
biomolecules

Article

Ginseng Gintonin Attenuates Lead-Induced Rat
Cerebellar Impairments during Gestation
and Lactation

Sung Min Nam 1, Sun-Hye Choi 2, Hee-Jung Cho 2, Jin Seok Seo 1, Minsuk Choi 1,
Sang-Soep Nahm 1, Byung-Joon Chang 1 and Seung-Yeol Nah 2,*

1 Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea;
skavet@konkuk.ac.kr (S.M.N.); phoenix_1st@naver.com (J.S.S.); xcv3bn@naver.com (M.C.);
ssnahm@konkuk.ac.kr (S.-S.N.); bjchang@konkuk.ac.kr (B.-J.C.)

2 Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk
University, Seoul 05029, Korea; vettman@konkuk.ac.kr (S.-H.C.); ouddi80@naver.com (H.-J.C.)

* Correspondence: synah@konkuk.ac.kr; Tel.: +82-2-450-4154

Received: 5 February 2020; Accepted: 26 February 2020; Published: 2 March 2020
����������
�������

Abstract: Gintonin, a novel ginseng-derived lysophosphatidic acid receptor ligand, improves brain
functions and protects neurons from oxidative stress. However, little is known about the effects
of gintonin against Pb-induced brain maldevelopment. We investigated the protective effects of
gintonin on the developing cerebellum after prenatal and postnatal Pb exposure. Pregnant female
rats were randomly divided into three groups: control, Pb (0.3% Pb acetate in drinking water), and
Pb plus gintonin (100 mg/kg, p.o.). Blood Pb was increased in dams and pups; gintonin treatment
significantly decreased blood Pb. On postnatal day 21, the number of degenerating Purkinje cells was
remarkably increased while the number of calbindin-, GAD67-, NMDAR1-, LPAR1-immunoreactive
intact Purkinje cells, and GABA transporter 1-immunoreactive pinceau structures were significantly
reduced in Pb-exposed offspring. Following Pb exposure, gintonin ameliorated cerebellar degenerative
effects, restored increased pro-apoptotic Bax, and decreased anti-apoptotic Bcl2. Gintonin treatment
attenuated Pb-induced accumulation of oxidative stress (Nrf2 and Mn-SOD) and inflammation (IL-1β
and TNFα,), restoring the decreased cerebellar BDNF and Sirt1. Gintonin ameliorated Pb-induced
impairment of myelin basic protein-immunoreactive myelinated fibers of Purkinje cells. Gintonin
attenuated Pb-induced locomotor dysfunctions. The present study revealed the ameliorating effects
of gintonin against Pb, suggesting the potential use of gintonin as a preventive agent in Pb poisoning
during pregnancy and lactation.
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1. Introduction

Ginseng (Panax ginseng C.A. Meyer), a member of the Araliaceae plant family, has been used as
a tonic to improve health and body functions. Ginseng has been cultivated for thousands of years
in many Asian countries. Its roots have been used as one of important ingredients in traditional
herb medicines. Especially, the ginseng extract exhibits neuroprotective effects in neurodegenerative
diseases [1–5]. Until now, ginsenosides, the saponin component from ginseng, have been regarded as
biologically active component and investigated as the target of research [5,6]. However, other active
ingredients of ginseng excluding ginsenosides remain unknown. Recently, a novel G protein-coupled
lysophosphatidic acid receptor (LPAR) ligand, designated gintonin, has been isolated from ginseng.
Gintonin, a non-acidic polysaccharide and a non-saponin, targets LPA receptors (LPARs) in neuronal
and non-neuronal cells [7]. Gintonin-mediated LPAR activation is coupled to [Ca2+]i transients
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in neuronal and non-neuronal cells [8] and is further linked to in vitro calcium-dependent intra-
and inter-cellular communications through the regulation of ion channels and receptors [8]. Oral
administration of gintonin has shown diverse beneficial effects, including anti-metastatic effects,
anti-dementia effects, enhancing brain neurogenesis and plasticity, and improving learning and
memory functions [1,9].

Brain development is intricately regulated by complexly orchestrated molecular mechanisms. The
early postnatal period in rodents, which is equivalent to the late third trimester gestational period
in humans, is critical for brain development [10]. Especially, during the early postnatal period in
rodents, maximum neurogenesis, subsequent migration, synaptogenesis, and maturation occur in
the cerebellum and hippocampus and the volume of the brain increases significantly [10,11]. It is
well-known that LPAs are developmentally bioactive molecules, promoting cell proliferation, migration,
differentiation, myelination, and synapse formations in the brain [12]. In addition, LPA1-deficient
mice exhibit brain maldevelopment and brain dysfunctions in cognition and emotion [13]. Thus,
the LPA-LPAR1 axis plays an important role in the mouse brain development, although the LPAR1
expression is gradually diminished after the postnatal stage [14].

Among several regions of the brain, the cerebellum is important for fine control of movement,
motor learning and cognition, maintaining balance, and motor coordination. The cerebellum is
developmentally immature in humans, dogs, cats, and rodents relative to cattle and horses that show
almost complete cerebellar development at birth [15]. Rodent brain development starts during the
gestational period and continues in the postnatal period. Especially, the early postnatal period is
critical for the normal development and maturation of the cerebellum. During this critical window, the
developing brain is susceptible to exogenous materials such as chemicals, heavy metals (i.e., lead), and
toxicants that alter regulating molecular signal cascades [16–19].

In the list of hazardous waste priority from the US Environmental Protection Agency, lead (Pb)
is ranked second after arsenic. Pb is environmentally prevalent owing to its wide use in lead-based
batteries, architectural lead sheets, silver smelting, water pipelines, adulterating wine, sheathing
material, solder for electronics, leaded gasoline, and paints [20]. Notably, environmental Pb pollution
in China and USA is a serious health problem owing to the massive production and consumption of Pb
in these countries [20,21]. Additionally, the occupational and environmental exposure to Pb remains a
health-threatening problem in many countries including Korea [21,22]. Ingested or inhaled Pb can
easily cross the blood–brain barrier. In the developing brain, multiple areas including the amygdala,
cerebellum, and hippocampus are primary targets for Pb accumulation [23]. However, relatively is
little known whether herbal medicine(s) such as ginseng could afford brain protection against Pb
poisoning. Although previous studies have shown that gintonin exhibits neuroprotective effects in the
brain against oxidative stress and inflammations [1,3,5], it is not specified whether gintonin, which
abundantly contains LPAs, can attenuate Pb-induced neurotoxicity in the developing rat cerebellum.
In the present study, we investigated whether gintonin treatment following pre- and post-natal Pb
exposure could circumvent structural and functional deterioration in the developing cerebellum.
Our results showed that gintonin treatment attenuated Pb-induced cerebellar maldevelopments and
cerebellum-mediated malfunctions. We further discussed the molecular mechanisms by which gintonin
attenuates Pb-induced cerebellar neurotoxicity, indicating the possibility that gintonin can be a useful
agent to prevent Pb poisoning during pregnancy.

2. Materials and Methods

2.1. Experimental Design and Animals

Female (n = 15) and male (n = 5) Sprague–Dawley rats (7 weeks old) were purchased from
Narabiotec Co., Ltd. (Seoul, Republic of Korea) and housed under conditions of adequate temperature
(23 ◦C) and humidity (60%), with a 12 h light/12 h dark cycle. The animals were acclimatized for
1 week to a conventional environment at the animal facility at the College of Veterinary Medicine.
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Animals were allowed free access to food (Purina LabDiet 5008, Purina Korea, Seongnam, Korea) and
tap water. The present experimental procedures were approved by the Institutional Animal Care and
Use Committee of the Konkuk University (Permit No: KU18133) and followed the guidelines of the
‘National Institutes of Health Guide for the Care and Use of Laboratory Animals, issued by the Institute
of Laboratory Animal Resources, USA, 1996. Animals were handled and cared to reduce stress caused
by the employed procedures.

2.2. Preparation of Gintonin

Briefly, 1 kg of 4-year-old ginseng (Korea Ginseng Corporation, Daejeon, Republic of Korea)
was processed to extract gintonin using methods previously described [2,8]. Gintonin consists
of carbohydrates, lipids, ginseng proteins, and other minor components; approximately 30%
carbohydrates, 20.2% lipids, and 30.3% proteins. The lipid compositions of gintonin were analyzed
by LC-MS/MS: fatty acids (7.53% linoleic acid, 2.82% palmitic acid, and 1.46% oleic acid), 0.60%
lysophospholipids and phospholipids, and 1.75% phosphatidic acids. The total lipid content in
gintonin is approximately 14.2% [24].

2.3. Administration of Lead Acetate and Gintonin

Adult female Sprague–Dawley rats were randomly divided into three groups: control group
(n = 5), Pb group (n = 5), and Pb plus gintonin (Pb + GT) group (n = 5). The design of the experiment
(Figure 1) and the doses of gintonin and Pb administered were adopted from previous studies [9,25,26].
Pb acetate (0.3%; Sigma-Aldrich, USA) was dissolved in distilled water with glacial acetic acid (0.05%;
Junsei Chemical Co., Tokyo, Japan) to prevent Pb precipitation. Gintonin (100 mg/kg), which was
orally administered, was freshly prepared in saline daily. To account for the effects of stress during
oral intubation, rats in the control and Pb groups were orally administered the same volume of saline.
Before mating, female rats received Pb in the drinking water and gintonin via oral intubation for
2 weeks. Pregnancy was confirmed when sperm were detected on vaginal smears or when the presence
of vaginal plugs was confirmed. The day of pregnancy confirmation was designated as day 0. Male
and female rats were separated and pregnant females were singly housed in each cage for safe delivery
and caring of offspring until the end of the experiments. Pb and gintonin administration continued
during gestation and delivery of offspring, until the end of the experiment on postnatal day (PND)
21. The body weights of the offspring were recorded and averaged every week. To preclude any
effect of litter size among the different experimental groups, six rat pups per cage (total 30 pups per
group) were selected for the experiment and the remaining offspring were killed. Whenever possible,
only male offspring were used for the experiment. Female offspring were used only if necessary, to
maintain equal litter sizes. Before killing, the sex of every offspring was recorded. The researchers
in the present study performed all experimental procedures carefully to minimize suffering and the
number of animals used.
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Figure 1. Experimental design and physiological changes after Pb alone or gintonin plus Pb. (A) The 
present study was performed as shown in the experimental design. (B) Body weights of dams (n = 3 
per group) during gestation and offspring (n = 12 per group) on postnatal days (PND) 0, 7, 14, and 21 
in the control, Pb, and Pb plus gintonin (Pb+GT) groups (body weight, P = 0.9676, one-way analysis 
of variance). Whole-brain and cerebellar weights of offspring on PND21 (wet brain weight, p < 
0.0001, one-way analysis of variance; wet cerebellar weight, p = 0.0080, one-way analysis of 
variance). (C) Blood Pb levels in the dams and offspring PND21 (blood Pb level, p < 0.0001, one-way 
analysis of variance). * p < 0.05, compared to control group, # p < 0.05, compared to Pb alone, Tukey’s 
post-hoc test. The bars indicate means ± standard error of mean. 

2.4. Locomotor Coordination Assay (Bar Holding Test and Wire Mesh Ascending Test) in Offspring 

From the 2nd to 3rd postnatal week, eye-opening and increased movements enhance the 
cerebellar development and motor control functions [27]. Therefore, we assessed the motor 
coordination of PND19 offspring using two methods described in our previous study [26]. In the 
bar holding test, offspring were allowed to grasp a stainless-steel bar (0.7 cm in diameter and 35 cm 
long) that was suspended 30 cm above a soft padded surface. The time spent grasping the bar with 
the forelimbs was measured for a maximum of 60 s. During the wire mesh ascending test, a 0.7 cm 
thick stainless-steel mesh (45 cm long × 30 cm wide) was placed at an angle of 26° in a water bath 
containing water at 25 °C, such that the wire mesh was 30 cm above the water surface. The 
offspring was placed with its quarter hind and tail dipped in the water. After three training trials, 
the time taken to reach the top of the mesh was recorded over a 30 s period. 

2.5. Analysis of Pb Level in the Blood Using Atomic Absorption Spectrometry and Measurement of 
Cerebellar Weight 

Figure 1. Experimental design and physiological changes after Pb alone or gintonin plus Pb. (A) The
present study was performed as shown in the experimental design. (B) Body weights of dams (n = 3
per group) during gestation and offspring (n = 12 per group) on postnatal days (PND) 0, 7, 14, and 21
in the control, Pb, and Pb plus gintonin (Pb + GT) groups (body weight, p = 0.9676, one-way analysis of
variance). Whole-brain and cerebellar weights of offspring on PND21 (wet brain weight, p < 0.0001,
one-way analysis of variance; wet cerebellar weight, p = 0.0080, one-way analysis of variance). (C)
Blood Pb levels in the dams and offspring PND21 (blood Pb level, p < 0.0001, one-way analysis of
variance). * p < 0.05, compared to control group, # p < 0.05, compared to Pb alone, Tukey’s post-hoc
test. The bars indicate means ± standard error of mean.

2.4. Locomotor Coordination Assay (Bar Holding Test and Wire Mesh Ascending Test) in Offspring

From the 2nd to 3rd postnatal week, eye-opening and increased movements enhance the cerebellar
development and motor control functions [27]. Therefore, we assessed the motor coordination of
PND19 offspring using two methods described in our previous study [26]. In the bar holding test,
offspring were allowed to grasp a stainless-steel bar (0.7 cm in diameter and 35 cm long) that was
suspended 30 cm above a soft padded surface. The time spent grasping the bar with the forelimbs was
measured for a maximum of 60 s. During the wire mesh ascending test, a 0.7 cm thick stainless-steel
mesh (45 cm long × 30 cm wide) was placed at an angle of 26◦ in a water bath containing water at
25 ◦C, such that the wire mesh was 30 cm above the water surface. The offspring was placed with its
quarter hind and tail dipped in the water. After three training trials, the time taken to reach the top of
the mesh was recorded over a 30 s period.
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2.5. Analysis of Pb Level in the Blood Using Atomic Absorption Spectrometry and Measurement of
Cerebellar Weight

On PND21, five dams per group and PND21 offspring (n = 15 per group) were anesthetized
with an intraperitoneal injection of 1.5 g/kg urethane (Sigma-Aldrich). Blood samples for analysis
were collected from dams and offspring by cardiac puncture. As described in the previous study [28],
procedures for blood Pb analyses were performed in the Neodin Biovet Laboratory (Seoul, Korea),
certified by the Korean Ministry of Health and Welfare. Blood Pb levels were analyzed using the
PinAAcle 500 flame atomic absorption spectrometer (Perkin Elmer Zeeman 5100; Norwalk, CT, USA)
and an HGA-600 graphite furnace with Zeeman background correction. In terms of external quality
control, the Neodin has passed the German External Quality Assessment Scheme operated by the
Friedrick Alexander University. The spiked Pb sample demonstrated good percentage recoveries,
and the limit of detection was 0.070 µg/dL. The absorption wavelength was 283.3 nm, and the r2 of
the calibration curve exceeded 0.995. Additionally, the brains were dissected and wet weighed. The
cerebella were immediately dissected, wet weighed, and frozen until use.

2.6. Tissue Processing, Nissl Staining, and Immunohistochemistry

For histology, the remaining PND21 offspring (n = 15 per group) were also anesthetized with
urethane and perfused transcardially with phosphate-buffered saline (0.1 M, pH 7.4), followed by 4%
paraformaldehyde in 0.1 M phosphate buffer (pH 7.4). The cerebella were removed and post-fixed
in the same fixative overnight at 4 ◦C. Cerebellar vermis was sagittally embedded in paraffin blocks,
and 5-µm-thick sections were obtained using a microtome (Leica, Germany). Three sections per
offspring were used, and a total of 36 paraffin sections per group were analyzed. Nissl staining
was performed using routine procedures. Immunohistochemistry for target marker proteins was
subsequently performed as described in our previous study [29]. Briefly, deparaffinized sections
were subjected to antigen retrieval, quenching with 0.3% hydrogen peroxide (H2O2), and blocking
with 10% normal horse serum. Then, the sections were incubated with primary antibodies overnight
at 4 ◦C: calbindin-28kD (CB, 1:5000; Swant, Bellinzona, Switzerland), Bax (rabbit, 1:200, GeneTex,
Irvine, CA, USA), LPAR1 (rabbit, 1:1000, Abcam, Cambridge, UK), N-methyl-D-aspartate receptor 1
(NMDAR1, rabbit, 1:1000, Millipore, Billerica, MA, USA), NMDAR2B (mouse, 1:500, BD Bioscience,
San Jose, CA, USA), glutamate decarboxylase (GAD) 67 (1:1000, Stressgen, Victoria, BC, Canada),
γ-aminobutyric acid (GABA) transporter 1 (GABAT1, 1:500; Synaptic Systems, Göttingen, Germany),
myelin basic protein (MBP; rabbit, 1:3000, Millipore), or oligodendrocyte transcription factor 2 (Olig2,
1:500; R&D systems, Minneapolis, MN, USA). Subsequently, the sections were exposed to biotinylated
immunoglobulin G (1:200; Vector, Burlingame, CA, USA) and streptavidin–peroxidase complex (1:200;
Vector). Finally, they were visualized using 3,3′-diaminobenzidine tetrachloride (Sigma-Aldrich).
Additionally, hematoxylin counter-staining was performed for some sections. The sections were finally
dehydrated, cleared, and cover-slipped in a toluene-based mounting medium (Richard-Allan Scientific,
Thermo Scientific, MI, USA).

Histological analyses were performed by an investigator blinded to rat treatments. The method
of quantification employed in the present study was conducted as previously described [25,26]. The
pyknotic, degenerating, Nissl-stained Purkinje cells and marker protein-immunostained intact Purkinje
cells, with a demarcated nucleus and cytoplasm, were counted. The observations were carried out in
the 2nd, 5th, 7th, and 8th lobules of the sagittal sections of the cerebellar vermis [25].

2.7. Western Blotting

Immunoblotting for target marker proteins was performed as described in our previous study [29].
To detect Bax, Bcl2, cleaved caspase3, synaptophysin, NMDAR1, GAD67, LPAR1, brain-derived
neurotrophic factor (BDNF), Nrf2, sirtuin 1 (Sirt1), manganese superoxide dismutase (Mn-SOD), MBP,
interleukin 1β (IL1β), and tumor necrosis factor α (TNFα) protein expression in the cerebellum of
PND21 pups (n = 15 per group), the frozen samples were homogenized in RIPA lysis buffer, centrifuged
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at 15,000× g, and the supernatant was separated. Proteins were quantified using the Thermo Pierce®

BCA protein assay kit (Thermo Fisher Scientific, Rockford, IL, USA). Aliquots containing 40 µg of total
protein were boiled in the loading buffer containing 150 mM Tris (pH 6.8), 3 mM dithiothreitol, 6%
sodium dodecyl sulfate (SDS), 0.3% bromophenol blue, and 30% glycerol. The aliquots were then
loaded onto a 10% SDS-polyacrylamide gel, and the proteins were separated. After electrophoresis,
the gels were transferred to polyvinylidene fluoride membranes (Roche, Penzberg, Germany). The
membranes were blocked by incubation in 5% skimmed milk in Tris-buffered saline (TBS; pH 7.4) for
1 h. Next, they were incubated overnight at 4 ◦C with the primary antibody against Bax (rabbit, 1:2000,
GeneTex), Bcl2 (rabbit, 1:2000, GeneTex), cleaved caspase3 (rabbit, 1:2000, Abcam), synaptophysin
(rabbit, 1:5000, Abcam), NMDAR1 (rabbit, 1:1000, Millipore), GAD67 (1:1000, Stressgen), LPAR1 (rabbit,
1:1000, Abcam), BDNF (rabbit, 1:1000, Novus, Littleton, CO, USA), Nrf2 (rabbit, 1:1000, Abcam), Sirt1
(mouse, 1:1000; Santa Cruz Biotechnology, CA, USA), Mn-SOD (SOD2, goat, 1:1000, Santa Cruz), MBP
(rabbit, 1:2000; Abcam), IL1β (rabbit, 1:1000, GeneTex), or TNFα (rabbit, 1:2000, Abcam). The blots
were washed three times in TBS containing 0.1% Tween-20 and then incubated with a horseradish
peroxidase-conjugated secondary antibody (1:2000). Bands were visualized using SuperSignal® West
Pico Chemiluminescent Substrate (Thermo Fisher Scientific, Rockford, IL, USA). After several rounds
of blotting, the relative optical density of each band was measured using NIH ImageJ software.

2.8. Statistical Analysis

All data are expressed as means ± standard errors of the mean for each group, and the significance
of the differences between these mean values was determined using one-way analysis of variance,
followed by Tukey’s post-hoc test for multiple comparisons. All analyses were performed using
GraphPad Prism ver. 5.01 (GraphPad Software, Inc.; La Jolla, CA, USA). Significance was denoted at
p < 0.05.

3. Results

3.1. Effects of Gintonin Administration on Pb-Induced Changes in Body Weight, Cerebellar Weight, and Blood
Pb Levels

First, according to the experimental design, we investigated the changes in physiological
parameters in the dams and offspring on PND21 (Figure 1A). The body, brain, and cerebellar weights
were slightly decreased by long-term Pb exposure, with gintonin recovering these weight losses
induced by Pb exposure in the offspring (Figure 1B). Prenatal and postnatal Pb exposure significantly
increased the blood Pb level in both dams and offspring (Figure 1C). Since the ingested Pb can move
from the dam to offspring via the placenta and milk [20], the Pb-exposed dam demonstrated higher
blood Pb levels than the offspring (Figure 1C). However, gintonin significantly decreased the Pb levels
in both dams and offspring (Figure 1C). Thus, gintonin treatment could attenuate the transfer of Pb
from mothers to offspring. These results indicate that gintonin treatment could increase the excretion
of blood Pb from both dams and offspring.

3.2. Gintonin Treatment Attenuates Pb-Induced Damages in the Developing Cerebellum

Based on the abilities of gintonin to influence neurogenesis and neuroprotection in the brain
and brain functions [3,5,9] and to reduce blood Pb amount (Figure 1C), we examined the cerebellar
protective effects of gintonin in the Pb-intoxicated offspring. Nissl staining demonstrated the formation
of three layers in the cerebellar cortex, namely, the molecular layer (ML), Purkinje cell layer (PL),
and granular cell layers (GCL), which were normally developed in all groups. However, distinct
differences were observed among groups, i.e., the number of intact Purkinje cells was lower in the
Pb alone-exposure than in the control (Figure 2A,B) but gintonin treatment partially restored the
Pb-induced reduction in intact Purkinje cells (Figure 2C,J). The Pb-induced increase in degenerating
pyknotic Purkinje cells was also reduced by gintonin treatment (Figure 2B, red arrows). Since calbindin
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28kD is a specific marker of Purkinje cells [30], we examined and detected CB immunoreactivity in
the cell bodies and dendrites of Purkinje cells. The number of CB-immunoreactive Purkinje cells was
lower in the Pb alone-exposure compared to the control (Figure 2D,E); gintonin treatment partially
restored CB-immunoreactive Purkinje cells (Figure 2F). Especially, dendritic branching development of
CB-immunoreactive Purkinje cells were prominently impaired owing to Pb exposure relative to the
control. However, co-administration of gintonin with Pb restored dendritic branching development
(Figure 2D–F). Gintonin alone (100 mg/kg) treatment did not affect cerebellar Purkinje cells (data not
shown). Present findings suggest that gintonin may attenuate Pb-induced cerebellar impairments.
These results also demonstrated that long-term Pb exposure in dams impairs the developmental
Purkinje cell integrity in the offspring. Gintonin treatment attenuates Pb-induced cerebellar Purkinje
cell impairments.Biomolecules 2020, 10, x 8 of 20 
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cell layer; ML, molecular layer; PL, Purkinje cell layer. Bar = 25 μm. Degenerating Purkinje cells (red 
arrow), CB-immunoreactive Purkinje cells, bax-immunoreactive cells (arrow) are detected in the 
Purkinje cell layer. (J) The numbers of degenerating Purkinje cells (p < 0.0001, one-way analysis of 
variance) and CB-immunoreactive Purkinje cells (p < 0.0001, one-way analysis of variance) in the 
cerebellum are expressed as percentages of the value in the control group (n = 12 per group). * p < 
0.05, compared to control group; # p < 0.05, compared to Pb alone, Tukey’s post-hoc test. The bars 
indicate means ± standard error of the mean. 
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BDNF is an important neurotrophic factor in various brain developmental processes, including 
cellular proliferation/survival, differentiation, branching of the dendritic arbor, spine formation, and 
synaptic formation [29]. Sirt1 is an epigenetic factor that is involved in several important biological 
processes, including synaptic plasticity, neuroprotection, learning, and memory via the regulation of 
cAMP-response element binding protein (CREB) and BDNF expression in the brain [29,31]. BDNF 
and Sirt1 protein expression levels were reduced with Pb administration, while gintonin treatment 
restored the reduced BDNF and Sirt1 protein levels (Figure 3). 

Figure 2. Effects of gintonin on Pb-induced cerebellar Purkinje cell impairments. Nissl staining (A–C),
immunohistochemistry for calbindin (CB) (D–F), and immunohistochemistry for Bax (G–I) in the
cerebellum of offspring from control, Pb, and Pb plus gintonin (Pb + GT) groups. GCL, granular cell
layer; ML, molecular layer; PL, Purkinje cell layer. Bar = 25 µm. Degenerating Purkinje cells (red arrow),
CB-immunoreactive Purkinje cells, bax-immunoreactive cells (arrow) are detected in the Purkinje cell
layer. (J) The numbers of degenerating Purkinje cells (p < 0.0001, one-way analysis of variance) and
CB-immunoreactive Purkinje cells (p < 0.0001, one-way analysis of variance) in the cerebellum are
expressed as percentages of the value in the control group (n = 12 per group). * p < 0.05, compared
to control group; # p < 0.05, compared to Pb alone, Tukey’s post-hoc test. The bars indicate means ±
standard error of the mean.
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3.3. Gintonin Treatment Attenuates Pb-Induced Changes in BDNF, Sirt1, and Apoptosis-Related Bax and Bcl2
Protein Expression

BDNF is an important neurotrophic factor in various brain developmental processes, including
cellular proliferation/survival, differentiation, branching of the dendritic arbor, spine formation, and
synaptic formation [29]. Sirt1 is an epigenetic factor that is involved in several important biological
processes, including synaptic plasticity, neuroprotection, learning, and memory via the regulation of
cAMP-response element binding protein (CREB) and BDNF expression in the brain [29,31]. BDNF and
Sirt1 protein expression levels were reduced with Pb administration, while gintonin treatment restored
the reduced BDNF and Sirt1 protein levels (Figure 3).
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Figure 3. Effects of gintonin on Pb-induced cerebellar changes in various protein expression levels.
Representative immunoblots for BDNF, Sirt1, MBP, GAD67, LPAR1, synaptophysin, NMDAR1, Bax,
Bcl2, cleaved-caspase3, Nrf2, Mn-SOD, IL-1β, and TNFα (A,B) in the cerebellum of pups from
control, Pb, and Pb plus gintonin (Pb + GT) groups at postnatal day 21 (PND21). Relative optical
density (ROD) of each of immunoblot bands for BDNF (p = 0.0010, one-way analysis of variance),
Sirt1 (p = 0.0020, one-way analysis of variance), MBP (p < 0.0001, one-way analysis of variance),
GAD67 (p = 0.0022, one-way analysis of variance), LPAR1 (P = 0.0001, one-way analysis of variance),
synaptophysin (p < 0.0001, one-way analysis of variance), NMDAR1 (p < 0.0001, one-way analysis of
variance), Bax (p = 0.0018, one-way analysis of variance), Bcl2 (p < 0.0001, one-way analysis of variance),
cleaved-caspase3 (p < 0.0001, one-way analysis of variance), Nrf2 (p < 0.0001, one-way analysis of
variance), Mn-SOD (p < 0.0001, one-way analysis of variance), IL-1β (p < 0.0001, one-way analysis of
variance), and TNFα (p < 0.0001, one-way analysis of variance) is demonstrated as a percentage of
the value in the control group (n = 12 per group). * p < 0.05, compared to control group; # p < 0.05,
compared to Pb alone, Tukey’s post-hoc test. The bars indicate the means ± standard error of the mean.
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Owing to the increase in the number of degenerating cells such as Purkinje cells in the cerebellum
of the Pb-exposed offspring, we compared the expression patterns of the proapoptotic Bax protein in the
cerebellar cortex by using immunohistochemistry and immunoblotting assays. Bax-immunoreactivity
was not detected in the control group (Figure 2G), while Bax expression was increased following
long-term Pb exposure in the ML, PL, and GCL of the cerebellum (Figure 2H). However, gintonin
administration decreased the Pb-induced increase in Bax in the three cerebellar layers (Figure 2I).
Using immunoblotting, we confirmed a similar pattern of altered expression in proapoptotic proteins,
including Bax and cleaved caspase3 (activated form of caspase3) in the whole cerebellum; gintonin
reduced the Pb exposure-induced increase in Bax and cleaved caspase3 expression (Figure 3A,B).
However, anti-apoptotic Bcl2 expression was diminished by Pb; gintonin treatment restored the
Pb-induced reduction in cerebellar Bcl2 expression (Figure 3). These results indicate that Pb
increases proapoptotic protein expression, whereas gintonin treatment increases anti-apoptosis-related
protein expression.

3.4. Gintonin Treatment Attenuates Pb-Induced Changes in LPAR1, Presynaptic Synaptophysin, and
Post-NMDAR1 Expression

LPA and LPARs play key roles in the developing brain as LPA1-deficient mice show abnormal
brain development [32]. However, the expression pattern of LPARs in Pb-exposed rats has not been
clearly defined. In the cerebellum of PND21 rats, LPAR1, the main subtype of LPARs in the brain, was
detected in the PL of the cerebellar cortex. Pb exposure reduced the number of LPAR1-immunoreactive
Purkinje cells, while gintonin treatment demonstrated protective effects against the Pb-induced decrease
in LPAR1 expression in these cerebellar cells (Figure 4). Furthermore, we examined the changes in
LPAR1 expression levels after Pb exposure. Although the LPAR1 level decreased after Pb exposure,
gintonin treatment restored the LPAR1 expression level (Figure 3).

We investigated NMDAR1 and NMDAR2B post-synaptic expression in the cerebellum since
glutamatergic excitotoxicity is an important mechanism of Pb-induced neurotoxicity [33]. NMDAR1
was mainly detected in the PL and some cells in the ML, while NMDAR2B was immunostained in the
GCL in the cerebellar cortex. NMDAR1 is an essential subtype of the NMDA receptor complex and
NMDAR2B endows functional characteristics and therapeutic targets for the treatment of neurological
diseases [11]. Owing to Pb exposure, the number of NMDAR1-positive Purkinje cells was significantly
reduced; gintonin treatment ameliorated the Pb-induced decrease in NMDAR1 (Figure 4). Interestingly,
we observed different results between the immunostaining intensity of NMDAR1 and immunoblot
assay of NMDAR1, with the immunoblot assay demonstrating an increase rather than a decrease in
NMDAR1 expression (Figure 3). These results suggest the possibility that although NMDAR1 was
reduced after Pb exposure in individual Purkinje cells, NMDAR1 expression levels in other cells in
the cerebellar cortex might be compensatively increased in the whole cerebellum. Contrary to the
NMDAR1 expression in the Purkinje cells, NMDAR2B was detected in the GCL, and the change
induced by Pb and gintonin was insignificant (Figure 4).

Synaptophysin is mainly expressed in presynaptic vesicular membranes and is a useful
marker of synaptic development in the brain [18,29]. In our previous study, synaptophysin was
immunohistochemically detected in the ML and GCL in the cerebellar cortex [18]. The present
immunoblot assay demonstrated that the expression of synaptophysin was lower in the Pb-alone
exposure group than in the control; gintonin treatment restored these levels in the cerebellum (Figure 3).
These results suggested that Pb exposure impairs presynaptic and post-synaptic protein expression,
and gintonin treatment restored the pre- and post-synaptic damages at the molecular level.



Biomolecules 2020, 10, 385 10 of 19

Biomolecules 2020, 10, x 10 of 20 

layers (Figure 2I). Using immunoblotting, we confirmed a similar pattern of altered expression in 
proapoptotic proteins, including Bax and cleaved caspase3 (activated form of caspase3) in the whole 
cerebellum; gintonin reduced the Pb exposure-induced increase in Bax and cleaved caspase3 
expression (Figure 3A,B). However, anti-apoptotic Bcl2 expression was diminished by Pb; gintonin 
treatment restored the Pb-induced reduction in cerebellar Bcl2 expression (Figure 3). These results 
indicate that Pb increases proapoptotic protein expression, whereas gintonin treatment increases 
anti-apoptosis-related protein expression. 

3.4. Gintonin Treatment Attenuates Pb-Induced Changes in LPAR1, Presynaptic Synaptophysin, 
and Post-NMDAR1 Expression 

LPA and LPARs play key roles in the developing brain as LPA1-deficient mice show abnormal 
brain development [32]. However, the expression pattern of LPARs in Pb-exposed rats has not been 
clearly defined. In the cerebellum of PND21 rats, LPAR1, the main subtype of LPARs in the brain, 
was detected in the PL of the cerebellar cortex. Pb exposure reduced the number of 
LPAR1-immunoreactive Purkinje cells, while gintonin treatment demonstrated protective effects 
against the Pb-induced decrease in LPAR1 expression in these cerebellar cells (Figure 4). 
Furthermore, we examined the changes in LPAR1 expression levels after Pb exposure. Although the 
LPAR1 level decreased after Pb exposure, gintonin treatment restored the LPAR1 expression level 
(Figure 3). 

 Figure 4. Effects of gintonin on Pb-induced changes in cerebellar LPAR1 and NMDA receptor expression.
Immunohistochemistry of LPAR1 (A–C), NMDAR1 (D–F), and NMDAR2B (G–I) in the cerebellum
of offspring from control, Pb, and Pb plus gintonin (Pb + GT) groups. LPAR1 and NMDAR1 are
mainly detected in the Purkinje cell layer, and NMDAR2B is detected in the granular cell layer in
the cerebellar cortex. The number of LPAR1-immunoreactive and NMDAR1-immunoreactive intact
Purkinje cells is significantly reduced, while gintonin treatment ameliorated this reduction in the
cerebellum. GCL, granular cell layer; ML, molecular layer; PL, Purkinje cell layer. Bar = 25 µm. (J)
Numbers of LPAR1-immunoreactive Purkinje cells (p = 0.0031, one-way analysis of variance) and
NMDAR1-immunoreactive Purkinje cells (p = 0.0042, one-way analysis of variance) are expressed as
a percentage of the value in the control group in the cerebellar cortex (n = 12 per group). * p < 0.05,
compared to control group; # p < 0.05, compared to Pb alone, Tukey’s post-hoc test. The bars indicate
means ± standard error of the mean.

3.5. Gintonin Treatment Attenuates Pb-Induced Changes in GAD and GABAT1

GABA is an important regulator in the morphogenesis of the developing brain [34]. In all
groups, GABA-synthesizing GAD67 was detected mainly in the PL. In addition to the GABAergic
Purkinje cells, GAD67-immunoreactive cells were also observed in the ML, where the GABAergic
interneurons such as basket cells and stellate cells reside. Pb exposure significantly reduced the
number of GAD67-immunoreactive Purkinje cells, and GAD67-immunoreactive dendritic branching
of the Purkinje cells was also impaired relative to the control group. Gintonin treatment acted against
Pb-induced neurotoxicity by protecting the development of GAD67-immunoreactive Purkinje cells in
the cerebellar cortex (Figure 5). Immunoblot analysis showed a similar pattern of GAD67 expression
with that of GAD67-immunoreactive Purkinje cells in the whole cerebellum (Figure 3). Additionally,
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GABAT1, a mediator of GABA uptake, was detected in pinceau structures enclosing the Purkinje
cell somata and scattered puncta in the ML. Developmentally, GABAT1 is expressed in the pinceau
structure as GABAergic synapses begin to form, and GABAT1 mediates GABA uptake from the
synaptic cleft [27]. Similar to the Pb-induced change in Purkinje cells, the GABAT1-immunoreactive
pinceau structures were also reduced after Pb exposure. However, gintonin treatment ameliorated the
Pb-induced reduction of GABAT1 immunoreactive pinceau structures in the cerebellar cortex (Figure 5).
Therefore, these results indicated that although the synapses (pinceaus) between the basket cells and
Purkinje cells were impaired following Pb exposure, gintonin treatment protected GABA-related
synapses from the Pb-induced damages (Figure 5).
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Figure 5. Effects of gintonin on Pb-induced changes in cerebellar GAD67 and GABA transporter1.
Immunohistochemistry for GAD67 (A–C) and GABA transporter 1 (GABAT1) (D–F) in the cerebellum
of offspring from control, lead (Pb), and Pb plus gintonin (Pb + GT) groups. Note that GAD67-
immunoreactive Purkinje cells and GABAT1-positive pinceau structures (arrow) near Purkinje cells
are detected in the cerebellar cortex and are significantly reduced in the Pb group; gintonin treatment
attenuates these reductions in the Pb + GT group. GCL, granular cell layer; ML, molecular layer;
PL, Purkinje cell layer. Bar = 25 µm. (G) The number of GAD67-positive Purkinje cells (p = 0.0017,
one-way analysis of variance) and GABAT1-positive pinceau structures (p < 0.0001, one-way analysis
of variance) is expressed as a percentage of the value in the control group in the cerebellar cortex
(n = 12 per group). * p < 0.05, compared to control group; # p < 0.05, compared to Pb alone, Tukey’s
post-hoc test. The bars indicate means ± standard error of mean.

3.6. Effects of Gintonin Treatment on Pb-Induced Changes in Nrf2, Mn-SOD, IL-1β, and TNFα Expression

Next, we investigated the effect of gintonin on Pb-induced changes in oxidative stress-related
markers. Nrf2 was significantly increased following Pb exposure and gintonin treatment further
increased the expression of Nrf2 in the whole cerebellum. Additionally, we observed that the antioxidant
Mn-SOD was significantly increased in the cerebellum following Pb exposure and gintonin treatment
slightly reduced the cerebellar expression level of Mn-SOD (Figure 3). These results indicate that
gintonin differentially regulates oxidative stress-related marker proteins after Pb exposure. Additionally,
we focused on the inflammatory mediators IL-1β and TNFα in the developing cerebellum. Both
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IL-1β and TNFα are significantly higher in the cerebellum of the Pb-alone group than in the control
group. However, gintonin treatment abrogated the Pb-induced upregulation of inflammatory cytokines
(Figure 3). These results suggested that Pb exposure induces neuroinflammation in the cerebellum,
while gintonin demonstrated anti-inflammatory effects.

3.7. Effects of Gintonin Co-Administration with Pb on MBP, Olig2, and Locomotive Functions in the
Developing Cerebellum

Along with the changes in the somata and dendritic arbor of Purkinje cells, we investigated the
expression of MBP, which is one of the main protein components in the myelin sheath of nerve fibers,
required for coordinated motor regulations in the cerebellum [35]. We investigated the cerebellum
of PND21 rats when the three layers had developed to a similar extent as in the adult in situ. MBP
was detected in the myelinated axons from Purkinje cells of gray matter and myelinated fiber tracts
of white matter in the cerebellum, and MBP immunoreactivity decreased following Pb exposure.
However, gintonin treatment ameliorated the Pb-induced MBP immunoreactivity reduction. The
protein expression pattern of MBP coincides with the MBP immunoreactivity in the cerebellum; gintonin
treatment restored the Pb-induced reduction in MBP protein level, as shown in the immunoblotting
assay (Figure 3).

Additionally, myelin sheath-forming Olig2-immunoreactive oligodendrocytes were observed in all
areas of the cerebellum, with most located at the cerebellar white matter to wrap axons. In the cerebellum
of the Pb-exposed offspring, the number of Olig2-immunoreactive oligodendrocytes was significantly
reduced compared to the control groups. However, gintonin treatment protected the cerebellum from
Pb-induced impairment by sparing the number of Olig2-immunoreactive oligodendrocytes (Figure 6,
arrows in WM).
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Figure 6. Effects of gintonin on Pb-induced cerebellar MBP and Olig2. Immunohistochemistry of MBP
(A–C) and Olig2 (D–F) in the cerebellum of offspring from control, Pb, and Pb plus gintonin (Pb + GT)
groups. Note that MBP-positive myelinated fibers and Olig2-immunoreactive oligodendrocytes
(arrow) are detected in the cerebellum. Pb-induced reduction in the number of Olig2-immunoreactive
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oligodendrocytes is significantly ameliorated by gintonin treatment. The intensity of MBP staining
in white matter (WM) (B) decreases after Pb exposure, with gintonin treatment ameliorating these
observed reductions. MBP, Myelin basic protein; GM-GCL, granular cell layer in gray matter; WM,
white matter. Bar = 25 µm. (G) The number of Olig2-immunoreactive oligodendrocytes (p = 0.0011,
one-way analysis of variance) in the cerebellar cortex is expressed as percentages of the value in the
control group (n = 12 per group). * p < 0.05, compared to control group; # p < 0.05, compared to Pb
alone, Tukey’s post-hoc test. The bars indicate the means ± standard error of the mean.

We next examined whether the structural deficit by Pb exposure was related to cerebellar motor
dysfunctions. Hence, we examined two kinds of locomotive tests, the bar holding and wire mesh
ascending tests. In the bar holding test, the time spent grasping the bar was significantly lower in the
offspring of Pb-exposed dams than in the control group. Gintonin treatment increased time spent
grasping the bar with no statistical significance (Figure 7A). In the ascending wire mesh test, the
time spent ascending the wire mesh was delayed in the Pb-exposed pups; gintonin administration
significantly shortened the time required to reach the top (Figure 7B). These results indicate that
long-term Pb exposure in dams induces motor dysfunctions in offspring and gintonin treatment to
dams ameliorates Pb-induced motor dysfunctions in the offspring.
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Figure 7. Effects of gintonin on Pb-induced locomotive impairments. Effect of Pb exposure and gintonin
treatment on the bar holding test (A) and wire mesh ascending test (B) among offspring from control,
Pb, and Pb plus gintonin (Pb + GT) groups. (A) The time during which the animal stayed on the bar
(p < 0.0001, one-way analysis of variance) in the bar holding test. (B) The time spent to reach the top of
the wire mesh (p = 0.0082, one-way analysis of variance) in the wire mesh ascending test (n = 12 per
group). * p < 0.05, compared to control group; # p < 0.05, compared to Pb alone, Tukey’s post-hoc test.
The bars indicate the means ± standard error of the mean.

4. Discussion

We have previously shown that gintonin is a novel ginseng-derived glycolipoprotein complex.
Its main functional ingredients are LPAs [7]. Additionally, we have reported that gintonin, via
the LPARs, provides in vitro and in vivo neuroprotection from agents that affect neurons and brain
functions [1–3,8,9,24,36]. The neuroprotective molecular mechanism(s) of gintonin are mediated
through multiple targets such as anti-oxidative stress and anti-inflammatory effects after LPA1
receptor activations. Pb is one of the most prevalent neurotoxicants and is especially detrimental to
the developing mammalian brain by causing motor dysfunctions [26,33]. In the present study,
we investigated whether gintonin treatment attenuated Pb-induced histological and functional
neurotoxicities in the developing rat cerebellum. We observed that gintonin treatment first reduced
blood Pb levels in both dams and offspring. Next, we revealed that gintonin can protect the developing
rat cerebellum from Pb-induced cerebellar impairments through various marker proteins, including
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Purkinje cell integrity, apoptosis-related proteins, GABA synthesis and transport-related proteins,
LPA1 and NMDA receptor, oxidative stress-related proteins, and BDNF.

In histological studies, Nissl staining revealed that Pb exposure was detrimental to cerebellar
development in the offspring by reducing the number of intact Purkinje cells and increasing the number
of degenerating Purkinje cells in the developing cerebellar cortex. Following the co-administration of
gintonin with Pb, gintonin protected cerebellar Purkinje cells against Pb-induced cell degeneration;
CB immunostaining, a specific marker of Purkinje cells, showed that gintonin treatment alleviated
the Pb-induced decrease in CB-immunoreactive Purkinje cells in the cerebellum. Thus, the protective
effects of gintonin demonstrated in this study are consistent with the results of previous studies in
which ginseng extract is shown to prevent the toxic effects of heavy metals, including Pb, mercury, and
cadmium [37–39].

In the apoptosis-related evaluation regarding the reduced number of intact Purkinje cells after
Pb exposure, we first investigated the expression of Bax, the main regulatory factor in the process of
proapoptotic cell death by inducing mitochondrial pore formation, in the developing cerebellum. Pre-
and post-natal Pb exposure enhanced the expression of the Bax protein, with Bax-immunoreactive
cells mainly observed in the PL of the cerebellum. After gintonin co-administration with Pb, fewer
Bax-immunoreactive cells were observed, suggesting that the Pb-mediated Bax protein induction was
repressed by gintonin co-treatment. Similarly, in our previous study, we observed that Pb exposure
increased the expression of Bax, but ascorbic acid reversed its increase in the developing cerebellum
and hippocampus [40,41]. Meanwhile, anti-apoptotic Bcl2 was reduced by Pb, while gintonin treatment
increased Bcl2 expression. These results demonstrating the neuroprotective effects of gintonin in the
Pb-exposed offspring are also consistent with those of another study evaluating gintonin-mediated
anti-apoptosis in a Parkinson’s disease animal model [4].

Next, we investigated the expression of BDNF and Sirt1, important regulators in cerebellar neuron
development and survival. In addition, BDNF plays a central neuroprotective role by opposing
damage caused by ischemia, traumatic injury, multiple sclerosis, heavy metal intoxication, and
aging [18,29,42,43]. Sirt1 is a regulator of the CREB-BDNF signaling, important for neurogenesis and
subsequent synapse formation in the developing and adult brain [29,42,44–46]. In accordance with a
previously reported pattern of change [18,47], BDNF and Sirt1 were reduced following Pb exposure;
gintonin ameliorated the Pb-mediated reduction in cerebellar BDNF and Sirt1. Consistent with the
result of a previous study [29], gintonin administration reversely increased both BDNF and Sirt1 in
the cerebellum. These results indicate that the gintonin-mediated increase in BDNF and Sirt1 could
contribute to the attenuation of Bax expression and enhancement of Bcl2 expression and might be
further linked to an increase in the survival of cerebellar cells, including Purkinje cells, even after
Pb insults.

As shown in Figure 2, Pb exposure not only reduced the number of Purkinje cells but also damaged
the complexity of the dendritic branching of Purkinje cells. In addition, Pb exposure impaired axon
fibers from Purkinje cells, which are prominent in pup cerebellum [48]. Further, oligodendrocytes
play a key role in myelin sheath formation and myelination [49]. Recent studies have shown the
harmful effects of Pb including the disruption of oligodendrocyte differentiation and the reduction of
oligodendrocytes following Pb exposure [26,45]. Similarly, we observed that long-term Pb exposure
reduced MBP, a marker protein of the myelin sheath, and Olig2-immunoreactivity, a marker protein of
the oligodendrocyte. Gintonin treatment restored the reduced MBP and Olig2 induced by Pb. Thus,
gintonin administration recovered the Pb-induced Purkinje cell body damages, as well as axonal
myelin sheath-forming oligodendrocytes and MBP expression.

In behavioral tests, we evaluated the cerebellar function by using the wire mesh ascending test
and bar holding test. Importantly, Pb exposure resulted in functional deterioration, with the rats
demonstrating a longer latency to reach the top of the ascending wire mesh and shorter time on the bar
in the bar holding test. However, gintonin treatment attenuated the Pb-induced functional impairment
by improving the time spent in these behavioral tests (Figure 7). Thus, the gintonin-mediated functional
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amelioration of locomotion after Pb exposure could be attributed to the gintonin-mediated cerebellar
cell recovery, along with the increased expression of the anti-apoptotic protein Bcl2, BDNF, and Sirt1,
and oligodendrocytes in the developing rat.

In addition to the analyses of cerebellar cell numbers, apoptosis- and survival-related proteins,
and axon-related proteins, we evaluated Pb-induced changes in cell membrane proteins such as
GAD67, GABAT1, glutamate receptors, and LPA1 receptor in the developing cerebellum, to elucidate
the molecular mechanisms underlying the gintonin-mediated cerebellar protection. GAD67 and
NMDAR1 were detected in the somata of Purkinje cells and some cells in the ML. Pb exposure
significantly reduced the number of GAD67- and NAMDR1-immunoreactive Purkinje cells, while
gintonin restored the reduction in the GAD67- and NAMDR1-immunoreactive Purkinje cells. Along
with the GABA-synthesizing enzyme, GABAT1-immunoreactive pinceau structures were also affected
by the Pb exposure, and gintonin treatment restored the GABAT1-immunoreactive pinceau structures
in the same manner as GAD67 in the cerebellum (Figure 5). In the immunoblotting study, the expression
levels of synaptophysin, one of the synapse marker proteins, were reduced after Pb exposure; gintonin
treatment restored the expression of the synaptophysin protein consistent with the gintonin-mediated
synaptic protection shown in the present and previous studies [18,25]. Although further studies are
required to comprehensively understand the change in glutamatergic and GABAergic markers, our
present results suggest that Pb exposure causes cerebellar maldevelopment by affecting the excitatory
glutamatergic and inhibitory GABAergic systems. Furthermore, gintonin administration attenuates Pb
exposure-induced insult to synaptic protein integrity.

Further, LPAR1 was mainly detected in the PL and its expression was affected by Pb-induced
cerebellar neurotoxicity (Figures 3 and 4). Among the LPAR subtypes, LPA1 might play a key role
in brain development including the cerebellum; the LPA–LPAR1 axis mediates cellular processes,
including cell survival, proliferation, differentiation, migration, adhesion, and morphology of the
developing brain [50]. In the present study, we observed a decrease in LPAR1-immunoreactive
Purkinje cells and protein expression levels in the cerebellum. Notably, co-administration of gintonin
with Pb restored LPAR1 immunoreactivity and expression levels, indicating that Pb negatively
affects LPAR1 expression during cerebellar development and gintonin reversed these effects. Thus,
gintonin-mediated changes in LPAR1 might contribute to the attenuation of Pb-induced neurotoxicity
during cerebellar development.

In addition, oxidative stress, one of the mechanisms of the Pb-induced neurotoxicity, is accumulated
by the continuously generated reactive oxygen species [51]. In line with the previously reported
induction of endogenous antioxidants owing to Pb exposure [25,26], we presently confirmed that
cerebellar Mn-SOD expression showed a similar pattern of changes from the Pb-alone and Pb + GT
groups. Nrf2 is an important transcription factor regulating the expression of antioxidants [52]. We
observed that Pb exposure leads to the upregulation of Nrf2, with gintonin treatment further increasing
the level of Nrf2 in the cerebellum. In previous studies with a Parkinson’s disease animal model using
MPTP, treatment with MPTP induced degeneration of brain striatum neurons, with a minimal decrease
or increase in Nrf2 expression levels; the oral administration of gintonin significantly increased the
striatal Nrf2 expression level [4,36]. Thus, the Nrf2 expression level could be differentially regulated by
agents that induce oxidative stress. In addition, gintonin could regulate Nef2 expression differentially
from Nrf2 expression, which is dependent on the agent and brain regions. Along with oxidative stresses,
neuro-inflammation is also an important mechanism of Pb exposure-mediated neurotoxicity [53]. The
Pb-alone treatment activated inflammatory pathways and our results reveal that gintonin treatment
attenuated Pb-induced upregulation of pro-inflammatory IL-1β and TNFα in the cerebellum.

We demonstrated that long-term Pb administration to dams induced structural and functional
cerebellar maldevelopments in the offspring. However, gintonin treatment in dams exposed to Pb
increased the survival of cerebellar cells and ameliorated Pb-induced cerebellar malfunctions in the
offspring via multiple pathways, including anti-apoptosis, increase in BDNF/Sirt1 expression, and
antioxidative stress activity initiated by LPAR1 activation (Figure 8). Thus, we revealed a possibility
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that gintonin, an active component of ginseng and exogenous LPAR ligand, can be used as a preventive
agent against Pb-induced neurotoxicity in the developing brain during pregnancy and lactation.Biomolecules 2020, 10, x 17 of 20 
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Figure 8. Schematic illustration of gintonin-mediated anti-Pb effects. Cerebellar LPAR1 expression
was reduced after Pb exposure, which was reversed by gintonin treatment. Gintonin-mediated anti-Pb
effects could be mediated through three mechanisms: antioxidant stress, increased BDNF and Sirt1, and
anti-apoptosis/inflammation via activation of LPAR1 signaling pathways. The convergence of these
three beneficial mechanisms could increase the survival of cerebellar Purkinje cells and oligodendrocytes,
facilitating synaptic transmission. These beneficial effects of gintonin contribute to the locomotive
recovery in pups from Pb-poisoned dams.

5. Conclusions

The present study demonstrated that Pb administration is toxic to the cerebellum by altering
normal development. Pb exposure caused damages by reducing the number of intact Purkinje cells
and the expression of synaptophysin, GABA-synthesizing GAD67, GABA transporter 1, BDNF, Sirt1,
LPAR1, and MBP, and inducing the expression of glutamatergic NMDAR1, Nrf2, Mn-SOD, IL-1β, and
TNFα. Gintonin treatment reduced Pb-induced structural changes. Additionally, gintonin-mediated
functional improvements may be owing to structural protections from Pb-induced alterations in
cerebellar development. These results highlight the potential use of gintonin as a preventive agent
against Pb-induced cerebellar developmental deterioration in pups from mothers at high risk for Pb
exposure during pregnancy and lactation.
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