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In human societies, social behaviour is strongly influenced by threats of punishment, even though the

threats themselves rarely need to be exercised. Recent experimental evidence suggests that similar

hidden threats can promote cooperation and limit within-group selfishness in some animal systems.

In other animals, however, threats appear to be ineffective. Here I review theoretical and empirical

studies that help to understand the evolutionary causes of these contrasting patterns, and identify

three factors—impact, accuracy and perception—that together determine the effectiveness of threats to

induce cooperation.
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1. INTRODUCTION
An alien observer of human behaviour might take some

time to realize that our social interactions are shaped to

a large extent by hidden threats. Threats of fines and

incarceration serve to maintain law and order, while

threats of social punishment such as ostracism or peer

criticism encourage us to conform to social norms

[1–3]. But an observer would find it difficult to identify

these threats because punishments are triggered only

when the social rules they enforce are broken. The most

effective threats are those that rarely need to be carried

out, and so are least likely to be noticed by an observer.

Recent theory and experimental studies suggest that

hidden threats may play a similarly important role in

shaping the social behaviour of animals. In particular,

threats to terminate a potentially profitable interaction

may limit the level of selfishness in cooperative groups

[4–6]. Nature abounds with examples of cooperation

where animals can interact to produce a mutual

inclusive fitness benefit: examples include interspecific

mutualisms [7,8], biparental care systems [9,10], coop-

eratively breeding species [11–13] and parents with

their offspring [14]. However, conflict arises in these

interactions because each individual is selected to

maximize its share of the inclusive fitness profits of

cooperation at the expense of its social partners. For

cooperative associations to form and remain stable,

participating individuals must resolve this conflict in

such a way that each prefers to continue the interaction

rather than pursue alternative outside options, such as leav-

ing, evicting or eliminating their partner [5,15,16].

Outside options place a limit on the level of exploitation

that an individual will tolerate before it does better to

break up the interaction. Consequently, threats to

terminate a cooperative interaction (‘exit threats’) can, if

they are effective, curtail the level of within-group
t@exeter.ac.uk
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selfishness and prevent the dissolution of potentially

profitable associations.

Here I describe theory that helps to understand how

threats can constrain selfishness in biological interactions,

and review studies that illustrate the success and failure of

threats to induce cooperation in a variety of systems.

These examples reveal that, in many animals, observed

acts of punishment and control may represent just the

tip of the iceberg of forces shaping social structure and

behaviour.
2. THREATS AND SOCIAL CONTROL: THEORY
To focus our discussion, consider the interaction between

two individuals, A and B, who can interact in some way

that produces a net direct fitness profit. The two individ-

uals face conflict because each is selected to increase

its share of the total profits (or fitness ‘surplus’) at the

expense of its partner’s share. This surplus is represented

in figure 1a by a line with player A’s preferred outcome at

one end and player B’s preferred outcome at the other.

Each player’s fitness payoff (or inclusive fitness payoff in

the case of relatives) resulting from the interaction is

assumed to be an increasing function of their share of

the total profits. The figure shows the simplest case,

where fitness is directly proportional to this share, the fit-

ness surplus is constant irrespective of how it is

distributed and the players are unrelated (so that indirect

fitness effects can be ignored).

Layered on top of this we need to consider the alterna-

tive outside options that may be available to the two

individuals. Each of the two players may have the

option to terminate the interaction to pursue these out-

side options (for example, by leaving, evicting or

eliminating their partner), in which case they can expect

payoff pA and pB, respectively. If a player has more than

one outside option, we need only plot the highest-

paying outside option on our line, since other outside

options will never be chosen. If none of a player’s outside
This journal is # 2010 The Royal Society
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Figure 1. (a) Fitness surplus and bargaining set in two-player cooperative association. Both parties benefit from cooperation if
they can negotiate a settlement u*, which lies in the bargaining set (the thick black line). In the case shown, the two parties are
of equal ‘bargaining power’, so u* is located at pA ¼ pB ¼ 0.5. (b) Fitness payoffs accruing to player A (solid line) and player B
(dotted line) as a function of the negotiated outcome u*.
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options are more profitable than remaining with zero share

of the fitness profits, then that player effectively has no

outside option. The zone between the outside options of

the two players represents the set of outcomes, where

both players profit from the interaction. In economic

models this is called the ‘bargaining set’ [17]. To avoid

unnecessary duplication of terms I follow this usage here.

How will the two individuals resolve conflict over the

division of the ‘pie’ of profits? Theoretically, we can

distinguish two distinct ways by which animals might

influence this competition: (i) bargaining and (ii) the

use of threats. The distinction lies in the assumed game

structure of the interaction between players. A bargaining

process involves a potentially infinite exchange of actions

or signals that may converge to some equilibrium or be-

havioural ‘settlement’. By contrast, threats arise when

one player can make a ‘last move’ to terminate the inter-

action or inflict a lasting cost on the other player. The

threat to exercise this last move generates an incentive

for the other player to exercise restraint in its claims on

the fitness surplus. Both these processes are elements of

behavioural ‘negotiation’ and presuppose the ability

of each individual to respond on a behavioural timescale

to changes in the behaviour of the other (i.e. they

invoke evolutionary ‘rules for responding’ rather than

fixed genetic strategies; see [10,18]).

The process of bargaining might take various forms in

nature. In cooperative breeders, for example, dominant

and subordinate breeders might engage in aggressive

interactions to claim or defend resources required for

reproduction, or to signal a willingness to escalate in con-

flict [19–21]. Offspring may engage in costly acts or

signals to claim additional resources from parents or sib-

lings [22,23]. In species that exhibit biparental care, a

male and female parent may bargain by mutual adjust-

ment of provisioning effort [10,18]. The ability of one

party to shift the resolution in its own favour (which we

can call its ‘bargaining power’) will depend on asymme-

tries in quality or the ability to sustain costs during

bargaining [10,24]. There may also be asymmetries in

bargaining power that have nothing to do with their indi-

vidual attributes; for example, it may be cheaper for one
Proc. R. Soc. B (2011)
party to increase its level of service or resource production

than the other [4]. In cooperative species it may be easier

for a subordinate helper to shirk than it is for a dominant

to force it to help. This latter example illustrates the point

that, depending on the context, one party may be a stron-

ger bargainer even though it is physically weaker and

socially subordinate to the other [3].

What if the bargained resolution lies outside the bar-

gaining set? In this case one of the players possesses a

credible threat to break up the association. The threat is

credible because it is in the threatener’s own interest to

exercise its outside option when its expected payoff

from bargaining is less than its outside option. This

threat can affect the resolution by forcing the other

player to ‘ease off ’ in bargaining until the threat is no

longer credible; that is, to concede just enough fitness

to the other player to match its relevant outside option.

If, on the other hand, the bargained resolution lies

within the bargaining set, neither player’s threat to exer-

cise their outside option is credible because it would not

pay either of them to carry out their threat. In economics

this is sometimes referred to as the outside option principle:

outside options are relevant only where they yield a higher

payoff than can be obtained through bargaining [25].

A corollary of the argument is that only one player’s outside

option can be relevant at a time, because if both players

receive less at the negotiated equilibrium than they would

gain from pursuing their outside option, there is nothing

to be gained from trying to cooperate in the first place.

The outside option principle can be used to develop ‘syn-

thetic’ models of conflict resolution that incorporate

threats and bargaining in the same framework [5].

We expect strong selection to avoid triggering threats

because a stronger bargainer experiences a sudden drop

in fitness if a threat is triggered. Figure 1b shows how

the fitness of our two players changes across the threat

threshold. In this example, assume that player A has

greater bargaining power and can push the bargaining

settlement across the threat threshold of player B. At

this point, B decides to take up its outside option (say,

to leave the group) and receives a payoff proportional to

pB, but as a consequence of this decision player A’s fitness
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drops suddenly from 1 2 pB to its own outside option

fitness pA. The threat threshold represents a fitness

‘cliff-edge’ for the recipient of the threat [26]. Player A

does best to push player B’s share down as close to the

threat threshold as possible, without triggering it. Both

players can therefore gain from effective communication

to avoid triggering the threat unnecessarily. In §3, I

describe cases where there is good evidence of pre-

emptive behaviour to avoid triggering a threat, indicating

that credible means of communicating (or detecting)

threats do exist in nature, at least in some systems.
3. EFFECTIVE AND INEFFECTIVE THREATS
IN NATURE
The type of exit threats that are relevant in animal systems

will depend on the availability of alternative partners or

resources, and whether one party is able to control

group membership or access to resources. I focus on

three types of threat in particular: the threats to evict,

depart or to attack the other player. In each case

I review examples that illustrate the effectiveness (or

lack thereof) of threats to influence behaviour.

(a) The threat of eviction

Some of the clearest evidence of hidden threats at

work comes from recent studies of fish size hierarchies

[27–32]. In these species, group members exhibit a

size-based queue in which the largest individuals are

breeders and the rest are non-breeders, and there are

often consistent size differences between individuals at

adjacent rank [33]. Experiments have shown that these

size differences between ranks are maintained because

subordinates strategically adjust their growth rates to

remain smaller than their immediate dominant

[27,29,30]. The hypothesis is that subordinates adjust

growth rates to avoid the threat of expulsion from the

group [28]. However, evictions are rarely observed in

nature, and there are other plausible explanations for

size differences in a hierarchy; for example, it may be

that low-rankers have less access to food for growth.

How can we test whether the threat of eviction drives

the formation of the size hierarchy?

The best way to test this idea is to ‘break the rules’

in order to trigger hidden threats. Just this type of

experiment was performed by Wong et al. [31] working

on the size hierarchies of the coral-dwelling goby

Paragobiodon xanthosomus (figure 2a). To test whether

observed size differences reflect the threat of eviction,

Wong et al. paired individuals of different size in the

laboratory and recorded their interactions. When there

was a large size difference between the two individuals,

the larger ‘dominant’ fish tolerated the presence of the

smaller ‘subordinate’. However, when the difference in

size between the two fish was smaller than the minimum

difference observed in natural groups, dominants

responded by forcibly evicting the subordinate. It was

also clear why dominants stand to gain from evicting sub-

ordinates before they grow too large, since dominants

paired with the largest subordinates often ended up

being evicted themselves. In a second study using intact

groups in aquaria, Wong et al. [32] showed that subordi-

nates cease feeding as they approach the size threshold at

which eviction is likely to be triggered. This indicates that
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these subordinates were able to detect the presence of the

eviction threat and respond pre-emptively to avoid

triggering it.

In these fish hierarchies, the threat of eviction is a

powerful inducement to exercise restraint because subor-

dinates place a high value on continued membership of

the group, while dominants have little to lose by evicting

them. The same factors apply in many cooperatively

breeding vertebrates, particularly where the presence of

subordinates threatens the reproductive monopoly of

dominant breeders [34]. In meerkats, for example, subor-

dinate females are forcibly evicted from the group by

dominant females, and only allowed to return after the

dominant has given birth [35,36]. Subordinate females

that are pregnant at the time of eviction often abort

their litter in the period when they are excluded from

the group, lose weight and show signs of elevated endocri-

nological stress [37]. Consequently, eviction by the

dominant female substantially reduces the probability

that a subordinate will reproduce successfully. It is clear,

however, that compared with fish size hierarchies, the

threat of eviction is not a wholly effective deterrent in

meerkats, since subordinates commonly reproduce,

albeit at a much lower rate than dominants [38]. In

banded mongooses, dominant females use eviction to

limit the number of breeding females in the group,

but there is no evidence that subordinates exercise pre-

emptive restraint to avoid being evicted in the first

place [39]. Threats may be less effective in social

mongooses because eviction is often temporary and has

less lethal consequences than it does in the social

fish systems.

Finally, the threat of eviction plays a central role in

‘pay-to-stay’ models of helping behaviour. The idea here

is that subordinates may be forced to pay ‘rent’ by helping

in order to be tolerated in the group [40,41]. Again, the

best evidence comes from a fish system, the cooperative

cichlid Neolamprologus pulcher. In a field study helpers

that were removed for periods of 4–6 hours were attacked

or evicted upon their return, and those that were per-

mitted to stay worked harder thereafter [42]. In the

laboratory, breeders evicted helpers when they had little

need for their help, and allowed them to return when

help was required [43]; and helpers reduced their

effort levels when they were provided with options to

breed independently [44]. Finally, helpers that were

experimentally prevented from defending the group

against a predator (by denying them information of the

predator’s presence) responded by increasing their

helping effort, which the authors argue may serve to

appease the dominant and avert expulsion [45]. Note,

however, that this manipulation to break the rules did

not trigger eviction, contrary to the prediction of pay-

to-stay models, although this may be because of the

short-term nature of the manipulation. In other species,

with a few rare exceptions (e.g. superb fairy-wrens

[46]), there is very little evidence in support of pay-to-

stay models. This can be attributed in part to the scarcity

of experimental studies to manipulate helper effort [47].

However, it may also reflect the inefficiency of eviction

as a strategy to punish helpers, even lazy ones. Eviction

will be much more cost-effective when used to punish

reproductive rivals or competitors that actively inflict

costs on the evictor.
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Figure 2. Effective and ineffective threats in nature. (a) The threat of eviction: in the coral-dwelling goby Paragobiodon
xanthosomus subordinates adjust their growth to avoid triggering the threat of eviction by dominants [31,32]. (b) The threat
of departure: studies of the cleaner fish Labroides dimidiatus and its clients suggest that the threat of departure can deter cleaners
from ‘cheating’ (that is, feeding on client tissue rather than their ectoparasites [49–51]). (c) The threat of attack: subordinates
of the queenless ant Dinoponera quadriceps appear to be deterred from challenging the dominant female by the threat of attack
from nestmates. Dominant females mark challengers (such as female 14 in this photo) with a chemical that singles them out for

‘immobilization’ by other workers [66]. (d) An ineffective threat: in banded mongooses Mungos mungo, dominant females limit
reproductive competition by evicting subordinate females from the group, but females do not exercise pre-emptive reproductive
restraint to avoid eviction [39]. In this species, evicted females are often permitted to return, and even non-breeders are some-
times evicted, two factors that reduce the effectiveness of the threat of eviction as a deterrent. Photos: (a) Marion Wong; (b)

Maxi Eckes; (c) Thibaud Monnin; (d) Roman Fuller.
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(b) Departure threats

Where alternative partners or resources are readily avail-

able and there is no territorial or positional advantage

from staying put, it may be more profitable simply to

leave rather than contest a resource or attempt an evic-

tion. The threat of departure is highlighted in biological

market theory, in which the ability to exercise ‘partner

choice’ is a main promoter of cooperative behaviour

[6,48]. In the cleaner fish Laboroides dimidiatus, field

observations suggest that the threat of departure by

clients may induce cleaners to cooperate rather than

cheat (i.e. to feed on ectoparasites rather than on

preferred client tissue; figure 2b) [49]. Laboratory exper-

iments support this hypothesis: cleaners quickly learn to

be more cooperative with artificial ‘clients’ (Plexiglas

plates containing food) that depart in response to ‘cheat-

ing’ (feeding on a preferred food type) compared with

clients that do not [50,51]. Partner choice is argued to

be a key driver of cooperation in other interspecific mutu-

alisms [8,52], and in intraspecific contexts such as mating

markets and sexual selection [53,54], grooming behaviour

[55,56] and helping effort in cooperative breeders [57].

However, these studies have not manipulated cooperation

or outside options experimentally, so definitive evidence

of effective departure threats in these contexts is lacking.

In the study of cooperative breeding, the threat of

departure forms the basis of classic ‘concession’ models

of reproductive skew, which seek to explain variation in

reproductive partitioning within groups [58,59]. These

models suggest that where dominants gain from retaining

subordinates in the group, they may do best to yield a
Proc. R. Soc. B (2011)
share of reproduction as an incentive to keep them in

the group. Unlike the case for biological markets, how-

ever, there is little evidence that departure threats

influence the resolution of within-group conflict in coop-

erative breeders. For many cooperative breeders, the

option to remain in the group as a non-breeder is often

preferable to departure because subordinates can expect

to inherit breeding positions in future, and because

there are often tight ecological constraints on dispersal

and independent breeding [60]. As noted, far from offer-

ing a staying incentive to keep subordinates in the group,

dominants in many species go to considerable lengths to

evict them. To date, two studies have managed to manip-

ulate the availability of outside options experimentally to

look for an effect on skew (on a social bee [61] and a

cichlid fish [62]). Neither study found an effect on the

level of reproductive sharing. Moreover, experiments to

reduce the share of paternity obtained by subordinate

males in cooperative breeders have never led to the depar-

ture of these males, as would be expected if they were

ceded paternity to keep them in the group [19,63]. Overall,

there is little evidence that the threat of departure is

effective in reproductive competition in either insect

or vertebrate cooperative breeders, although more

experiments are needed.
(c) Threats of attack

The third major type of threat is that of physical attack.

Unlike eviction and departure, physical attacks do not

necessarily lead to the termination of the interaction,
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unless fighting is lethal. Low-level aggression and domi-

nance interactions might therefore be viewed as part of

a bargaining process, rather than as a ‘last move’. How-

ever, where attacks inflict death, permanent damage or

otherwise produce a step change in the fitness of the

victim (figure 1b), the decision to attack is equivalent to

an outside option, and may deter selfishness or induce

cooperation in much the same way as a threat to break

up the group.

Threats of attack may be directed against cooperative

partners themselves, or against their offspring. For

example, many social Hymenoptera queens and workers

use aggression or egg-eating to deter their nestmates

from reproducing (or developing into reproductives), a

behaviour known as ‘policing’ (reviewed by Ratnieks

and co-workers [64,65]). Policing is usually inferred

from observations of aggression or oophagy (see table

S1 in [64]), but, as with human policing, insect policing

operates most efficiently via the use of threats. In the

queenless ant Dinoponera quadriceps, for example, domi-

nant breeders can prevent high-ranking subordinates

from challenging their position by daubing them with a

pheromone, which marks them out for attack and ‘immo-

bilization’ by other workers [66]. This threat dramatically

increases the potential costs of challenging to subordi-

nates, and helps to stabilize the hierarchy in natural

colonies [67,68]. In other species, queen-removal exper-

iments suggest that the threat of physical attack helps to

deter subordinates from becoming reproductively active

(for example in hymenopterans [69–72] and naked

mole rats [73–75]). In general, the formation of a

stable dominance hierarchy presupposes the presence of

effective threats (of attack or eviction) to deter challenges

from lower-ranked individuals. Hierarchies reduce the

costs of conflict precisely because they are stabilized by

threats that rarely need to be exercised.

Threats of attack against offspring can also deter repro-

duction, particularly in species where each offspring

represents a relatively large parental investment. In mar-

mosets and meerkats, for example, dominant females

sometimes kill the offspring of subordinates that repro-

duce. These acts occur infrequently, however, because

the threat of infanticide is usually sufficient to deter sub-

ordinates from attempting to reproduce in the first place

[76,77]. When subordinate mammals do breed, it

is usually the oldest or largest females that do so [38],

perhaps because they can defend their offspring more

effectively or possess a credible threat of retaliation of

their own. A priori, we would expect threats of infanticide

to be much less effective in insect societies, where eggs

can be produced and replaced very cheaply. Indeed,

workers lay eggs even in systems where almost all of

them are destined to be policed [65,78]. Nevertheless,

across nine monogynous wasp species (plus the honeybee

Apis mellifera), the average level of worker reproduction

declined with the efficiency of policing [78], which is

consistent with the hypothesis that policing involves an

element of deterrence (what Ratnieks & Wenseleers [65]

term ‘preventive policing’).
4. WHEN WILL THREATS BE EFFECTIVE?
It is clear from this brief survey that, first, with a few

notable exceptions, evidence for the presence of effective
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hidden threats is scarce; and, second, that the number of

studies that are designed (or could be expected) to detect

the influence of threats is small. Where experiments to

manipulate cooperation or outside options have been car-

ried out (e.g. in fish size hierarchies, cooperative cichlids,

cleaner–client systems and social insects), threats are

often found to influence cooperation. Hopefully, further

experimental studies of cooperative systems are forthcom-

ing. Pending these we can synthesize the existing

information to identify factors that are likely to promote

the effectiveness of threats in biological systems. Three

factors will be particularly important: the impact of a

threat, the accuracy with which it is targeted and its per-

ception (that is, the level of information about the threat

on both sides).

First, the impact of a threat is the inclusive fitness cost

that the transgressor stands to suffer if the threat is trig-

gered. Threats will have greatest impact where the

fitness value of outside options is low and when triggering

a threat represents an irreversible final move in the inter-

action. This helps to explain why eviction threats are so

effective in inducing growth restraint in the fish size hier-

archies, and why evictions are so rarely observed. The cost

of being evicted is undoubtedly extremely high in these

fish systems as adult fish are not observed to move

between existing groups [28,79]. In addition, it is very

hard for a subordinate fish to ‘un-grow’ once it has

crossed the threshold for eviction, so it must approach

the threat threshold very cautiously indeed. In banded

mongooses (figure 2d) and meerkats, by contrast, evicted

females can ‘take back their move’ by aborting their litter,

in which case they are readily accepted back into the

group [36,39]. Similarly, a wasp worker whose egg is

policed can always produce another one, at little fitness

cost. These low impact and repeated punishments blur

our simple distinction between negotiation and threats,

and will have little lasting deterrent effect.

Second, a threat needs to be accurately targeted so that

transgressors suffer the consequences of their own

actions. In the two-player ‘restraint’ skew model of

Johnstone & Cant [34], the threat of eviction is effective

at inducing reproductive restraint in a subordinate,

because a subordinate that claims too large a share of

reproduction is certain to suffer the cost of being evicted.

In larger groups, by contrast, it may be difficult for

a dominant to identify transgressors with certainty.

Discrimination or targeting errors will weaken the effec-

tiveness of a threat in two ways. First, transgressors may

escape punishment. Second, targeting errors erode the

incentive to cooperate because a non-transgressor may

end up being punished anyway [80,81]. For these

reasons, threats rapidly become ineffective as targeting

accuracy declines ([39]; see figure 3). Threats will there-

fore be most effective in dyadic interactions, in groups in

which there is a clear dominance hierarchy, or where there

are other mechanisms by which cheaters can reliably be

identified. In fish size hierarchies, for example, each sub-

ordinate is clearly identifiable to its immediate dominant

at all times and can be singled out for eviction if it

grows too large in size. In ants the threat of worker

attack is effective as a reproductive deterrent because

reproductively active workers can be detected from their

signature cuticular hydrocarbons [71], or daubed with

an identifying chemical mark [66].
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Third, the effectiveness of a threat requires that both

parties have information about the consequences of the

threat and the conditions under which it would be carried

out. Each party must have some estimate of the value of

outside options relative to the payoff of continued

cooperation in order to assess whether threats are credible

and respond appropriately. In situations where individuals

interact repeatedly or with a series of partners, this infor-

mation could be gained through trial-and-error learning

[50,82]. Alternatively, cooperators could signal to each

other their willingness to exercise an outside option. In

the example shown in figure 1b, player A has a strong

incentive to heed any signals from B that it is about to

exercise its threat, but at the same time B has an incentive

to exaggerate its willingness to exercise a threat. Signals

aimed at conveying an imminent threat will therefore

lack credibility unless they are costly in some way to the

signaller [3,83,84]. Facial signals, dominance displays

and low-level aggression may credibly signal an impend-

ing threat of eviction or attack if they involve real costs

to signallers. On the other hand, receivers may gain a stra-

tegic advantage if they can remain credibly ignorant of a

threat signal or of the value of outside options. In Polistes

wasps, for example, dominant foundresses rarely leave the

nest, so they may remain insensitive to threats by their

subordinates that are based on the value of outside

options [60]. The topic of how and when threats are sig-

nalled, concealed or credibly ignored presents rich

possibilities for future research.

I began by drawing an analogy between human and

animal threats, but it is important to distinguish between

the types of threat that are employed in human affairs and

those we should expect to see in animals. In interactions

among humans, one party can gain advantage by
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making a ‘strategic threat’—that is, by committing himself

or herself to carry out a threat in the event of a transgres-

sion, even though there would no longer be an incentive

to do so in the event that the transgression occurred

[3,17,84]. For example, a kidnapper might threaten to

kill a hostage unless a ransom is paid. However, for this

threat to be credible, the kidnapper must establish a com-

mitment to follow through with the execution in the event

of non-payment, even though there would be little or no

incentive to do so at that point (assuming, that is, no

other cost of hostage release). In animals, it may be diffi-

cult for individuals to bind themselves to carry out threats

which would yield no immediate gain (although

McNamara & Houston [85] suggest some scenarios

where this may be possible). If an animal carries out a

threat, it is likely that there is an immediate or future

benefit from doing so at that point; for example, because

exercising the threat protects them from further exploita-

tion. Schelling ([3], p. 123) calls this type of threat a

‘warning’, to distinguish it from the type of strategic

threats that require commitment to be credible. Threats

to exercise outside options such as eviction, departure

and attack are inherently credible because they are trig-

gered when this is in the threatener’s immediate

interest. These are the most relevant threats for animal

systems.
5. CONCLUSION
Social partners impose constraints on an individual’s

behaviour through actions and threats. Actions are easy

to observe; threats are much more difficult. Threats will

be most prevalent in dyadic interactions, where there

are large asymmetries in bargaining power or the value
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of group membership, and where there are effective sig-

nalling systems. Threats are implicated in stable

dominance hierarchies, and where animals appear to

have plenty to fight over, but overt conflict is absent. In

each case, the best way to test for the presence of

hidden threats is to disturb the status quo by experimen-

tally inducing or simulating transgression, adding or

removing outside options, or manipulating the infor-

mation each party has about the value of group

membership or outside options. Pushing cooperative

interactions out of equilibrium and observing the

response is an incisive technique to study cooperation

because it can yield information on the evolutionary

causes of inequity and the means by which animals nego-

tiate, and reveal the full range of forces, hidden and

apparent, that bind cooperative interactions together.
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