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Using pesticides is a common agricultural and horticultural practice to serve as a control
against weeds, fungi, and insects in plant systems. The application of these chemical
agents is usually by spraying them on the crop or plant. However, this methodology is not
highly directional, and so only a fraction of the pesticide actually adsorbs onto the plant,
and the rest seeps through into the soil base contaminating its composition and eventually
leaching into groundwater sources. Electrochemical sensors which are more practical for
in situ analysis used for pesticide detection in soil runoff systems are still in dearth, while the
ones published in the literature are attributed with complex sensor modification/
functionalization and preprocessing of samples. Hence, in this work, we present a
highly intuitive electroanalytical sensor approach toward rapid (10 min), on-demand
screening of commonly used pesticides—glyphosate and atrazine—in soil runoff. The
proposed sensor functions based on the affinity biosensing mechanism driven via thiol
cross-linker and antibody receptors that holistically behaves as a recognition
immunoassay stack that is specific and sensitive to track test pesticide analytes. Then,
this developed sensor is integrated further to create a pesticide-sensing ecosystem using a
front-end field-deployable smart device. The method put forward in this work is compared
and validated against a standard laboratory potentiostat instrument to determine efficacy,
feasibility, and robustness for a point-of-use (PoU) setting yielding LoD levels of 0.001 ng/
ml for atrazine and 1 ng/ml for glyphosate. Also, the ML model integration resulted in an
accurate prediction rate of ≈80% in real soil samples. Therefore, a universal pesticide
screening analytical device is designed, fabricated, and tested for pesticide assessment in
real soil runoff samples.

Keywords: field-deployable sensing platform, soil runoff sensor, pesticide screening, soil pollution analysis,
environmental sensor, impedimetric biosensor

INTRODUCTION

There is a major requirement at present to address environmental sustainability in ecological and
agricultural practices as highlighted by the United Nations “2030 Agenda for sustainable
development” (Arduini et al., 2020). As a result of this proposition, there has been an influx in
studies to develop biosensor technologies meant for green living and monitoring different areas in
environmental and agri-food sectors. Despite these efforts, one particular vital component of the
environment has been probed comparatively much more sparsely, namely, the soil ecosystem that
directly and indirectly affects the agricultural health and throughput as well as ecosystem balance
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(Bullock and Gregory, 2009). One specific problem is that the
application of pesticides in crops and other plants often finds its
way seeping into soil in large quantities, and there exists a
leaching effect at the soil and groundwater sources (Kellogg
et al., 2000). The effect caused by the pesticide residues in soil
is two-fold: 1. There is a definite relationship between long-term,
low-dose exposure of any kind either ingestion, inhalation, or
through contact and human health effects such as immune
suppression, hormone disruption, diminished intelligence,
reproductive abnormalities, and cancer; 2. impact on the
environment via surface/groundwater contamination and soil
contamination–mediated damage to non-target species–soil
biomass, and microorganisms causing decreased crop
throughputs and food quality, affecting global food security
(Aktar et al., 2009; Lo, 2010; Joko et al., 2017; Gunstone et al.,
2021).

The potential for a sensor system that detects in field is given as
follows: the levels of pesticide residues in soil runoff is immense
and would be beneficial to understand the negative effect of
mismanagement and overuse of pesticide agents on food safety
and overall quality of life. This field-deployable sensor probe
would help promote responsible agricultural practices and curb
the overapplication of harmful agents to the soil (Ali et al., 2020).
Currently, it is rare to quantify and test for pesticide residues in
soil, and even if it is performed, it is done for mostly one analyte,
while the field norm in assessing residue levels is reliant onmainly
chromatographic techniques (LC-MS/MS, GC-HRMS) with the
QuEChERS sample preparation methodology (Silva et al., 2019).
Samples in the liquid state requiring complex preprocessing have
been tested in different scientific studies and in some cases
commercially available test kits utilizing different methods
such as capillary electrophoresis (Chang and Liao, 2002),
spectrophotometry (Catrinck et al., 2014), and liquid
chromatography (Chamkasem and Harmon, 2016) which
possess the desired sensitivity and selectivity. A comprehensive
summary table has been created, detailing output metrics between
different analytical methods versus the sensor performance as a
function of processing steps involved, determination/detection
time, and limit of detection (LoD), as given in the supplementary
section (Supplementary Table S1). However, as mentioned
previously, the cost of using these techniques is large overhead
in terms of sample collection and transfer, need for sample
processing, complex machinery, and reagents as well as the
added costs associated with all these steps. Therefore,
detection of these pesticides in trace levels in real time in the
soil matrix (runoff water) is highly desirable with minimal or no
pre-sample processing step involved.

Electroanalytical chemistry proves to be a viable choice of
application for such a sensor to track pesticides in soil samples
due to its feasibility for in situ analysis used as well as solving for
the ASSURED criteria as given by theWorld Health Organization
(WHO), wherein it denotes Affordable, Sensitive, Specific, User-
friendly, Rapid, and robust, Equipment-free, and Deliverable to
end-users (Lim and Bonanni, 2020). The proposed system would
have to utilize minimally complex sensor modification/
functionalization and no preprocessing of samples. By
studying the levels of soil contaminant residues at the field

site, the sensor acts as a screening instrument for soil
pollution levels.

Hence—citing all these factors and requirements—in this
work, we evaluate an electroanalytical sensor approach toward
rapid, on-demand screening of 2 commonly used pesticides in
this proof-of-feasibility study—glyphosate and atrazine in soil
runoff which have a half-life around 60 days1 and 60–75 days
(Hanson et al., 2020) in soil, respectively. The rationale behind
testing these 2 particular pesticide groups is that recently with the
agricultural and related developments and the introduction of
genetically modified plants, the use of the pesticides such as
glyphosate and atrazine has increased to a larger extend
worldwide (Battaglin et al., 2009). Glyphosate [N-
(phosphonomethyl)glycine] is a polar pesticide used to control
the plant weeds by inhibiting the synthesis of amino acids
required for the growth of the plants. The most commonly
being used is genetically modified glyphosate-resistant crops
such as corn, soybean, and cotton crops (Duke and Powles,
2008). Similarly, atrazine (2-chloro-4-ethylamino-6-
isopropylamino-1,3,5-triazine) is another pesticide which is
largely non-polar used for the pre- and post-emergence
control of weeds, especially in sugarcane, maize, and sorghum
crops (Oliveira et al., 2015). With the intense use of these two
most used pesticides, several concerns have been raised due to the
possible residue levels in the soil, water, and plants, a potential
threat to the environment and human health (Van Bruggen et al.,
2018). With the possible link to the human conditions such as the
disruption of endocrine hormones, a potential cause of various
cancers (Gillezeau et al., 2019), the U.S. Environmental
Protection Agency (EPA) has set the maximum acceptable
limit (MRL) of these pesticides in drinking water and various
food commodities before they are being marketed (Ambrus,
2015).

In our previous work, we have shown a sensing methodology
to test water and produce groups for glyphosate (Dhamu and
Prasad, 2020; Dhamu et al., 2021) and atrazine (Pichetsurnthorn
et al., 2012), respectively, using an affinity-based biosensing
mechanism that is highly specific to the target species. This
sensor functions based on an affinity biosensing mechanism
driven via thiol cross-linker and antibody receptors that
holistically behaves as a recognition immunoassay stack that
is specific and sensitive to track test pesticide analytes in the
parts per billion (ppb) range for glyphosate and parts per trillion
(ppt) range for atrazine. Herein, this universal sensor
architecture and chemistry is built and optimized to survey
atrazine and glyphosate pesticide panel in soil runoff samples.
Here, the universal sensor panel refers to the ability to use and
deploy the same 2-electrode design, hardware interface,
electrochemical mode (electrochemical impedance
spectroscopy; EIS), and similar affinity binding stack
respective to each target analyte.

Then, this developed sensor is integrated further to create a
pesticide-sensing ecosystem using a front-end field-deployable

1Report-Technical factsheet on glyphosate by United States Environmental
protection agency (US-EPA)
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smart device that drives the electrochemical signal from a
potentiostat and then performs computational regression
modeling on-chip to denote the resultant trace pesticide level
output. Therefore, a universal pesticide-screening analytical
device is designed and fabricated for pesticide assessment in
real soil runoff samples.

MATERIALS AND METHODS

All data graphs were plotted and analyzed using GraphPad Prism,
with error bars as mean with the standard error of mean (SEM).
All electrochemical experiments were performed using the
Gamry Reference 600 potentiostat (GAMRY Instruments,
United States).

The sensor design depicted in Figure 1C that was designed
and tested in-house was then fabricated on a PCB substrate,
manufactured by PCBWay (HKWEIKU Technology Company
Limited, China). The fabrication was a single-layer (Top layer)
deposition with the conductive layer (copper layer), solder
mask, and overlay (silkscreen layer). Here, the conductive
layer holds the immersion gold, which is an electroless nickel
metal (ENIG) plating technique with a thin layer of gold finish.
This provides the electrical connectivity required for the sensor,
while the solder mask provides insulation to the rest of the
sensor region. The silkscreen layer is added for functionality and
depicts sensor chip boundary regions, thereby giving the
necessary interfacing capability with the electronic reader
(USB-Flash drive design to slot into reader port). The PCB
substrate material type used is FR-4 TG-130, with a thickness of
1.6 mm (6/6 mil track/spacing), and the overall dimension of the
sensor chip is 17.8 × 9.7 mm.

Preparation of Soil Runoff Samples
Garden soil used commonly for horticultural use was procured
from a commercial source (Home Depot, GA, United States). A
standard small cylindrical pot with a hole at the bottom was
filled with this soil, and a common cactus was planted which
acts as the sample setup for this study. Filtered RO (Reverse
Osmosis) grade water was used to water the plant setup, and the
excess water (runoff) was collected using a cup holding the pot
within it, as shown in Figure 1A. This water was collected and
was used as the stock dilution to serially dilute and create the
pesticide (antigen) doses with atrazine and glyphosate,
respectively. Then 1 mg of the solute (atrazine salt) was
mixed into 2 ml of the runoff water and then sonicated for
1 h, following which this concentration of 500 ug/ml was
serially diluted down to the test range of 1 pg/ml–1ug/ml.
Similarly, with the glyphosate salt, 1 mg was mixed into 1 ml
of the soil runoff and mixed. The difference with glyphosate
was that the solution forms readily as it is a polar organic
molecule which is dissoluble in water even under lower solvent
volumes. Then this 1 mg/ml stock concentration of glyphosate
soil runoff sample was diluted to the test range between 1 ng/ml
and 10 ug/ml.

Electrochemical Immunoassay Protocol for
Affinity Sensing Approach
Phosphate-buffered saline (PBS) (pH 7.4) was used as the solvent
and diluent in this set of experiments. To record the binding
events at the electrode region between the antibody and pesticide
antigen (glyphosate and atrazine), a 10 mV AC bias was applied
at the WE and impedance recorded by electrochemical
impedance spectroscopy (EIS) to effectively polarize and

FIGURE 1 | (A) Representation of the test setup (from left)- Potted plant filled with garden soil and watered. Soil runoff is collected in the bottom cup (white) and
interfaced with the hardware prototype platform simulating in-field deployability and analysis. (B) Picture depicting the sensor dipped into the soil runoff sample for
measurement. (C) USB form factor sensor chip used for pesticide analysis in this work. (D) Flow diagram denoting the informational flow regarding the sequence of
analysis to track pesticides in runoff: sensor stage (affinity binding chemistry)> device integration> EIS (electrochemical analysis)> machine learning classification.
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capture the electrode–electrolyte interfacial effects. Sensor chips
were prepared by cleaning with isopropyl alcohol, followed by
deionized water. The whole protocol was devised for one
individual chip, and each chip was dosed serially from the
lowest to the highest dose (ascending order). Experiments
were conducted in triplicate, that is, 3 unique sensor chips.

Once the sensor was prepared, 5 μL of cross-linker
dithiobis(succinimidyl propionate) (DSP) (Thermo Scientific,
United States) made in dimethyl sulfoxide (DMSO) was
dispensed onto the gold electrode-sensing region and
incubated for 90 min, providing sufficient time for the DSP
molecules to be immobilized onto the gold surface. The sensor
surface was then coated with 5 μL of glyphosate antibody
(chicken polyclonal) solution and atrazine antibody (sheep
polyclonal) solution (Fitzgerald Antibodies, United States) of
500 μg/ml and 100 μg/ml, respectively, and allowed to incubate
for 30 min undisturbed. Next, 5 μL of superblock (blocking
buffer) (Thermo Scientific, United States) was dispensed to the
electrode surface and incubated for 10 min to minimize
unspecific binding by hydrolyzing the cross-linker
functional sites.

The glyphosate antigen (Sigma Aldrich, United States) doses
of the range of concentrations required between 1 ng/ml and
10 μg/ml were prepared as described before using soil runoff.
Similarly, for the atrazine pesticide (Sigma Aldrich,
United States), it was serially dosed in the range of 1 pg/
ml–1 μg/ml. Blank soil runoff with no detectable pesticide
traces (baseline/negative control) was added to the sensor
surface, incubated (10 min), and measured as zero dose (ZD).
Then, the fluid was aspirated from the electrode surface, and this
procedure was repeated for the next corresponding doses in
increasing concentration for the same incubation interval to
promote pesticide-antibody binding to take place. EIS
measurements were taken after each incubation and dosing
step of the immunoassay.

RESULTS AND DISCUSSION

EIS Methodology for Pesticide Residue
Analysis
This section explains in detail the biosensing chemistry that is
surveyed using impedimetric analysis that can be captured as a
function of pesticide levels in the target sample: soil runoff matrix.
Conjugation of the immunoassay stack to specifically recognize
the pesticides-glyphosate (GLP) and atrazine (ATR) was
implemented on the ENIG immersion-gold finish PCB (FR-4)
interdigitated electrode. This stack effectively creates a double
layer at the electrode-electrolyte interface that gets modulated due
to the presence of increased target analytes in the solution. To
explain this concept in detail, we point to the electrical double
layer (EDL) structure (Munje et al., 2015; Munje et al., 2017)
created when a conductive or semiconducting surface is in
contact with a fluid matrix. The EDL consists of a chemically
adsorbed layer of charged molecules followed by a layer of
oppositely charged species held together via charge attraction
(Coulomb forces). What follows is defined as the diffuse layer that

can be visualized as ions that move within the fluid under the
influence of the applied electrical field and whose strength is
proportional to the distance from the contact layer defined
formerly.

The detection strategy employed using affinity biosensing is
reliant on the following concept: The gold electrode surface is
dispensed and conjugated with a thiol cross-linker molecule
dithiobis(succinimidyl propionate) (DSP) that binds to the
gold layer by thiol–SH linkage, while the opposite end is the
NHS ester group end (Xue et al., 2014; Kamakoti et al., 2018).
Based on prior characterizations and studies into the design and
building of a biosensor for atrazine and glyphosate, it was possible
to obtain the optimum antibody parameters for the experimental
protocol and determine suitable concentration; an antibody
saturation study was conducted, based on results
corresponding to a clearly noticeable linear increase in signal
values as we increase the dose antibody concentration (Dhamu
and Prasad, 2019). It was determined that based on signal
saturation at a particular antibody dose, 500 μg/ml for
glyphosate and 100 μg/ml for atrazine was the optimum
concentration of antibody required with respect to this IDE
sensor system. The specific antibody based on the sought-after
target group is then functionalized onto the immunoassay that is
confirmed by the breakage of the CO–NHS bond in the cross-
linker layer and formation of amide bonds I and II, reiterating the
binding of the antibody to the DSP cross-linker and thereby the
sensor surface itself as understood and proven via Fourier
transform infrared (FTIR) spectroscopy in the scientific
literature that is relevant here to characterize standard
antibody stack conjugation (Upasham et al., 2018).

After this stage, the sensing capture biochemistry is now ready
for binding with the target species (pesticide groups GLP and
ATR). These interactions are captured via capacitive modulations
in the EDL using impedance analysis with EIS that is well-suited
for studying and modeling complex systems as ours, which in this
case is runoff from field soils.

Electrochemical Impedance Spectroscopy
Enabled Pesticide Sensing
After confirmation of immunoassay functionalization on the gold
sensor surface, pesticide levels in aqueous systems were
determined using non-faradaic EIS. The non-faradaic method
implies the ability to detect target analytes without the use of a
redox tag or label. This enables the capability of the sensor to
thereby be preprocessing-free and hence does not require
additional reagents to act as indicators.

As described before, the changes to the analyte under test are
observed as a function of capacitive modulations to the EDL.
Therefore, non-faradaic EIS is best suited for this role as it is a
thorough method to map the subtle chemistry effects at the
electrode–electrolyte interface. So, it is possible to obtain high
sensitivity by employing this interfacial probing mode (EIS). To
explain this phenomenon in detail, the following is considered:
When an AC voltage of 10 mV is applied to the electrode, it
results in the perturbation of the solid–liquid interface.
Furthermore, causing a capacitance (dielectric) modulation in
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the double-layer structure due to binding between the antibody
and the pesticide molecule, that is, EDL capacitance varies with
respect to the antigen–antibody binding. The background behind
capacitance change in this model has to do with the dielectric

permittivity of the system being modulated due to the double-
layer structure and length being perturbed.

These variations are surveyed and then subsequently analyzed
with the EIS results plotted as Nyquist (Zreal vs. Zimg), Bode phase

FIGURE 2 | (A) Non-faradaic Nyquist characteristic curve depicting the bending of the dose curves with an increase in atrazine concentration toward x-axis
(zoomed version of the capacitive region showed in the bottom plot). (B) Bode magnitude plot depicting Zmod modulation with dose increase and frequency of interest
10 Hz is marked with a box outline. (C) Bode phase plot representation of Zph (angle) trend change from the resistive region at higher frequencies to capacitive domain
toward the lower frequencies. (D) Calibrated dose–response (CDR) curve with semi-log fit and linearity >0.95 plotted as dZ which is the change in Zmod (for each
dose) from baseline signal against the concentration of atrazine in ng/mL.

FIGURE 3 | (A) Non-faradaic Nyquist characteristic curve depicting the bending of the dose curves with an increase in glyphosate concentration toward x-axis
(zoomed version of the capacitive region showed in the bottom plot). (B) Bode magnitude plot depicting Zmod modulation with dose increase and frequency of interest
10 Hz is marked with a box outline. (C) Bode phase plot representation of Zph (angle) trend change from the resistive region at higher frequencies to capacitive domain
toward the lower frequencies. (D) Calibrated dose–response (CDR) curve with semi-log fit and linearity >0.95 plotted as dZ which is the change in Zmod (for each
dose) from baseline signal against the concentration of glyphosate in ng/mL.
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(Freq vs. Zph), and Bode magnitude (frequency vs. Zmod) plots.
This whole EDL structure and the impedance parameters
associated with the EIS mode can be visualized and modeled
using an equivalent electrical circuit called modified Randle’s
circuit (Saxena and Srivastava, 2019; Xu et al., 2019;
MintahChurcher et al., 2020).

As can be seen from the EIS results later, the absence of charge
transfer resistance Rct (infinite) in the Nyquist plot denoted by
incomplete semicircles is indicative of non-faradaic analysis
(Tanak et al., 2019). Another indicative trend noticed from the
Nyquist characteristics is that with increased pesticide doses of
glyphosate and atrazine, there is an associated reduction in the
radius of curvature in the incomplete semicircles. This is seen as
the shift toward the x-axis with an increase in dose, as can be seen
in the zoomed-in Nyquist plot in Figure 2 (ATR) and Figure 3
(GLY). One major observation made was that due to the presence
of bulk molecules in the soil and water as such, the time needed
for binding was increased to 10 min.

In addition to this, Bode plots shown for atrazine and
glyphosate is representative of the antigen–antibody binding.
The magnitude plot shows that with more binding relative to
increases in the dose of pesticide, there is a correlated Zmod
modulation, while conversely, in the case of the phase plot, there
is a change in phase angle values frommore negative values (close
to −90) corresponding to more capacitive behavior toward zero
phase values, indicative of more resistive nature as there are more
antigen–antibody interactions.

The binding between the antibody and antigen drives the
impedance modulations in this strategy. Probing further, we
understand from utilizing EIS mapping at the
electrode–electrolyte interface that the concentration of the
analyte molecules drives the degree of binding between the
antibody and antigen, which translates to the quantitative
correlation and modulation in terms of the analyte-to-signal
ratio, especially when looking at Randle’s equivalent circuit,
the Cdl (double-layer capacitance) or the CPE (pseudo-
capacitance) components referring to the capacitive elements
that drive this signal as a function of binding interactions that
are translated to concentration-dependent responses (Munje
et al., 2015).

Randle’s equivalent circuit here refers to the electrical
component model that is used to mimic the chemical stack at
the electrode–electrolyte layer. This is previously simulated with
the experimental results to fit and compare the values of the
electrical components to determine the parameter that drives the
molecular level reactions (Dhamu et al., 2021).

Thereby, EIS analysis was used to map the binding effects
between the antigen and antibody occurring at the electrode
interface while neglecting other bulk effects and non-specific
binding effects that contribute to electrochemical noise. To
model and extract sensing performance of the system, the
Zmod values were utilized at 10 Hz (capacitive binding
dominant region), and the calibration curve was plotted each
for atrazine and glyphosate and is explained later. To better
visualize the change in signal in the Bode magnitude curves for
each concentration of pesticide analyte, the graph was zoomed in
to the 10 Hz region to better visualize the trend in Zmod shift

with an increasing dose for both atrazine and glyphosate, as
depicted in Figure S2.

Atrazine
From the calibrated dose–response (CDR) curve, the sensor
response was measured/calibrated against the baseline or zero
dose signal value. Thus, the resultant plot was between the dZ
(change in impedance from baseline) signal on the y-axis versus
the dose of atrazine (ng/ml) on the x-axis. The semi-log curve
fitting was used to plot the sensor dose response and extract the
parameters of limit of detection (LoD, measured based on a
specific signal threshold (SST) as 3*standard deviation (SD) of
baseline + baseline level) value of 0.15 pg/ml and sensitivity being
−838.6Ω/log(ppb). Also, the operable limit of quantification
(LoQ) for confident tracking and sensor functionality was
determined by experimental characteristics to be 1 pg/ml. The
values of concentrations chosen in this study for the experimental
cycle are in log scale. So, semi-log (x-axis concentration in log
scale and y-axis signal in linear scale) fitting was best suited for
our analysis, giving a desirable linearity factor of R2 � 0.9524
(>0.95). EIS was consequently down-selected as the primary
probing mode after comprehensive analysis to track pesticide
levels in samples using an affinity biosensing approach.
Additionally, the SST also showed that the signal-to-noise
ratio (SNR) of this system was appreciable to keep all
unspecific noise below its threshold level, and all the desirable
concentration-dependent signals are captured efficiently.

Glyphosate
Similarly, the CDR curve was determined and plotted for glyphosate
in an equivalent manner. The system showed improved
performance from the atrazine case with linearity R2 � 0.9655,
partly attributed to its polar nature and thereby better binding and
diffusion into the EDL. Operable LoQ obtained was 1 ng/ml (1ppb),
which is sufficient based on MRL levels for most agricultural cases,
while the LoD was calculated to be 0.19 ng/ml (ppb). The LoD was
determined based on the SST in the same manner, as described
before for atrazine (3*SD of baseline + baseline impedance value).
Additionally, the sensitivity score also got better with 1,271Ω/
log(ppb).

It is possible for the system to capture a dynamic range of 1 pg/
ml–1 μg/ml (atrazine) which is in the ppt range and 1 ng/
ml–10 ug/ml (glyphosate) therein in the ppb range making it a
sensitive, robust, and viable sensor. Additionally, the stability of
this method was surveyed using EIS mode and results are denoted
using an error bar with ± standard error of mean (SEM).

Point-of-Use (PoU) Testing and Feasibility
via Electroanalytical Sensing Device
The emstat pico module (PalmSens BV, Netherlands) was utilized
as the core element of the circuit and interfaced for I/O operations
to the MKR zero (Arduino, Somerville, MA, United States)
microcontroller system. Together this constitutes the prototype
device package used within this study for potted-plant soil runoff
experiments. The software interface in use for data collection and
subsequent analysis with this device is the PSTrace software
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under the PalmSens BV banner. A wired connector was used to
interface the USB form factor-IDE sensor with the device as
shown in Figure 1. This hardware platform was put together into
a 3D printed housing construct and interfaced with a tablet/
laptop computer for GUI analysis and experimental data
collection by running EIS with similar settings as the lab
instrument explained previously in the methods section
(10 mV AC bias with a frequency sweep between 50000
and 5 Hz).

Similar to the previous section, calibration response curves
extracted from the Bode magnitude (Zmod) plot at 10 Hz were
obtained for the atrazine and glyphosate analytes, as shown in
Figure 4. All measurements and tests in this phase of the study
were conducted in triplicates, that is, N � 3 independent sensor
chips with 3 loops each acting as internal replicates.

The impedimetric response plotted as signal change (dZ) from
baseline is fitted as a semi-log non-linear curve in Figure 4 depicting a
linearity coefficient R2 of 0.9695 for atrazine (Figure 4A) and 0.9757 as
in the case of glyphosate (Figure 4C). It was notable that the analytical

device system was able to capture the whole dynamic range of
0.001–1,000 ng/ml (atrazine) and 1–10,000 ng/ml (glyphosate) with
the dotted line curves representative of the 95%CI linefit which lies on
top of the dose–response curve. This is indicative of the feasibility and
robustness of this sensor ecosystem. It was observed from the non-
overlapping error bars that the PoU device can reliably distinguish
between each dose and its subsequent concentration in a thorough
manner. Furthermore, statistical ANOVA test of p < 0.05 (95% CI)
yielded and cemented the hypothesis that different concentration
doses are differentiable from each other with statistical significance.
The system was able to effectively read concentrations as low as
0.001 ng/ml (LOD-atrazine) and 1 ng/ml (LOD-glyphosate) with
respect to a 3*SD-specific signal threshold (SST) calculation.

Next, to determine the applicability and performance metrics of
this PoU device, the dose–response results obtained from the
laboratory reference instrument were compared to that evaluated
using the fabricated prototype device. Herein, the laboratory
instrument which was a Gamry potentiostat system is taken as the
standard potentiostat to which the proto device output is compared.

FIGURE 4 | (A) Calibrated dose–response (CDR) curve with semi-log fit and linearity >0.95 plotted as dZ which is the change in Zmod (for each dose) from baseline
signal against the concentration of atrazine in ng/mL measured using the prototype device. (B) Correlation plot given as atrazine concentration recovered using the lab
instrument on the x-axis (i.e., performance of benchtop instrument reference) vs. concentration recovered using a proto device on the y-axis (test performance of
electroanalytical PoU system). The table on the right shows actual vs. recovered concentrations behavior for laboratory instrument (column 2) and proto device (column
3). (C) Calibrated dose–response (CDR) curve with semi-log fit and linearity >0.95 plotted as dZ which is the change in Zmod (for each dose) from baseline signal against the
concentration of glyphosate in ng/mLmeasured using the prototype device. (D)Correlation plot given as glyphosate concentration recovered using the laboratory instrument
on the x-axis (i.e., the performance of benchtop instrument reference) vs. concentration recovered using a proto device on the y-axis (test performance of electroanalytical
PoU system). The table on the right shows actual vs. recovered concentrations behavior for laboratory instrument (column 2) and proto device (column 3).
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By applying the calibrated line equation model [y �m*ln (x) + c], the
output signal (y-axis in CDR curve) was used to reverse calculate the
concentration (x-axis on CDR curve) and “m” denotes the slope of the
line and “c” represents the intercept value. Thus, the signal from the
experiment is used to obtain the recovered concentrations against the
standard curve fit. From this step, we obtain 2 key performance
metrics: First, Pearson correlation analysis performed between the
results from two devices (methods); laboratory instrument vs device is
used to validate the feasibility of system toward in-field deployability.
A linear matching between the recovered concentration dataset
(plotted in y-axis as device results) and that of the laboratory
instrument results (plotted in x-axis) is compared by determining
Pearson’s correlation coefficient “r” of 0.9991 in the case of atrazine
and 0.9996 for glyphosate. Therefore, the proposed system showed
excellent correlation with the laboratory instrument sensor response
data with a high r-value close to 1 (ideal).

Second, the efficacy of the sensor system in translating signal
values to pesticide contamination levels was determined using the
spike and recovery table seen on the right side of Figures 4B,D. Even
with a complex system like the soil, the system was able to capture
the pesticide levels (recovered concentration values) within ± 20%
error of the actual concentration present in the sample. This makes
the proposed platform viable for in-field testing and broad-scale use.

Machine Learning Classifier Integration
The pesticide contamination machine learning (ML) classification
model and applicationGUI (for use inWindows) were implemented
using MATLAB (Natick, MA, United States)—Classification
Learner application to create the training model and then
perform subsequent testing. The model for the training dataset
was tested using 5-fold cross-validation (Lakshmi and Rao, 2019),
and the algorithm forML processing was based on bagged trees logic

FIGURE 5 | (A,C) ROC curve results for atrazine (A,B) and glyphosate (C,D) inclusive of AUC value, TPR, and FPR value (represented as the red dot with values in
parenthesis). (B,D) Confusion matrix depiction to determine true class vs predicted class behavior for ATR (A,B) and GLY (C,D), respectively.
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which is a commonly used method for classification purposes (Al-
Barazanchi et al., 2017; Widasari et al., 2020).

The utility of the PoU platform is enhanced by the integration
of the classifier algorithm and is used to segregate sample
pesticide contamination into 3 output classes:
Atrazine.

1) 0–0.1 ng/ml (low)
2) 0.1–100 ng/ml (mid)
3) >100 ng/ml (high)

Glyphosate.

1) 0–10 ng/ml (low)
2) 10–100 ng/ml (mid)
3) >100 ng/ml (high)

Experimental output data collected from the proto device platform
contain column-wise information as follows: Zreal, Zimg, Zph, Zmod,
frequency, and dosewithin eachmeasurement cycle. The novelty in this
proposed classifier is the ability to obtain ML classification output into
the aforementioned 3 classes by exporting this output data file directly
into the computational system without any need for preprocessing or
data consolidation. The factors, namely, frequency, Zreal, Zing, and
Zmod, togetherwere seen to be optimized predictors for themodelwith
the response as tertiary classes based on observations as described
before: low, mid, and high contamination classes.

The data input is fromN� 3 independent sensor replicates with 3
loops each for 8 concentration doses for atrazine and 6 concentration
doses for glyphosate yielded 1,464 and 1,098 unique observations/
sample points for the two pesticide compounds, respectively. This is
the input used to build and test the ML model whose results are
depicted in Figure 5 as a receiver operating characteristic (ROC)
curve plotted between the true-positive rate (TPR) on the x-axis and
false-positive rate (FPR) on the y-axis. The choice was finalized
following the review of output parameters such as accuracy in % and
the ROC curve characteristics (i.e., maximum TPR and minimal
FPR). From the ROC curve results for atrazine, it can be seen that the
TPR/FPR ratio is sufficient taking into account the complex nature
of soil along with the overall accuracy being 79.4% and area under
the curve (AUC) value of 0.96. Additionally, on the right side of the
figure, the confusionmatrix is seen with the predicted class on x-axis
versus the true class on y-axis. Classes 1, 2, and 3 refer to the low,
mid, and high contamination levels, and from the heat map for
atrazine, it is seen that the error is more prominent at the mid-high
contamination level borders, while there is a good degree of
confidence at the lower concentration ranges. For the case of
glyphosate, the ROC curve yields the performance metrics of
76.5% overall accuracy and AUC value of 0.87; the error for

glyphosate was concentrated for the most part in the mid-level
contamination region. It is the assumption of the authors that adding
more data points from different soil types and an additional number
of sensor results would cause the model to auto-resolve further and
optimize the performance to yield even better results.

CONCLUSION

In this study, we have successfully put forward a sensing ecosystem
to track a pesticide panel of different types—atrazine (non-polar)
and glyphosate (polar)—using the same universal sensor design
and setup. This solution holds the potential to be deployed in situ as
a first response to screening and solving for soil pollution, food
quality understanding, and thereby boosting food security.

It was possible to depict sensor performances in the range of
parts-per-trillion detection limits for atrazine and parts-per-billion
in the case of glyphosate with runoff from actual real field soil
samples. A feasibility study was undertaken to cement the field
deployability aspect by designing an electroanalytical device to run
EIS on the samples in a portable setting and thereby obtaining the
trace residue levels in an on-demand manner. The performance
from the electroanalytical system was correlated to that obtained
from the laboratory-grade benchtop instrument indicating the
stability and robustness of the proposed platform for
agricultural field tests in wet farms that grow paddy (rice), etc.
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