as

mean ± SD from three independent experiments.

(C) RRHO analysis between transcriptomes of D1 NPCs at passage 31 (x axis) and D2 at passage 14 (y axis). The colors denote log-transformed hypergeometric

p values comparing the ranks of expressed genes, indicating a high similarity in gene expression ranks between the two datasets.

(legend continued on next page)
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intrinsic activities of cells. Different patterns of calcium dynamics

convey rich information that reflects the unique states of cell

populations.11,12 Calcium signaling is especially important for

neural cells13; in addition to its essential roles in neuronal firing

in mature neurons,14 its proper levels and dynamics are crucial

for various other cellular processes, including survival of neural

progenitor cells,15 neurogenesis,16 and neuronal maturation.17

To date, machine learning has been employed in various tool-

boxes to assist researchers in preprocessing calcium imaging

data, including denoising and segmenting signals, and detecting

spikes.18–20 While a notable application by This et al. (2024)21

demonstrated the utility of CNNs to predict T cell antigen spec-

ificity by analyzing calcium imaging data, the use of machine

learning approaches to identify neuropathological conditions us-

ing calcium imaging data is still limited. While many previous

studies employing calcium imaging have used cells from non-

human species or human immortalized cell lines,22–24 recent

studies examining chemical effects have increasingly utilized

cells and organoids differentiated from human induced pluripo-

tent stem cells (iPSCs).25,26 Since human neural cells exhibit

species-specific characteristics that distinguish them from

non-human cells commonly used in biomedical research,27 the

use of human neural cells may also be important in the assess-

ment of chemical effects using calcium imaging data.

iPSCs are reprogrammed from somatic cells and self-renew in

culture, and, by leveraging specific protocols, can be differenti-

ated into various types of cells and tissues including NPCs and

neurons.28,29 Two major protocols have been developed to

induce neurons from iPSCs. Transcription factor-driven differen-

tiation involves forced expression of neural fate determinants like

Neurogennin2 (Ngn2) in iPSCs, rapidly driving their conversion

into induced neurons (iNeurons) within 2–4 weeks.30 However,

only approximately 20 percent of cells differentiate into mature

neurons with this protocol. Differentiation through NPC interme-

diates, on the other hand, involves a multi-stage process, begin-

ning with embryoid body formation, induction of neuroepithelial

cells, expansion of NPCs, followed by terminal differentiation

over 6–12 weeks.31 While direct programming is simpler and

faster, the NPC approach allows scalable production of NPCs

as an expandable intermediate, enabling banking of specific

NPC lines.28,29 iNeurons reach full functional maturity after

3 months in culture, while neurons differentiated with the NPC

approach require 4 weeks for full maturation.31,32 Neurons

generated by either approach show heterogeneity in subtypes

within the population.33,34 However, electrophysiological

recording and calcium imaging have been done without sepa-

rating those iPSC-derived neuronal subtypes.5,35–37

In contrast to iPSC-derived postmitotic neurons, iPSC-derived

NPCs are mitotic, allowing passaging in vitro for larger-scale

studies. The electrophysiological properties of these immature

cells are not fully equivalent to those of mature neurons (e.g.,

NPCs show higher resting membrane potentials and lower input
(D) GO analysis of the transcriptome of D1 NPCs based on molecular functions (k

neurotransmitter receptors, neuropeptide receptor binding, and ion channel act

relevant to neuropeptide receptors.

(E) GO analysis of the transcriptomes of D1 (E) and D2 (E0) NPCs based on biolo

fication and commitment.
resistance thanmature neurons). Yet, excitability and expression

of various ion channels as in mature neurons have been found in

rat NPCs,38 and delayed rectifier potassium channel currents

have been shown in human iPSC-derived NPCs.39 NPCs also

exhibit neuron-like mitochondrial metabolism, with passive and

active calcium activities similar to those in iPSC-derived neu-

rons.40,41 With these and other properties, iPSC-derived NPCs

serve a useful model for the screening of drugs for neurological

and psychiatric disorders.40,42,43 Nevertheless, human iPSC-

derived NPCs has not yet been tested as a platform of chemical

screening combined with calcium imaging, although mouse

NPCs have been tested for calcium imaging-based toxicology

screening.44 It is noteworthy that NPC-based analyses also pro-

vide insights into the effects of substances on the ‘‘developing’’

nervous system. As with iNeurons, cell type heterogeneity in

iPSC-derived NPCs requires caution regarding the reproduc-

ibility of the analysis.34

To meet the growing demand for computational models for

toxicity prediction, various models have been made publicly

accessible.45–47 These models enable prediction of several key

drug properties such as Ames mutagenicity, skin sensitization,

median lethal dose (LD50), drug-induced liver injury, and cardiac

side effects with high accuracy.48–52 Most of these models have

been trained on datasets comprising more than 500 compounds

and employed machine learning algorithms like random forests

(RFs), SVMs, k-nearest neighbors (k-NN), graph neural networks

(GNN), CNNs, and recurrent neural networks (RNNs) for binary

classification.

In this study, we conducted a proof-of-concept study to pre-

dict the effects of chemicals on neural cells by building a ma-

chine learning model that requires minimal pre-processing of

calcium imaging data obtained from human iPSC-derived

NPCs. The performance of this machine learning model is

compared with that of conventional statistical analysis of cal-

cium dynamics measurements obtained by processing the

same imaging data.

RESULTS

Characterization of human NPCs used in the analysis
Human NPCs possess several characteristics of mature neurons

in such as gene expression, mitochondrial metabolism, and pas-

sive electrical properties.39,53 They are thus suitable for rapid

evaluation of how both neurons and progenitor cells in the ner-

vous system respond to chemicals of interest without going

through the time-consuming neuronal differentiation process

in vitro. Considering the potential phenotypic variability among

iPSCs from different individuals,54 we utilized two well-charac-

terized lines of NPCs that were differentiated from iPSCs origi-

nated from distinct donors (D1 and D2) in this study.

Immunocytochemical analysis confirmed the expression of a

neural stem cell marker Nestin in 65.48% (±16.4%) and
appa score 0.4) shows the expression of genes relevant to neuronal functions,

ivities. (D0) Analysis of the D2 NPCs transcriptome similarly shows GO terms

gical functions show the expression of genes involved in neuronal fate speci-
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Figure 2. Molecular heterogeneity of NPCs in culture

(A) The scatterplot shows the percentage of UMIs assigned to mitochondrial genes in each cell (each dot represents a single cell). The X axis shows the total

number of UMIs per cell. Cells with more than 5% of UMIs assigned to mitochondrial genes were excluded from further analyses.

(B) The scatterplot visualizes the number of genes detected in each cell. The strong correlation between total UMI counts (x axis) and detected gene numbers (y

axis) affirmed the quality of data.

(C) The violin plot shows the distribution of the number of genes detected per cell. Outlier cells with fewer than 200 or more than 7,500 genes were excluded from

downstream analyses.

(D) The violin plot shows the distribution of total UMI counts per cell. The median UMIs per cell was 9,969.

(E) The violin plot shows the distribution of the percentage of UMI counts from mitochondrial genes in total UMI counts per cell.

(legend continued on next page)
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74.48% (±6.1%) of D1 and D2 NPCs, respectively (Figures 1A,

1A0, and 1B). Comparison of their bulk RNA sequencing (RNA-

seq) data by the rank-rank hypergeometric overlap (RRHO) anal-

ysis showed similar molecular characteristics between D1 at

passage 31 and D2 at passage 14 (Figure 1C), indicating that

their molecular properties are stable over multiple passages.

Gene ontology (GO) analysis of the same bulk RNA-seq data

also showed that these NPCs express genes relevant to

neuronal functions (e.g., neurotransmitter receptors) (Figures 1D

and 1D0), consistent with previous reports.55–58 Expression of

genes linked to the activity of olfactory receptors (as defined

by the GO classification) were also identified. While the expres-

sion of these genes also in the brain is known, their specific func-

tions in the brain remain largely unexplored.59 GOs associated

with neural differentiation were found in both D1 and D2 tran-

scriptomes as expected (Figures 1E and 1E0). Expression of vi-

mentin, a marker for NPCs, was also found in both D1 and D2

NPCs at percentages comparable to Nestin-expressing popula-

tions in these NPCs (Figure S1). These results indicate that the

molecular properties of these human iPSC-derived NPCs exhibit

relevance to both NPCs and neurons, and remain stable through

culture passages.

To examine cell-to-cell molecular heterogeneity in our NPC

culture and to further assess the molecular identity of our sam-

ples, single nuclei RNA-seq of D2 NPCs was performed.

Following multiple steps of quality control and filtering

(Figures 2A–2E), the data were visualized by dimensionality

reduction using Uniform Manifold Approximation and Projection

(UMAP), which revealed that these NPCs were classified into six

groups (Figure 2F). NPCs in each cluster showed a characteristic

gene expression profile (Figure 2H). Cluster 0 included NPCs ex-

pressing both NPC markers and oligodendrocyte precursor cell

markers, while cluster 2 included NPCs expressing only NPC

markers. Cluster 1 included NPCs with some hematopoietic pro-

genitor-like features. NPCs with features of young neurons were

grouped in cluster 3. NPCs with fibroblast and epithelium fea-

tures were found in clusters 4 and 5, respectively. While the

feature-based clustering, thus, indicated the heterogeneity

among NPCs in culture, the expression of an NPCmarker vimen-

tin was found in all clusters (Figure 2G), confirming their shared

NPC characteristics.

Using two published RNA-seq datasets of multiple NPC lines

(including D1 and D2), we performed Spearman’s correlation

analysis and confirmed that the two NPC lines have highly similar

(Spearman’s rank correlation coefficient: r = 0.88) transcrip-

tomic profiles (Figure S2). Higher correlation coefficient of both

D1 and D2 with other iPSC-NPC cell lines and the differentiated

neurons indicate similar molecular properties (Figure S2).

Calcium dynamics in human NPCs exposed to different
chemicals
To determine the validity of our approach, four well-character-

ized chemicals broadly consumed by humans60–64 were tested.
(F) UMAP visualization of the 6 clusters from 19,759 cells.

(G) Violin plots show high expression of an NPC marker, vimentin, in all cell clus

(H) The expression of each of the five genes most differentially expressed in ea

heatmap. Genes and cell cluster numbers are shown in rows and columns, resp
Valproic acid (VPA) is a branched short-chain fatty acid that

blocks voltage-gated sodium channels, potassium channels,

and L-type calcium channels. It also attenuates N-methyl-D-

aspartate (NMDA)-mediated excitation, thereby being used for

the treatment of epilepsy. Side effects of VPA intake include

dizziness, headache, and drowsiness.61 Ethanol (ETOH) is an

organic chemical and has pleiotropic actions in the CNS,

including inhibition of both voltage- and receptor-activated ion

channels. Acute ETOH exposure elicits dizziness and nausea,

followed by hangover symptoms that are generally unpleasant.63

Diazepam (DZM) is a medicine of the benzodiazepine family and

acts as an anxiolytic and sedative. It is also used for seizure treat-

ments. Most of these effects are attributed to the facilitation of

gamma aminobutyric acid (GABA) action, altering the electro-

physiological activity of the brain.64 Caffeine (CAF) is another

organic chemical. It is a methylxanthine alkaloid known for its

stimulating effect. High dosage of CAF triggers anxiety and

headache. CAF induces calcium release from the cellular stor-

age and blocks adenosine receptors.65 It also functions as an

antagonist for phosphodiesterase.66

Three test concentrations (high: H, medium: M, and low: L) for

each of the four substances were set by considering pharmaco-

kinetics determined in previous studies.63,64,67–69 Concentra-

tions used in in vitro toxicology tests are usually adjusted based

on those measured in human plasma.70,71 Therefore, we set the

high concentrations at the blood concentrations at which

adverse health effects such as reduced attention and fatigue

were detected.63,72–75 The medium concentrations of CAF and

ETOH were set at the blood concentrations detected in normal

daily consumptions in modern humans.72,76,77 For DZM and

VPA, the medium concentrations were set at the blood concen-

trations of clinically appropriate doses. The low concentrations

were set at 5 (CAF, ETOH, and VPA) or 4 (DZM) times lower

than the medium doses, same as the ratios of high doses to me-

dium doses. NPCs that were exposed to the respective vehicle

of each chemical served as controls.

Calcium imaging was performed at 1 Hz using a confocal mi-

croscope with or without stimulation (by ATP) for 300 s (Fig-

ure S3, Videos S1, S2, S3, S4, S5, and S6). Each chemical was

tested using the two NPC lines (D1 and D2) in three or four inde-

pendent experiments. For each cell line per experiment,

randomly selected ten cells (or less when the number of cells re-

sponded is smaller than ten) that responded above the threshold

level (see in STAR Methods) were used for analysis (Table S1).

We first performed analysis using a conventional method (Fig-

ure 3A), measuring the six principal variables commonly used

to characterize the pattern of calcium activities in neurons.78

Since the calcium release (visualized by the change in fluores-

cence intensity of Fluo-4 calcium indicator) was mostly near

the detection limit level in cultures without stimulation (Figure S3,

Videos S1, S2, S3, S4, S5, and S6), the dynamics in calcium tran-

sients were analyzed using the data obtained in the ATP-stimu-

lated condition. The six variables included the number of calcium
ters.

ch cluster compared to the other clusters is shown on the gene expression

ectively.
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Figure 3. Kinetics of stimulated calcium transients are affected by exposure to chemicals

(A) Workflow of our analysis of calcium dynamics in human NPCs.

(B–G) Characterization of ATP-stimulated calcium transients in NPCs exposed to indicated chemicals at the high (H), medium (M), and low (L) concentrations,

based on the number (B), duration (C), amplitude (D), max rise slope (E), max decay slope (F), and area under the plotted curve (relative to the value for CONT) (G).

Non-parametric one-way ANOVA showed significant effects of chemicals (p < 0.05) in all measures. *, **, ***, and **** represent p < 0.05, 0.01, 0.001, and 0.0001,

respectively, in comparison to CONT by post-hoc Dunn’s test (mean ± SEM).

(H) Heatmap of negative log10-transformed p values from the Dunn’s test performed in (B–G).

(I–N) Heatmaps of negative log10-transformed p values obtained by Dunn’s test for pairwise comparisons of chemical’s effects on each measure of calcium

transients. Sample numbers are provided in Table S1.
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spiking events in 300 s post stimulation (Figure 3B), mean values

of duration (Figure 3C), amplitude (Figure 3D), max rise (Fig-

ure 3E), and decay slope (Figure 3F) of calcium spiking events

detected in each cell, and the mean area under the calcium tran-

sient curve within the 300-s recording period (Figure 3G).79 The

change of fluorescence intensity (DF), which was normalized to

the average signal during the first 5 s (F0) before ATP stimulation,

was used to calculate the amplitude, max rise slope, and max

decay slope (Figures 3D–3F). The area under the curve (AUC),

which represents the amount of increasing calcium,80 was quan-

tified as the mean of values from all calcium spikes detected in

each cell during the 300-s recording and converted to the ratio

to the average AUC of the control (CONT) samples (Figure 3G).

The normality of data distribution was evaluated by D’Agos-

tino-Pearson test for each of the six measures (Figure S4). The

amplitude and the max rise slope were the only two measures

that passed the normality test for most samples (Table S2).

Consistent with the fact that both of the two measures are asso-

ciated with the magnitude and rate of calcium release,81,82 they

showedsimilar patterns in theheatmapofp values in thecompar-

ison with the respective controls (Figure 3H). Significant reduc-

tions in these two measures were found in cells exposed to

VPA at the low and medium concentrations (Figures 3D, 3E,

and 3H). In many exposure conditions, the most significant

changeswere found in the number of spiking events and average

max decay slope (Figures 3B–3F and 3H), while no significant ef-

fects were observed in the duration in all conditions (Figures 3C

and 3H). The six measures also suggested that CAF at all tested

concentrations had relatively milder effects on NPCs than the

other chemicals (Figure 3H). Pairwise comparisons across all

tested conditions (Figures 3I–3N) showed that all chemicals

had little effects on the mean duration of spikes (Figure 3J).

VPA and DZA showed a similarity in their difference from CAF in

theamplitudes,max rise slope, andAUC (Figures3K, 3L, and3N).

Machine learning of calcium dynamics for the
classification of chemical effects on human NPCs
Analysis of the six principal measures extracted from the plotted

calcium transients loosely pointed out the differences and simi-

larities between the effects of different chemicals and concentra-

tions on human NPCs. However, much of the information is

inevitably lost from the raw data with this approach. The interpre-

tation on the differences and similarities may also become arbi-

trary. To address this issue, we developed a deep learningmodel

that allows analyzing acquired images of calcium activities

without extracting to a few selected principal variables. To

generate input data for deep learning, DF/F0 traces of individual

cells were plotted using the MATLAB GUI described in Romano

et al. (2017).83 The same data as we used in the analysis with six

principal variables were used. These calcium transients plotted

over 300 s were formatted as image data of 875 3 675 pixels

per cell (Figure 4A). These images were then assorted based

on exposure conditions (i.e., chemicals and concentrations)

(Figures 4B and 4C). The number of images used in this study

is listed in Table S3.

Prior to testing the performance of machine learning models,

input data were visualized using t-distributed stochastic

neighbor embedding (t-SNE) (Figure 5A). With various combina-
tions of a perplexity value (5–500), iteration for dimensionality

reduction of the single-cell trace data (1000–5000), and other pa-

rameters (see STAR Methods section), the size of clusters did

not change significantly; although calcium imaging data from

ATP-stimulated cells exposed to the high concentrations of

chemicals were segregated from the others, the overall presence

of many small clusters indicated large variability within the data

for each exposure condition. In addition to higher correlation of

gene expression (Figure S2), no separable clusters between

D1 and D2 cell lines in t-SNE of calcium trace data suggest

non-separable characteristics between cell lines.

Traditional machine learning algorithms, such as RF,85,86 excel

in interpretability and are less prone to overfitting, but may not be

as effective as child (CNNs in handling complex image data-

sets.87,88 Gradient boosting (GB)89–91 works well on both struc-

tural and unstructured data. It is capable of mitigating overfitting,

but struggles with feature extraction from complex image

data.92–94 SVMs95 are interpretable, less prone to overfitting,

and effective for classifying low-dimensional and structured

data.96,97 However, SVMs require feature engineering, such as

kernel selection, and face scalability issues as the complexity

of dataset increases. Decision trees (DTs)98 are interpretable

and easy to implement and do not require normalization or

scaling, making them suitable for certain types of datasets. How-

ever, they are not well suited for high-dimensional image data-

sets and tend to overfit if the tree is deep or datasets are

small.93,99 The neural architecture search (NAS) in Google Auto-

matic Machine Learning (AutoML) uses an RNN or the controller

that controls the building of different CNN architectures, which

are then trained and tested for performance (Figure 4D).84 The

controller consists of an arbitrary number of normal convolution

cells (Figure 4E) and a reduction cell (Figure 4F). It iterates this

process over thousands of epochs, learns from the performance

of the trained child CNN in each epoch, and outputs a final CNN

architecture optimized for classification of the dataset, with min-

imal overfitting and underfitting tendencies. Deep neural net-

works, such as CNNs, perform well on visual inputs in their clas-

sification, but their hyperparameter optimization is largely

empirical process. CNNs also have limited interpretability.

To select an algorithm that is most suitable for processing our

datasets, we compared the performance of several different al-

gorithms described previously on the image datasets of ATP-

stimulated calcium transients in NPCs exposed to the four

chemicals at the high concentration. Each image dataset

was split randomly into the data used for training, validation,

and testing (Table S4). The precision, recall, and F1 scores

(see details in STAR Methods) showed that AutoML Vision per-

formed best on our particular datasets (Table S5). Therefore,

we selected AutoML Vision for further applications.

To compare early stopping function andmanual determination

of training duration in AutoML Vision, precision and recall values

obtained using early stopping (training was terminated at �64

node hours via its built-in hyperparameter optimization function)

were compared with those obtained through the training termi-

nated at 16 and 40 h (Figure S5). A total of 1,244 images of cal-

cium transients (in ATP-stimulated condition) from NPCs

exposed to each of the four chemicals at the high concentrations

or from controls (NPCs without chemical exposure in the same
iScience 27, 111298, December 20, 2024 7
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Figure 4. Workflow of Google Automatic Machine Learning (AutoML) Vision analysis

(A) The data assortment section includes multiple layers. 1 Hz image series for 300 s after stimulation are converted to a trace of relative fluorescence intensity

change.

(B and C) Approximately 1,200 traces are generated per culture dish. Trace image data are assorted into 4 groups of different chemicals (B) that include 3

concentrations and 1 experimental control (C). Two biological replicates are included for each concentration.

(D) Google AutoML Vision uses neural architecture search (NAS) algorithm (adapted from the study by Zoph et al.,84 see details in STAR Methods) by identifying

architecture A using recurrent neural network (RNN) with the probability p. Child network with the given A is set for training to achieve the accuracy R.

(E and F) Structures of normal (E) and reduction (F) cells (adapted from the study by Zoph et al.84 Each white box (labeled h i) shows a hidden state from the

previous activation and the gray oval shows the output of combining different operations for pooling using softmax function: separate (S), identity (I), and average

(A). In the reduction cell, maximum (M) operator is also used for pooling. Each block results in convolutional cells by primitive operators shown in yellow and

combination operations shown in green.
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Figure 5. Machine learning of temporal traces of calcium activity

(A) t-SNE analysis of 4,275 images of temporal trances of calcium activity from indicated groups. Some high concentration samples form clusters that are

unrelated to the type of chemical. Using different settings (e.g., perplexity value: 5–500, iteration: 1000–5000) provided similar output maps.

(legend continued on next page)
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experimental lots) were used. 16 node hours were insufficient for

training as evident from the precision-recall curve and confi-

dence score (Figure S5A). No significant differences were

observed between scores of model performance obtained

through the training terminated at 40 h and early stopping (Fig-

ure S5A). Next, we checked input sizes. The precision, recall,

and F1 scores were similar between the models with input sizes

of 50, 200, and 1,000 images randomly selected from the entire

image dataset for model training, indicating that 50 images as

input was sufficient for establishing model (Figure S5B).

We next compared the prediction performance between high-

concentration models trained with the datasets of spontaneous

(Figures 5B–5D) and ATP-stimulated (Figures 5E–5G) calcium

activities as input. Area under precision recall curve (AUPRC)

(Figures 5B and 5E), confidence interval (CI) (Figures 5C

and 5F), confusionmatrix (Figures 5D and 5G), as well as the pre-

cision, recall, and F1 scores (Table S5) indicated that the model

trained with the dataset of ATP-stimulated calcium activity out-

performed that trained with the dataset of spontaneous calcium

activity. 5-fold cross-validation of the models trained with data-

sets of ATP-stimulated calcium activity at the three (H, M, and L)

different chemical concentrations was then performed. The

AUPRC indicated that the models with datasets of the high

and medium concentrations classified chemicals more accu-

rately (Figures 5H and 5I) than the model with a dataset of the

low concentration (Figure 5J).

Based on the results aforementioned, the ‘‘safety score’’ was

calculated to determine the applicability of our deep learning

model to quantitatively assess the risk of chemicals on neural

functions (Figure 6A); to obtain the safety score, the percentages

of false negatives (FNs) (i.e., exposure to the chemical of interest

is recognized as the control exposure) from the 5-fold cross-vali-

dation were averaged and weighted according to the concentra-

tion of chemicals (L, M, and H) (see STAR Methods for the

formula). These safety scores showed that the order of risk levels

for the four chemicals tested (Figure 6A, high to low risks: VPA,

DZM, ETOH to CAF) fits well with previous reports and general

knowledge,73,100–104 as well as with our results using conven-

tional six principal measures (Figure 3) that predicted weakest

effects of CAF on neural activities.

The ‘‘similarity matrix’’ was also calculated to predict the sim-

ilarity between the effects of different chemicals on neural func-

tions, utilizing the percentages of false positives (FPs) and FN

(i.e., exposure to a chemical of interest is recognized as expo-

sure to the other) obtained in the 5-fold cross-validation for

each chemical (Figure 6B). The similarity matrix indicated the

highest similarity between VPA and ETOH among the other com-

parisons, consistent with their classification by the ChemMine

tools105 as having similar physiochemical properties (Figure S6),

although their similarity was not evident in our results obtained

by the conventional method using six principal measures from

calcium transient (Figure 3).
(B–G) Precision-recall curves of the best model (B, C, E, and F) and averaged con

These were generated using AutoML Vision trained with images of temporal trace

exposed to each chemical at the high (or control) concentration. The numbers of

1,244, respectively.

(H–J) 5-fold cross-validation of the models trained with ATP-stimulated datasets
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DISCUSSION

This study provided proof-of-concept showing deep learning

model with calcium dynamics traces in human iPSC-differenti-

ated NPCs as an efficient approach to determine if a chemical

of interest may interfere neural activity, without the need of cate-

gorically extracting and analyzing multiple features of calcium

transients. It thus carries potential that may be used in conjunc-

tion with other toxicology screening tools for multi-faceted,

meticulous evaluation of novel chemicals.

2D cultures of human iPSC-derived NPCs with high sensitivity

to toxins and various substances106–109 offer a suitable (e.g.,

easy handling, short culture time before testing, and scalability)

platform for screening chemicals. However, as with many

in vitro systems, simple NPC cultures lack complex cell-to-cell

interactions as seen in vivo and influences from other tissues

and organs that metabolize those chemicals. For example, acet-

aldehyde, a metabolic intermediate of ethanol generated in the

liver, has been suggested to affect the CNS,110,111 but such

effects are omitted in our cultures. Yet, our results demonstrate

that cultures of human iPSC-derived NPC provide effective and

efficient means of early prediction of potentially harmful sub-

stances to human neural cells.

Calcium imaging data from human NPCs exposed to repre-

sentative chemicals, VPA, ETOH, DZM, and CAF, were analyzed

in two ways: the conventional approach focusing on representa-

tive variables and the deep learning approach that directly ana-

lyzes calcium dynamics in minimally processed data. Both ap-

proaches worked to reveal the similarities and differences

between the effects of exposure to different chemicals. The anal-

ysis of the six properties of plotted calcium transients in NPCs

(Figure 3) provided results that were consistent with previous re-

ports using different cell types; it has been shown that CAF in-

duces calcium release in sensory neurons in the retina and dorsal

root ganglia,112,113 and increases spike amplitudes and decay

slopes in NMDA-stimulated embryonic retinal cells,114 while

exposure to VPA and DZM has been shown to reduce sponta-

neous calcium activity in various types of cells.115–117 Our results

of ATP-stimulated calcium activities in NPCs similarly showed

the differential effects of CAF and VPA/DZM in severalmeasures,

including the peak amplitude, maximum rise slopes, and AUC

(Figures 3D–3F, 3G, 3K, 3L, and 3N).

An advantage of the deep learning approach is its scalability

by directly handling complex, large single-cell calcium transient

data without additional extraction of limited properties. While the

conventional method was able to predict that VPA and DZM

differ from CAF to the same extent among the four chemicals

(Figure 3), it would be challenging to make similar predictions

in a larger scale screenings. Another caveat of the conventional

approach is that, for many of the quantified parameters, the

strength of effect of each chemical does not simply correlate

to its concentration. Aswe did not observe cell deaths or obvious
fusion matrices shown as percentages (D and G) from 5-fold cross-validation.

s of spontaneous (B–D) and ATP-stimulated (E–G) calcium transients in NPCs

image datasets of spontaneous and ATP-stimulated activities were 1,457 and

of the high, medium, and low concentrations.
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health issues in NPCs during recording in any tested conditions,

these factors are unlikely the primary causes of this inconsistent

concentration dependency. One possible cause of this inconsis-

tency may be that the output of chemical’s effects in calcium

spikes increases variability over the period of recording. Large

variabilities were particularly evident in the duration of a spike

and the mean AUC ratio (Figures 3C and 3G). Measuring only

on the first few spikes instead of calculating the means of all de-

tected spikes in the 300-s recording period after stimulation may

provide more consistent concentration-dependent results.

The results obtained by our deep learning model corroborate

those obtained by the conventional approach. For example, as

the six measures suggested that CAF had only mild effects on

calcium transients compared to the other chemicals (Figure 3),

the safety score predicted the highest safety of CAF (Figure 6A)

and the confusion matrix showed the largest false classification

of CAF as the control among the four chemicals tested (Fig-

ure 5G). The safety scores also ranked VPA and DZM as the first

and second highest risk chemicals (Figure 6). Similar results have

been reported in a large-scale ranking of prescribed drugs based

on their risk of causing liver injury in clinical cases118; albeit for

non-neural tissue, CAF ranked in the safest category, while

DZM was in the middle and VPA in the high risk group (ETOH

was not included in the study). A notable feature revealed byma-

chine learning, but not by the conventional method (Figure 3), is

the highest similarity between ETOH and VPA among the tested

substances (Figure 6B). This is consistent with their similarity in

chemical properties predicted by ChemMine tools (Figure S6).

Regarding their biological effects, both ETOH and VPA are

known to induce neural tube defects by interfering fetal folate

metabolism.119 ETOH has also been found to potentiate the anti-

convulsant effects of VPA.120 Thus, the safety score and the sim-

ilarity matrix serve as useful indices to express overall similarities

and differences in the effects of different chemicals on the ner-

vous system.

Although it is beyond the scope of this study to identify specific

molecularmechanisms bywhich different chemicals have similar

or different effects on the calcium transients in NPCs, there

are several potential pathways. One common target affected

similarly or differently by the four chemicals is GABA sig-

naling. VPA inhibits GABA degradation by reducing the expres-

sion of GABAA receptors in the membrane,121 decreasing
iS
GABAergic inhibition, while DZM enhances

GABA potentiation by directly binding to

GABAA receptors and augments GABA

signaling.122–125 ETOH directly binds to

GABAA receptors,126 while indirectly affects

GABAB receptors.127 As such, ETOH in-
creases presynaptic release of GABA128 and the amplitude

and decay prolongation of GABAA-receptor-mediated inhibitory

postsynaptic potentials (IPSPs).129–131 ETOH also regulates

GABA signaling by inducing brain steroidgenesis or via cortico-

trophin releasing factor, CRF1.130,132 CAF, on other hand,

increases the release of GABA via binding to adenosine

receptors.113,133–135

Similarities in the pharmacological effects of VPA and ETOH

have also been shown in the inhibition/reduction of histone de-

acetylases (HDACs), a class of enzymes that regulate the

expression and activity of numerous proteins. VPA is a universal

inhibitor of HDAC, while the inhibitory effect of ETOH is observed

in the amygdala.136,137 Upregulation of heat shock protein 70

(HSP70), a highly conservedmolecular chaperone that plays crit-

ical roles in protein homeostasis, is another commonly observed

cellular response to VPA and ETOH.138,139 Induction of hsp-70

mRNA expression by CAF has also been shown in C. elegans

and zebrafish.140,141 In contrast, inhibition of HSP70 by DZM in

the brain has been reported in multiple species.138,142 It is thus

clear that similar/different effects of these chemicals are attrib-

uted to the regulation of a wide variety of molecular pathways,

not just a few. Elucidating the molecular mechanisms by which

various chemicals exert similar and different effects on neural

cells warrants future research.

Limitations of the study
The approach demonstrated here is intended for rapid and sen-

sitive functional screening of chemicals based on their effects on

neural cells. While this study provides proof-of-concept for the

evaluation of chemical effects on neural cells through calcium

imaging andmachine learning, focusing on four chemicals, to in-

crease the predictive power, accuracy, and validity of our

approach, the training data will need to be expanded to include

a broader, if not exhaustive, selection of substances. The four

chemicals were tested by acute exposure at three different con-

centrations based on physiological or therapeutic concentra-

tions. However, in clinical overdose cases, higher blood concen-

trations of VPA or DZM have been reported.74,75 Therefore, it

would also be important to test at a wider range of concentra-

tions, as in the study on the prediction of epileptic activity using

machine learning of MEA datasets obtained at six different

chemical concentrations.5 Testing the applicability of machine
cience 27, 111298, December 20, 2024 11



iScience
Article

ll
OPEN ACCESS
learning models to the assessment of the effects of long-term

chemical exposure would be another important direction of

research. Automation of cell culturing, chemical treatment, and

calcium signal recording would allow for more efficient

protocols.143–145

Beyond the development of simplistic chemical effect pre-

diction models, such as the one presented in this study, lies

the challenge of predicting the combined effects of various

chemicals and their interactions with genetic backgrounds.

iPSCs and iPSC-derived neuronal cells are known to often

exhibit inconsistent behaviors and responses, due likely to

their genetic variations.146 Although the two NPC lines used

in this study showed similar characteristics in their molecular

profiles (Figures 1, 2, and S2), and were indistinguishable in

the t-SNE plot based on calcium trace image data (Figure 5A),

increasing statistical power may help reveal how a diverse

population with different genetic background would differently

respond to a substance of interest. While the use of NPCs

offers various advantages, their immature electrophysiological

and molecular characteristics do not fully inform us about the

effects of chemicals on mature neurons. Therefore, testing

additional NPCs and neurons derived from different donors

would be crucial.

The lack of architectural transparency in Google AutoML

Vision is computational limitation. While the AutoML Vision

model provided superior precision, recall, and classification

compared to several other machine learning algorithms in our

intended application (Table S5) through automated hyperpara-

meter tuning, it operates as a black-box system by design. This

conceals essential architectural details such as the layer count,

filter size, stride value, padding type, and activation function.

The lack of transparency hinders the ability to gain insights

into the decision-making process and to diagnose and correct

problems and biases, affecting the interpretability and optimi-

zation of the model. Implementing post-processing techniques

based on game theory147,148 may help address the interpret-

ability issue and allow the identification of features of the input

dataset that play a leading role in prediction of chemical

effects.
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E.S.B., Cheibub, A.M.S.S., Pereira Netto, A.D., Ventura, A.L.M., Paes-

de-Carvalho, R., and Calaza, K.C. (2020). Caffeine exposure ameliorates

acute ischemic cell death in avian developing retina. Purinergic Signal.

16, 41–59. https://doi.org/10.1007/s11302-020-09687-1.
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Culture of iPSC-derived NPCs
Two lines of human iPSC-derived NPCs D1 and D2 (originated from fibroblast lines AG09429 and GM03440 in,151 respectively) were

maintained in culture plates (Sarstedt, N€umbrecht, Germany) coated first with poly-L-ornithine (Sigma, St. LouisMO) thenwithmouse

laminin (Invitrogen,Waltham,MA). The NPCswere lifted using TrypLE (Gibco,Waltham,MA) and passaged at a 1 to 3 ratio in the NPC

medium, which contains DMEM/F12 (Gibco), antibiotic/antimyotic (1:100, Gibco), N2 supplement (1:100, Gibco), B27without vitamin

A (1:50, Gibco), GlutaMax (1:100, Gibco), and FGF2 (20 ng/ml, Peprotech, Cranbury, NJ). The NPCs were incubated at 37�Cwith 5%

CO2, and used for this study between passages 6 and 34 (Table S6).

METHOD DETAILS

Library preparation and bulk RNA-seq
Human NPCs (line D1) at passage 31 and D2 at passage 14 were trypsinized and pelleted in 1X PBS. These cells were not subjected

to calcium imaging or chemical treatment. The cDNA libraries were prepared using the SMART-Seq v4 Ultra Low Input RNA Kit for

Sequencing (TAKARA Bio, San Jose, CA) and Nextera XT DNA Library Prep Kit (Illumina, San Diego, CA) as per manufacturer’s in-

structions. The unique barcode sequences were incorporated in the adaptors for multiplexed high-throughput sequencing. The final

product was assessed for its size distribution and concentration using BioAnalyzer High Sensitivity DNA Kit (Agilent Technologies,

Santa Clara, CA). The libraries were pooled and diluted to 3 nM using 10 mM Tris-HCl, pH 8.5, and then denatured using the Illumina

protocol. The denatured libraries were loaded onto an S1 flow cell on an Illumina NovaSeq 6000 (Illumina) and run for 2X50 cycles

according to the manufacturer’s instructions. De-multiplexed sequencing reads were generated using Illumina bcl2fastq

(v2.18.0.12) allowing no mismatches in the index read.

Bulk RNA-seq data analysis
Low quality reads from the RNA-seq dataset were removed via FastQC (using Sickle with the default setting). A HISAT2 index was

built for the GRCm38 genome assembly using HISAT2 v2.1.0. RNA-seq reads of each sample were mapped using HISAT2 supplied

with Ensembl annotation file GRCm38.78.gtf. For the count call, HTseq-count v0.10.0 was used. ClueGO (v2.5.10),156 a plug-in of

Cytoscape (v3.10.1)152 was used for GO analysis. GOs with p % 0.03 were included in the data visualization. The parameters

used were set to show only the pathways with p % 0.03 and kappa score = 0.4. GO tree interval was level 3 to 8. Redundant terms

were fused using GO Term Fusion function to reduce the number of nodes.

Single cell RNA-seq
Nuclei of human NPCs were isolated using the Frankenstein protocol (https://res.cloudinary.com/dlg7p2kji/image/upload/

v1574849709/customer-developed-protocols/frankenstein-protocol-for-nuclei-isolation-from-fresh-and-frozen-tissue.pdf). Briefly,
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the NPCs (D2, passage 7-12) were trypsinized and pelleted, followed by lysis using Nuclei EZ Lysis kit (Sigma, St. Louis MO). Ex-

tracted nuclei were washed in 1X PBS containing 1.0%BSA and 0.2 U/ml RNase Inhibitor (Roche, Basel, Switzerland) and centrifuged

at 500 RCF at 4�C. Pelleted nuclei were resuspended in lysis buffer and washed in wash buffer twice. The nuclei were strained using

40 mm cell strainer (BelArt, South Wayne, NJ). The sample was packed on ice and shipped to the sequencing facility equipped with

the necessary equipment for processing (the prolonged storage on ice during shipment may be the reason for the low number of

reads).

A single-cell RNA-seq library was prepared with the Chromium Single Cell 3’ Library & Gel Bead Kit v3.1 (10x Genomics, Pleas-

anton, CA). NovaSeq 6000 (Illumina) was used to sequence 28 bases for Read 1, 91 bases for Read 2, and 8 bases for Index 1

read, respectively. The Cell Ranger 3.0.2 pipeline (10x Genomics, Pleasanton, CA) was used to make fastq files and align the reads

to theGRCh38 reference genome. For the 19,759 nuclei detected, themeanUniqueMolecular Identifier (UMI) per cell was 2,226. This

value was used to filter out biased replicates. The mean numbers of total reads and genes were 9,969 per cell and 1,540 per cell,

respectively. The UMI counts were analyzed using the Seurat R package v.3.0.157 Read10X function was used to load the dataset.

Low quality cells were removed using nFeature_RNA > 200 & nFeature_RNA < 7500 & percent.mt < 5. For global-scaling normaliza-

tion, LogNormalize commandwas usedwith scale.factor = 10000. Highly variable features across cells were identified by considering

the mean-variance relationship calculated using FindVariableFeatures function with selection.method = vst and nFeatures = 2000.

ScaleData function was used for linear transformation of data. The pre-processing step was used to shift the expression of each

gene so that the mean expression across all cells is 0. This step also ensures that highly expressed genes do not dominate. Principal

component analysis was performed on the scaled data for variable features, and significant principal components (PC) were chosen

using heuristic method called Elbow plot. FindNeighbors and FindClusters functions were used to cluster the cells. The variation

among cells was visualized by UMAP on significant PCs. FindAllMarkers function was used for annotation of differentially expressed

features across all clusters. The heat map of top 5 genes in each cluster was depicted across all cells using DoHeatmap function. Cell

types representing each cluster were assigned based on literature search and analysis using Enrichr.155 The GEO accession number

for all data associated with this study is GSE164499.

Assessment of molecular profile similarity between NPC lines
Rank-rank hypergeometric overlap (RRHO) analysis was performed to evaluate the similarity of the transcriptomic profiles of NPCs at

different passages using the algorithm provided in a previous study.158 The top 1000 genes found in the bulk RNA-seq of D1 cells at

passage 31 were compared to those of D2 cells at passage14. Spearman’s correlation coefficient was calculated using the datasets

of GSE92874 150,151 and GSE63738 149 by selecting the top 10 percent of genes which shows the highest standard deviations (SDs)

across samples.

Chemical treatment of NPCs
Human NPCs were seeded onto 35 mm glass-bottom dishes (Mat-tek, Ashland, MA) coated as described above the day before im-

aging. Cells were incubated at 37�C with 5% CO2 in medium containing each chemical of interest under the following conditions

based on known response times159–161: VPA (Calbiochem, Burlington MA): 1200 (H), 240 (M), and 48 (L) mM for 5.5 hours; DZM

(Sigma-Aldrich, St. Louis, MO): 4400, 1100, and 275 nM for 5.5 hours; ETOH (Fischer Scientific, Waltham, MA): 60, 12, and

2.4 mM for 24 hours; CAF (Sigma-Aldrich, St. Louis, MO): 150, 30, and 6 mM for 4 hours. The DZM stock was prepared in DMSO

at 2 mM, which was diluted for use in the NPC culture. NPCs exposed to the vehicle solution [i.e., cell culture medium (for VPA,

ETOH, and CAF) or DMSO-containing cell culture medium (for DZM)] served as controls. The highest concentration of DMSO in

the medium was 0.2% v/v, which has been shown to cause no significant changes in calcium dynamics in vitro.162 We used cells

from different passages to cover a broader range for each condition, but there was no strict criterion for passage selection. The pas-

sage numbers when cells were used in each experiment are shown in Table S6.

Calcium imaging
The culture medium containing each chemical of interest was aspirated, and the cells were loaded with 4.5 mMof Fluo4-AM (Thermo

Fisher, Waltham, MA) in the NPCmedium. The cells were then incubated for 20minutes at 37�Cwith 5%CO2. Images were acquired

using an Olympus FV1000 T confocal microscope (Olympus, Japan) for 5 minutes with a frame rate of 1 Hz (representative Videos in

Videos S1, S2, S3, S4, S5, and S6). Spontaneous calcium activities were recorded first, and then cells were stimulated with ATP

(Sigma-Aldrich, St. Louis, MO) at 20 mM to induce calcium responses. The same image acquisition settings were used in all sessions,

and the center of the culture dish was imaged. One transient was plotted for the activity of each single cell throughout the entire

recording session.

Immunocytochemistry
After calcium imaging human NPCs were fixed in 4% PFA in 1X PBS for 15 minutes at room temperature, rinsed with PBST (1X PBS

with 0.1% Triton X-100) three times, and blocked with 2% BSA in PBST for 1 hour at room temperature. Nestin expression was visu-

alized by using a mouse anti-human Nestin antibody (1:500, EMD MAB5326) and an anti-mouse Alexa 488 secondary

antibody (ThermoFisher). Expression of Vimentin was visualized by using mouse anti-human Vimentin antibody (5 mg/mL, DSHB

AMF-17b-c), followed by incubation with anti-mouse Alexa 488 antibody (ThermoFisher). Images were acquired using Apotome
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2 (Zeiss, Oberkochen, Germany) and labeled cells were quantified using Cell Profiler 4.2.6 (Broad Institute, Cambridge, MA) and

FIJI.153 Expression of Nestin and Vimentin were evaluated in three independent experiments and single experiment, respectively.

Two-tailed t-test with unequal variance was performed using Prism 9 (GraphPad) to determine whether the differences between

D1 and D2 NPCs are significant.

Conversion of calcium activity traces to image files for machine learning with AutoML vision
Temporal traces of calcium activity in individual cells were contrast-enhanced and smoothened using FIJI and analyzed using the

MATLAB toolbox described previously.83 ROIs were defined by hexagon segmentation. The following parameters were used: frame

frequency = 1 Hz, fluorescence decay time constant = 0.38 (default), minimal baseline-noise-scaled DF/F0 = 3. Slow-smooth dy-

namics option was used for threshold calculation, and Gaussian model was applied to calculate the noise. Dynamic threshold

was used to process all 300 frames. One trace image file was extracted from each cell’s calcium response over the 300 seconds.

All traces were plotted individually (875 X 675 pixels) in JPEG format for AutoML Vision processing.

Feature extraction from calcium imaging data
The contrast-enhanced and smoothened image stacks described above were also used for extraction of features in calcium dy-

namics. The data of cells that showed a fluorescence intensity change larger than one standard deviation from the basal value

were used. The change in fluorescence intensity was calculated as DF/F = (F(t)-F0)/F0, where the intensity of fluorescence signal

at a given time point (F(t)) was normalized to the average during first five seconds (F0). TheDF/F0 values were then plotted in Clampfit

(v10.7, Molecular Devices, San Jose, CA), and the number of detectable calcium spikes (events), duration of events, event amplitude

(DF/F0), area below event curve, max rise slope, and max decay slope were quantified using template detection function with user

defined templates. Events with amplitude smaller than 0.2 were excluded during the event detection process.

t-distributed stochastic neighbor embedding (t-SNE) analysis
Trace images of calcium activity were used as input data. We used the sklearn.manifold.TSNE class from Scikit.154 We tested the

perplexity at the range of 5-500 with 1000-5000 iterations. All other parameters were as follows: n_components = 2, early_exaggera-

tion = 12.0, learning_rate = 500.0, n_iter_without_progress = 300, min_grad_norm = 1e-7, metric = "euclidean", init = "random",

verbose = 0, random_state = 42, method = ‘barnes_hut’, angle = 0.5.

Neural Architecture Search (NAS)
Deep learningmodels use NAS.84 Before each epoch, the controller RNN builds a neural network architecture from all possible neural

network architectures or the search space. This is done by following a search strategy, or a set of decisions to build these architec-

tures, that iteratively seeks to maximize the output child CNN model’s performance. NAS uses the Micro Search approach which

makes it more robust and efficient for transfer learning as it learns from previous events.84,163

The controller learns via a policy gradient reinforcement learning paradigm, where the agent is the controller, the action is the de-

cision taken by the controller to iteratively build (train and test) child CNN networks and the reward is the gap in expected vs actual

performance of trained child CNN networks. The controller has a predetermined expectation of reward from a specific action, which

is assigned a probability of p. The controller then learns the impact of its action from reward R, the gap between the expected per-

formance and the actual performance of the child CNN network. This reward R is then used to update the controller’s parameters for

its search strategy so that it can generate better-performing child CNN networks in successive epochs. Underlying network structure

is not visible from user in Google AutoML Vision.

AutoML vision model training
The training of the AutoML Vision model utilized full spectral traces from 300-second sessions without subdivision. Entire datasets of

calcium traces were split into three groups: training (�70%), validation (�20%), and test (�10%) datasets. NAS algorithm under Goo-

gle Cloud Platform (GCP) AutoML Vision was used for model training. Trace images were supplied to GCP AutoML Vision API and the

three models for L, M, and H concentrations were trained separately. To reduce data variability, similar images were excluded auto-

matically by AutoML Vision before the training process. For five-fold cross-validation, the same trace images were randomly re-as-

signed to the three parts using an in-house python script. Machine learning algorithms including Random Forest (RF), Gradient

Boosting (GB), Support Vector Machine (SVM), and Decision Tree (DT) were used for benchmarking with default parameters.

Assessment of the bioactivity and physiochemical properties of chemicals by ChemMine tools
ChemMine tools was used to assess the similarity in bioactivity and physiochemical properties between VPA, DZM, ETOH, and

CAF in silico.105 Chemical structures were first downloaded from PubChem in SDF format and uploaded into the ChemMine online

server. The structure of each chemical was tagged with its name, and then pairwise structural similarity analysis across all four

chemicals was performed. After removing physiochemical features with zero values in all pairs of comparison, clustering analysis

of chemicals by using the pairwise structural similarity score of physiochemical features was performed and visualized using

ClustVis.164
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis of features in calcium dynamics
Quantified values for each feature described above (except number of events) were averaged for each and subjected to statistical

analysis using Prism (v9, GraphPad, San Diego, CA). The normality in data distribution was assessed by D’Agostino-Pearson test.

Multiple comparisons between different experimental conditions were performed by nonparametric one-way ANOVA followed by

Dunn’s multiple comparison test. Statistical significance was defined as p < 0.05. Data were plotted as Boxplots, with the 25th to

75th percentiles represented by a box, the median by a line within the box, and the minimum and maximum values by whiskers.

All data were presented as mean ± SEM. The number of cells analyzed for each tested condition is shown in Table S1 (from at least

three independent experiments).

Performance metrics calculation
Precision, Recall, F scores and confusion matrix were used for evaluation of the model. Those scores were calculated as follows:

Precision =
True Positive ðTPÞ

True Positive ðTPÞ+False Positive ðFPÞ (Equation 1)

Recall =
True Positive ðTPÞ

True Positive ðTPÞ+False Negative ðFNÞ (Equation 2)

F1 Score = 2$
Precision$Recall

Precision+Recall
(Equation 3)

Confusion matrix.
Predicted Label

True Label True Positive ðTPÞ False Positive ðFPÞ
False Negative ðFNÞ True Negative ðTNÞ
Safety score and similarity matrix calculation
The safety score for each chemical at the defined concentrations was calculated as the average of percentages of false negatives

(FNs), where the dataset of a chemical of interest was recognized asCONT in the 5-fold cross-validation. Safety scores for VPA, DZM,

ETOH, and CAF at low concentrations can be denoted using Equations 4, 5, 6, and 7.

Safety ScoreVPA L = VPA FNCONT L (Equation 4)

Safety ScoreDZM L = DZM FNCONT L (Equation 5)

Safety ScoreETOH L = ETOH FNCONT L (Equation 6)

Safety ScoreCAF L = CAF FNCONT L (Equation 7)

Here, VPA FNCONT L,DZM FNCONT L, ETOH FNCONT L, andCAF FNCONT L represent the average percentages of images for VPA,

DZM, ETOH, and CAF at the low concentration, respectively, that are classified as CONT. Similarly, safety scores were calculated for

the high and medium concentrations (Table S7).

Weights for the results from different concentrations were defined based on the fold differences between concentrations (L, M,

and H) for each chemical, and the linear correlation between biological phenotypes and the chemical concentrations as

reported165–168: wL = 40, wM = 41; and wH = 42.

The overall safety score for each chemical was calculated using Equations 8, 9, 10, and 11 with weights defined above. Here,

VPA FNCONT L, VPA FNCONT M, and VPA FNCONT H are the percentages of VPA images classified as CONT. The percentages of

DZM, ETOH, and CAF images classified as CONT are defined in the same way.

Safety ScoreVPA =

�ðwLÞVPA FNCONT L

�
+
�ðwMÞ VPA FNCONT M

�
+
�ðwHÞ VPA FNCONT H

�
wL+wM+wH

(Equation 8)
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Safety ScoreDZM =

�ðwLÞDZM FNCONT L

�
+
�ðwMÞ DZM FNCONT M

�
+
�ðwHÞ DZM FNCONT H

�
wL+wM+wH

(Equation 9)

Safety ScoreETOH =

�ðwLÞETOH FNCONT L

�
+
�ðwMÞ ETOH FNCONT M

�
+
�ðwHÞ ETOH FNCONT H

�
wL+wM+wH

(Equation 10)

Safety ScoreCAF =

�ðwLÞCAF FNCONT M

�
+
�ðwMÞ CAF FNCONT M

�
+
�ðwHÞ CAF FNCONT H

�
wL+wM+wH

(Equation 11)

The similarity matrix was similarly calculated utilizing the weighted average of percentages of false positives (FP) and FN obtained

in the five-fold cross-validation as described below. wL;wM ;wH are the same as used for calculation of the safety score.

To define the similarity between VPA andDZM (Similarity IndexVPA4DZM), average percentages of both FP and FNwere considered

for all the three concentrations as shown in Equation 12. It was calculated similarly for comparisons between VPA and ETOH

(Similarity IndexVPA4ETOH), VPA and CAF (Similarity IndexVPA4CAF ), DZM and ETOH (Similarity IndexDZM4ETOHÞ, DZM and CAF

(Similarity IndexDZM4CAF ), and CAF and ETOH (Similarity IndexCAF4ETOH) as shown in Equations 13, 14, 15, 16, and 17 (Table S8).

Similarity IndexVPA4DZM =

�
ðwLÞVPA DZM FPL+VPA DZM FNL

2

�
+

�
ðwMÞVPA DZM FPM+VPA DZM FNM

2

�

+

�
ðwHÞVPA DZM FPH+VPA DZM FNH

2

�
(Equation 12)

SimilarityIndexVPA4ETOH =

�
ðwLÞVPAETOHFP L+VPAETOHFN L

2

�
+

�
ðwMÞVPA ETOH FPM+VPA ETOH FNM

2

�

+

�
ðwHÞVPA ETOH FPH+VPA ETOH FNH

2

�
(Equation 13)

Similarity IndexVPA4CAF =

�
ðwLÞVPA CAF FPL+VPA CAF FNL

2

�
+

�
ðwMÞVPA CAF FPM+VPA CAF FNM

2

�

+

�
ðwHÞVPA CAF FPH+VPA CAF FNH

2

�
(Equation 14)

Similarity IndexDZM4ETOH =

�
ðwLÞDZM ETOH FPL+DZM ETOH FNL

2

�
+

�
ðwMÞDZM ETOH FPM+DZM ETOH FNM

2

�

+

�
ðwHÞDZM ETOH FPH+DZM ETOH FNH

2

�
(Equation 15)

Similarity IndexDZM4CAF =

�
ðwLÞDZM CAF FPL+DZM CAF FNL

2

�
+

�
ðwMÞDZM CAF FPM+DZM CAF FNM

2

�

+

�
ðwHÞDZM CAF FPH+DZM CAF FNH

2

�
(Equation 16)

Similarity IndexCAF4ETOH =

�
ðwLÞCAF ETOH FPL+CAF ETOH FNL

2

�
+

�
ðwMÞCAF ETOH FPM+CAF ETOH FNM

2

�

+

�
ðwHÞCAF ETOH FPH+CAF ETOH FNH

2

�
(Equation 17)
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