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ABSTRACT: Many initially successful anticancer therapies
lose effectiveness over time, and eventually, cancer cells acquire
resistance to the therapy. Acquired resistance remains a major
obstacle to improving remission rates and achieving prolonged
disease-free survival. Consequently, novel approaches to
overcome or prevent resistance are of significant clinical
importance. There has been considerable interest in treating
non-small cell lung cancer (NSCLC) with combinations of
EGFR-targeted therapeutics (e.g., erlotinib) and cytotoxic
therapeutics (e.g., paclitaxel); however, acquired resistance to
erlotinib, driven by a variety of mechanisms, remains an
obstacle to treatment success. In about 50% of cases, resistance
is due to a T790M point mutation in EGFR, and T790M-
containing cells ultimately dominate the tumor composition
and lead to tumor regrowth. We employed a combined
experimental and mathematical modeling-based approach to
identify treatment strategies that impede the outgrowth of
primary T790M-mediated resistance in NSCLC populations.
Our mathematical model predicts the population dynamics of
mixtures of sensitive and resistant cells, thereby describing how
the tumor composition, initial fraction of resistant cells, and
degree of selective pressure influence the time until progression
of disease. Model development relied upon quantitative
experimental measurements of cell proliferation and death
using a novel microscopy approach. Using this approach, we
systematically explored the space of combination treatment
strategies and demonstrated that optimally timed sequential
strategies yielded large improvements in survival outcome
relative to monotherapies at the same concentrations. Our
investigations revealed regions of the treatment space in which
low-dose sequential combination strategies, after preclinical
validation, may lead to a tumor reduction and improved
survival outcome for patients with T790M-mediated resistance.
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■ INTRODUCTION

The advent of pathway-targeted therapies has dramatically
influenced cancer research and medical oncology over the past
decade. Many of these therapies are capable of inducing an
initial response; however, in many cases, the tumor evolves

more aggressive and resistant phenotypes over time and
eventually becomes insensitive to therapy.1,2 De novo and
acquired resistance to targeted therapies represent a major
clinical problem that continues to challenge efforts to delay
progression of disease and improve overall survival rates.3−5

Gaining a better understanding of the evolution of resistance
and identifying treatment strategies that alter the penetrance of
resistance throughout a tumor are imperative for improving
patient outcomes. One powerful approach to address this
problem is to use mathematical modeling of the evolutionary
dynamics of therapeutic resistance.6−9 Mathematical models
enable systematic exploration of the infinite-dimensional space
of potential treatment strategies through variation of
parameters such as drug dose, treatment timing, and
combination options. Mathematical modeling can also be
used to predict optimized treatment schedules based on a
variety of biological end points (e.g., maximal time to
progression of disease, maximal rate of tumor reduction,
minimal probability of resistance, minimal tumor size, or
minimal resistant cell frequency) as well as an assessment of the
robustness of these biological end points to changes in the
schedule and dosing. As such, mathematical modeling narrows
down an infinite space of possible treatment strategies to a
subset of strategies with the greatest potential that can then be
validated in preclinical models before being introduced to
patient care.6,8

In this study we focus on lung cancer, the leading cause of
cancer-related deaths in the United States.10 Non-small cell
lung cancer (NSCLC) accounts for 80% of all lung cancers and
consists of three main types: adenocarcinomas, squamous cell
carcinomas, and large cell carcinomas. Standard first-line
therapy for advanced NSCLC consists of platinum-based
chemotherapy and has a modest effect on overall patient
survival. Approximately 10−15% of NSCLCs in North America
and 30% in Asia harbor mutations in the EGFR kinase domain
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that trigger activated signaling of the EGFR pathway and
frequently result in responses to the EGFR tyrosine kinase
inhibitors (TKI) erlotinib and gefitinib.11−13 The majority of
EGFR mutant patients exhibit tumor regression upon EGFR
TKI treatment; however, of the 70% that initially respond, all
relapse within about one year after initiation of therapy.14,15

Several mechanisms of acquired resistance to TKIs are
responsible for this relapse; in about 50% of cases, the
T790M “gatekeeper” mutation in EGFR causes resistance.16−18

Some data suggest that the T790M mutation may pre-exist the
start of therapy in many patients.19

Four large phase III trials (TRIBUTE, INTACT 1, INTACT
2, and TALENT) were initiated to evaluate whether concurrent
treatment of EGFR TKIs with standard chemotherapy
enhances overall survival for advanced NSCLC patients. The
results from these trials led to the conclusion that this
combination strategy was unable to significantly improve
patient survival.20−22 At the time of these trials, there were
no obvious indicators to suggest that combining these therapies
would not lead to improved outcomes for patients. After all,
previous clinical trials demonstrated that chemotherapy as a
single agent prolongs survival of NSCLC patients when
compared to placebo, and that those patients who failed first-
line chemotherapy and were then administered erlotinib had
improved survival relative to those not treated with
erlotinib.23−25 Due to failures of these combination trials and
the results of multiple preclinical studies, a strategy for
combining erlotinib with standard chemotherapy (i.e.,
carboplatin and paclitaxel) with sequential pulsing of the two
agents was proposed.26 Recent clinical studies have shown that
intermittent dosing of EGFR TKIs with chemotherapy is
superior to concurrent dosing.27−29 This finding suggests that
by simply altering the dose and schedule of currently used
drugs, the efficacy of combination therapies can be improved.
Therefore, quick and cost-effective methods are needed for
assessing the potential of a given treatment regime before
administering it to patients and before initiating large,
expensive, and time-consuming clinical trials.
In this paper, we utilized mathematical modeling in

conjunction with quantitative in vitro experiments to identify
optimal combination treatment strategies using erlotinib and
paclitaxel to prevent or delay resistance to treatment in NSCLC
cells. We used an integrative approach to investigate the
evolutionary dynamics of a tumor, which are determined by the
composition of, and interactions between, sensitive and
resistant cells in the presence of treatment. Although several
mechanisms of resistance to EGFR TKIs (e.g., MET
amplification) have been identified, we focused on addressing
the penetrance of preexisting T790M-harboring resistant cells
in NSCLC since this mechanism of resistance remains a major
clinical problem. Our approach, however, can be generalized to
address other mechanisms of resistance and will therefore be of
clinical interest for several scenarios of resistance as well as for
other cancer types in which resistance to targeted agents arises
due to known mechanisms.
Our biological model of sensitive and resistant cells consisted

of two NSCLC cell lines, HCC827 and H1975, with different
sensitivities to the EGFR inhibitor erlotinib.30 The HCC827
cell line harbors a mutation in the EGFR tyrosine kinase
domain (E746−A750) that renders these cells sensitive to
EGFR TKI therapies, whereas the H1975 cells harbor both
the L858R and T790M mutations and are resistant to EGFR
TKIs. We experimentally identified the parameters of our

mathematical model and validated the model predictions with
independent experiments. In particular, we generated pre-
dictions describing how the tumor composition evolves over
time and how it depends on the initial preexisting fraction of
resistant cells under various concentrations of the drug. We
extended these predictions to study the evolution of resistance
under sequential combination strategies using a range of
paclitaxel and erlotinib concentrations. We then developed an
integrated quantitative framework to identify regions of a
combination treatment strategy space that provided optimal
outcomes (i.e., eventual elimination of the NSCLC population
or maximal delay of resistance in our system). These results
serve as examples for the utility of mathematical modeling for
defining treatment schedules with favorable outcomes in cell
line systems. After appropriate preclinical validation, these
suggestions are expected to lead to improved outcomes in the
clinic.

■ EXPERIMENTAL SECTION
Mathematical Methods. We used a binary nonhomoge-

neous two-type birth and death process model to represent the
dynamics of the TKI-sensitive and TKI-resistant cell
populations over time under varying treatment schedules.31

Similar models have been previously used to study the
dynamics of resistance of cancer cells in a variety of
settings.7,8,32−35 Here, we used a variation of these models to
investigate the dynamics of penetrance of resistance under
sequential pulsed combination therapy with two drugs, erlotinib
and paclitaxel. Penetrance, in contrast to emergence, was
defined as the outgrowth of preexisting resistant clones. We
applied this mathematical model to study combination therapy
administered to mixtures of HCC827 and H1975 cells. Under
this framework, sensitive and resistant cells proliferate and die
at rates that depend on the current therapy being used and its
concentration. The net proliferative rates (birth minus death
rates) for each cell type were obtained through analysis of the
experimental cell line data. The key assumptions of this model
are that (1) cell populations are governed by an exponential
growth model during each treatment and break phase and, (2)
once a cell is born, its lineage is independent of other cells in
the population. The second assumption is discussed in the
model validation section of the Results. Cell populations were a
mix of sensitive and resistant cells at varying ratios, and we
investigated the effects of varying the initial composition on the
outcome of treatment. We did not consider the mutation of
sensitive cells into resistant cells in this model since resistance
generated through this mechanism has been studied previously in
other settings.7,8,32−35 We also neglected the possibility of back-
mutation from resistant to sensitive cells since this is an event of
exceedingly small probability. This assumption of lack of back-
mutation is a well-accepted model in the population genetics
literature where it is known as the infinite-sites model.36

Calculation of Growth Rates. The sole unknown parameter
used in our model was the net proliferative rate of each cell type
under various drug concentrations. To obtain net proliferative
rates, we fit the experimental counts of live cells at various time
points under each drug concentration to the exponential
growth model described above; see later sections for details of
the experimental approach. A linear regression of the log-
transformed data was performed to obtain fitted rates at each
drug concentration for both cell lines. The experimental data
confirmed a good fit with the exponential growth model (data
not shown). A nonlinear least-squares regression was
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performed to yield the relationship between concentration and
net proliferative rate for each cell line and drug pair. The net
proliferative rates of the sensitive and resistant cells as a
function of erlotinib concentration are denoted by the fitted
functions λ S(x) and λ R(x), respectively. Similarly, the net
proliferative rates of sensitive and resistant cells as a function of
paclitaxel concentration are represented by μ S(x) and μ R(x),
respectively.

Mean Population Dynamics over Time. We considered
treatment strategies in which fixed concentrations of erlotinib
and paclitaxel were sequentially pulsed in time. In the treatment
strategies, t1 and t2 represent the respective lengths of the
erlotinib and paclitaxel pulses and c1 and c2 represent the
respective concentrations of the two drugs; these concen-
trations were constant for each pulse. Each treatment cycle
consisted of a pair of erlotinib and paclitaxel pulses. The mean
size of the sensitive cell population after m therapy cycles is
given by S(m(t1 + t2)) = s0 exp[m(t1λ S(c1) + t2μ S(c2))], and the
mean of the resistant cell population is given by R(m(t1 + t2)) =
r0 exp[m(t1λ R(c1) + t2μ R(c2))], where m(t1 + t2) is the time at
the end of cycle m. The average population size of sensitive
cells at time t between the completion of cycles m and m + 1 is
given by S(t) = s0 exp[m(t1λ S(c1) + t2μ S(c2)) + (t − m(t1 +
t2))λ S(c1)] if t − m(t1 + t2) ≤ t1 or by S(t) = s0 exp[(m + 1)
t1λ S(c1) + mt2μ S(c2) + ( t − (m + 1)t1 + mt2))μ S(c2)] if t −
m(t1 + t2) > t1. Analogous formulas hold for the resistant cell
population. This formulation was then used to predict the
evolution of cell admixtures over time.

Possibility of Elimination of the NSCLC Cell Population.
One biological end point for evaluating a treatment schedule is
whether the schedule is capable of driving the tumor cell
population to extinction. In the context of our model, tumor
cell extinction occurred if and only if [S((m + 1)(t1 + t2))]/
[S(m(t1 + t2))] − exp[(t1λ S(c1) + t2μ S(c2))] was less than one
or, equivalently, if and only if (t1λ S(c1) + t2μ S(c2)) was
negative.

Choice of Drug Concentrations. We searched a range of
low-dose paclitaxel concentrations (0−30 nM) and a low to
moderate range of erlotinib concentrations (0−10 μM). These
dose ranges were chosen for their clinical relevance.37,38 Phase I
pharmacokinetic studies have shown that the maximum
tolerated daily oral dose of erlotinib (150 mg) results in a
maximum plasma concentration of 3 μM, and in a phase I/II
trial, high doses up to 2000 mg weekly were generally well
tolerated. These doses result in a maximum plasma
concentration of around 20 μM.39 For paclitaxel, the maximum
plasma concentration achievable after a 24 h infusion of 180
mg/m2 is around 1 μM, and shorter 3 h infusions at the same
dose achieve a Cmax of approximately 5 μM.40 Paclitaxel is given
once every 21 days in a standard chemotherapy regimen.
However, since we considered schedules using daily paclitaxel
at concentrations one to two orders of magnitude lower than
these concentrations and alternated with erlotinib at low to
moderate doses, we hypothesized that many of the treatment
strategies in our schedule space could be well-tolerated in the
clinic. This hypothesis is further supported by the results of
several combination clinical trials, which combined paclitaxel at
200 mg/m2 and carboplatin with erlotinib 150 mg/day, and
have not reported dose-limiting effects.29,41

Time to Progression of Disease. The time to progression of
disease (POD) is defined as the first time after treatment
initiation at which the total population size increases. For some
dose combinations of paclitaxel and erlotinib, there did not

exist a schedule that led to elimination of the total population.
However, it was possible to identify a combination dosing
strategy that maximized the time to POD. Under some
treatment schedules, the total cell number was initially reduced
and resistant outgrowth caused POD; in other cases, the total
cell number was never reduced, and in those cases, the time of
POD was defined to be zero.
Due to the cyclic nature of a sequentially pulsed dosing

strategy, the determination of the time to POD requires
comparisons of the population sizes, S(t) + R(t), at the same
point of each cycle. Thus we defined the time to POD as inf{m ≥
0: S((m + 1)(t1 + t2)) + R((m + 1)(t1 + t2)) ≥ S(m(t1 + t2)) +
R(m(t1 + t2))}, which represents a critical point in the total
population size. One disadvantage of this discrete formulation
is that longer schedules will always be favored, since the time
until discovery of POD at the end of a cycle will be delayed if
longer treatment cycles are used. Therefore, we introduced a
continuous-time approximation of the sensitive and resistant
cell populations: if X represents the fraction of time on
erlotinib, the total population size at time t is approximated by
f(t) = s0 exp[t(λ S(c1)X + μ S(c2)(1 − X))] + r0 exp[t(λ R(c1)X +
μ R(c2)(1 − X))]. Note that the value of f(t) matches the exact
mean population size at the end of each treatment cycle. The
use of this approximation provided two benefits: (1) a
continuous representation of the dynamics in time enabled
the calculation of explicit derivatives and thus an analytical
identification of the critical points, and (2) this formulation
characterized the time to POD without the aforementioned
sampling effects. A consequence of this formulation is that the
outcome of a treatment schedule depends explicitly on the
fraction of time spent on each drug, i.e., modifying pulse
lengths by a common multiplicative constant does not affect
the outcome. This finding is consistent with the original model
as long as time scales spanning multiple treatment cycles are
considered.
The critical point of f(t) provides an estimate of the time to

POD and is given as follows:

where α S (X,c1,c2) = Xλ S(c1) + (1 −X)μ S(c2) and α R(X,c1,c2) =
Xλ R(c1) + (1 − X)μ R(c2) . Values of t* that are negative or
possess a nonzero imaginary part were encountered when a
treatment schedule did not elicit a decrease in tumor cell
numbers; in these cases, the time to POD was set to zero.
Experimental Methods. Materials. The following stains

were purchased from Invitrogen: Hoechst 33342 (#H21492),
propidium iodide (PI, #P1304MP), CellTracker orange
CMTMR (#C2927), and CellTracker green CMFDA
(#C7025).

Cell Culture. HCC827 and H1975 cells were purchased from
ATCC and cultured in RPMI media supplemented with 10%
fetal bovine serum (FBS) and 1% penicillin/streptomycin
solution using standard growth conditions of 37 °C and 5% CO2.

Growth Assays. Approximately 5,000 cells per well were
seeded in 96-well black or clear bottom plates (Corning Inc.,
#3904) under standard culture conditions. The following day,
cells were treated with erlotinib (0, 0.1, 1, 10 μM) or paclitaxel
(0, 1, 10, 100 nM). Live and dead cell counts were determined
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using the Cellomics ArrayScan VTI HCS Reader, a high-
throughput quantitative imaging system. Briefly, cells were
stained with 5 μg/mL Hoechst 33342 and 5 μg/mL PI for
45 min prior to analysis. Average intensity of Hoechst 33342
and PI was determined for each individual cell using the target
activation bioapplication of the Cellomics Arrayscan. A final
readout of total cell number and percentage of PI positive cells
was quantitatively measured within a given well for a given
treatment and for a given time. Each condition was performed
in replicates of four. For mixture experiments, cells were mixed
at respective ratios prior to plating in the 96-well plates with the
initial seeding density (5,000 cells/well) kept constant. All data
points used in the analysis were taken before any confluence
effects were apparent.

Fluorescence Imaging. Cells were labeled using CellTrack-
er probes following manufacturer’s instructions (HCC827
labeled with CellTracker orange CMTMR and H1975 labeled
with CellTracker green CMFDA). Cells were seeded at 75,000
cells/well in a 24-well plate either unmixed or mixed at a ratio
of 1:1. The following day, 1 μM erlotinib or 10 nM paclitaxel
was added and the cells were imaged 48 h post treatment.

■ RESULTS
Characterization of Growth Kinetics in Unmixed

Populations. As a first step toward building our mathematical
model, we measured the growth rates of the individual cell
populations during drug treatment. Quantitative measurements
of the numbers of live and dead HCC827 and H1975 cells
during treatment with erlotinib or paclitaxel were determined
using the Cellomics Arrayscan (Figures 1 and S1 in the
Supporting Information). These data were then utilized to
calculate the growth rates of the HCC827 and H1975 cells.
H1975 cells grew more rapidly than the HCC827 cells at all
concentrations of erlotinib and slightly faster in the absence of
treatment. A decrease in the growth rate of HCC827 cells was
observed during erlotinib treatment, whereas H1975 cells only
exhibited a response to erlotinib at the highest dose of 10 μM
(Figure 2A). During paclitaxel treatment, the degree of
differential response between HCC827 and H1975 cells was
not as dramatic as compared to erlotinib treatment. Both cell
lines appeared to be sensitive to the drug; H1975 cells grew
slightly slower than the HCC827 cells in the presence of
paclitaxel (Figure 2B). These growth rates then served as
calibrants for our mathematical model.
Mathematical Modeling Predicted Growth Kinetics of

Mixed Populations of Cells. The behavior and possible
interactions between sensitive and resistant cells in response to
drug-induced perturbations were important parameters to
consider as inputs into the model. Using the unmixed growth
rates of the HCC827 and H1975 cells, we derived a
mathematical model to predict the population dynamics of
mixtures of HCC827 and H1975 cells at various ratios (1:1,
1:9, 1:4, 4:1) during administration of different concentrations
of erlotinib or paclitaxel. The predictions were then validated
experimentally by quantifying the number of live cells in
admixed populations with the Cellomics Arrayscan. We found
an average relative error between predictions and experimental
data of 7.8% and 9.57% for erlotinib and paclitaxel treatments,
respectively (Figure 3A,B). In addition, the quantitative growth
rate measurements of the mixed populations in response to drugs
were corroborated using fluorescent imaging (Figure 3C).
HCC827 cells were more sensitive to erlotinib treatment
than H1975 cells irrespective of their admixing with the

resistant population. These results suggested that the
interactions between the HCC827 and H1975 cells mixed at
various ratios did not significantly influence their respective
growth rates.
Model Predictions of Treatment Outcomes. We next

used the validated mathematical model to predict the growth
rates of resistant and sensitive cells under various dosing
strategies using the fitted growth rate curves from experiments
as model parameters (Figure 2). Here we considered
population dynamics in the in vitro system; in order to apply
these findings to in vivo situations, more detailed kinetics of the
pharmacokinetic (PK) effects as well as interactions with the
microenvironment, immune system, endothelial cells, etc. are
necessary. The formulation of mathematical models of such
situations and the experimental determination of quantitative
interaction, PK, and growth kinetics are the topic of ongoing
work.

Figure 1. Quantification of cell numbers during drug treatments.
(A, B) Quantitative measurements of the number of live and dead
HCC827 and H1975 cells at 0, 24, and 48 h post erlotinib and
paclitaxel treatment were determined from cell images (see Figure S1
in the Supporting Information). Each treatment condition was
performed in replicates of four, and the data was displayed as an
average ± 2 SD.
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Population Dynamics during Constant-Concentration
Monotherapy. Figure 4 shows the predicted cell population
size and composition as a function of time under constant
monotherapy with erlotinib at 0.1, 1, and 10 μM or paclitaxel at
1, 10, and 100 nM. The initial population was 106 cells with a
0.1% fraction of preexisting resistant cells. At 10 μM erlotinib,
the overall population size was predicted to initially decline;
however, this treatment strategy selected for an expanding
resistant subpopulation that led to progression of disease after
this initial decline. This behavior is consistent with clinical
observations in which 100% of patients who initially respond to
erlotinib develop acquired resistance, often mediated by a
T790M mutation. We observed that, at a 100 nM dose,
paclitaxel elicited a decline in both the HCC827 and H1975
cell numbers. Interestingly, at a low dose of 10 nM, paclitaxel
treatment resulted in a net decrease in the H1975 population
but a slight increase in the HCC827 population, a profile
opposite that of erlotinib.

The Initial Resistant Fraction Affects the Time until
Progression of Disease. We then evaluated the effect of
varying the initial resistant fraction on the population dynamics
under a sequential alternating schedule. The treatment schedule
consisted of 3 μM erlotinib pulsed with 100 nM paclitaxel in a
1:20 ratio. Each pulse pair (erlotinib−paclitaxel) represented
one treatment cycle. Given the assumptions of the
mathematical model, only the relative fraction of time on
each drug determines the outcome; thus, modifying pulse
lengths by a common multiplicative constant does not alter the
long-term outcome under the assumption that pulse lengths
were short enough such that multiple treatment cycles were

achieved. Figure 5 displays the predicted tumor composition
and size over time for populations starting with 0.01%, 0.1%,
and 10% resistant cells. A positive correlation between the
initial resistance frequency and time until POD was observed.

Optimal Sequential Combination Schedules Delay Pro-
gression of Disease. Using our mathematical modeling
framework, we explored a large range of sequential combination
strategies to identify optimal treatment schedules. We studied a
low-dose (0−30 nM) paclitaxel treatment in sequential
combination with low to moderate doses of erlotinib (0−
10 μM). For each erlotinib and paclitaxel dose pair in this
range, we considered the continuum of all possible sequential
dosing schedules, where each schedule was identified by the
fraction of time during which erlotinib was administered. For
each dose pair, we then investigated whether there existed a
dosing strategy that resulted in the eventual elimination of both
HCC827 and H1975 cells. If no such strategy existed, this dose
pair was placed in the “no elimination” region of the treatment
space. We found that there were regimens that resulted in the
disappearance of the tumor cell population. Figure 6A shows a
map of the treatment space in which blue regions identify the
region of elimination of the NSCLC cell population and red
regions identify the region where NSCLC cell elimination is
not possible. Note that our treatment space also included the
subset of constant-concentration monotherapies at each dose in
the range, since the pulse length of either therapy can be set to
zero. For paclitaxel, monotherapy at concentrations over 20 nM
led to elimination. If erlotinib was added to the treatment,
elimination was achieved at lower doses of paclitaxel.
Although we investigated a large range of dose pairs and a

range of alternating schedules, not all are possible to administer
in the clinic due to toxicity constraints. In current practice,
paclitaxel is dosed once every 21 days at a level resulting in a
plasma concentration in the blood of up to 10 μM. The drug is
eliminated from the body with a half-life of less than 15 h.40

Although a concentration of 20 nM, as investigated in Figure
6A, is predicted to result in a plasma concentration well below
the acceptable 10 μM, no toxicity data is available to confirm
whether a sustained plasma concentration of 20 nM is tolerated
in patients. Therefore, it is important to investigate the optimal
strategies leading to both elimination of the NSCLC cell
population (when tolerated) and the optimal outcomes when
elimination is not possible.
In cases when elimination was not possible, we defined the

time to POD as the time at which the total tumor size ceased to
decrease and began to increase. If a specific treatment strategy
failed to reduce the total cell number initially, then the time of
POD was defined as zero. Details on how this time was
calculated are provided in the Experimental Section. For each
dose pair in our treatment space, the best possible outcome in
the no-elimination region was identified by the maximal time to
POD. In other words, we searched the space of treatment
schedules to find the schedule that resulted in maximal time to
POD. The map of best possible outcomes (maximal times to
POD) is shown in Figure 6B, and the strategy corresponding to
this optimal outcome is displayed in Figure 6C. In the latter,
treatment strategies were identified by the fraction of time
during which erlotinib was administered. We observed that,
with certain combinations of low-dose sequential therapies, we
achieved a longer time to POD than with higher-dose therapies
once every 21 days (Figure 6). In addition, many of these
optimal strategies involved very low doses of paclitaxel (around

Figure 2. Determination of growth rates during drug treatments.
HCC827 and H1975 growth rates were calculated using the live cell
counts determined in Figure 1 for a time period of 0−48 h at each
concentration of (A) erlotinib (0.1, 1, 10 μM) and (B) paclitaxel (1,
10, 100 nM).
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10−15 nM) and erlotinib (2−10 μM) for approximately equal
lengths of time.

Identification of Sequential Paclitaxel−Erlotinib Schedules
That Can Achieve Elimination of the NSCLC Cell
Population. Finally, we further considered the treatment
strategies predicted to result in NSCLC elimination. For each
dose pair in the elimination region of Figure 6A, we identified
the range of pulse-timing schedules that achieve tumor cell
elimination. These ranges are shown in Figure 7A,B, illustrated
by the minimum and maximum fraction of time during which
erlotinib was administered. For example, consider the point X
in Figure 7A which represents the dose pair 6 μM erlotinib and
15 nM paclitaxel. Figure 7A and Figure 7B demonstrate that
schedules with a fraction of time on erlotinib between 0.28 and
0.37 led to eradication of the tumor.
Next we investigated the dynamics of the tumor composition

under strategies within this optimal range, starting with an
initial population of 0.1%. Figure 8A displays the predicted

tumor composition and size over time when 6 μM erlotinib was
administered for 28% of the time and 15 nM paclitaxel was
given for 72% of the time (the “minimal erlotinib strategy”).
Figure 8B shows the analogous dynamics under the strategy
when 6 μM erlotinib was given 37% of the time and 15 nM
paclitaxel was given 63% of the time. Under the latter strategy,
the overall tumor composition decreased more quickly than
under the former strategy, even though the minimal erlotinib
strategy reduced the resistant population more quickly. Both
dosing strategies resulted in the elimination of the sensitive and
resistant cell populations.
For comparison, we also investigated the dynamics of tumor

composition during administration of each drug alone at these
same concentrations. At 6 μM erlotinib, growth of the HCC827
cell population was strongly inhibited with little effect on the
H1975 population (Figure 2). At 15 nM paclitaxel, there was a
slight decrease of the number of H1975 cells while the
HCC827 cell population continued to increase. Figure 8C and

Figure 3. Growth kinetics of admixed populations. (A, B) Mathematical model predictions of the growth kinetics of admixtures of HCC827 and
H1975 cells at various ratios 1:1, 1:9, 1:4, and 4:1 (1:1 ratio shown here) under different drug treatments of erlotinib or paclitaxel were made using
the individual growth rates determined in Figure 2 (denoted as open circles). These predictions were then experimentally validated by determining
the total number of cells of the admixed population in the presence of erlotinib or paclitaxel treatment using the Cellomics Arrayscan (denoted as
straight lines). The average relative error rate between the model predictions and experimental validation was 7.8% and 9.57% for erlotinib and
paclitaxel treatment, respectively. Each treatment condition was performed in replicates of four and the data displayed as an average ± 2 SD. (C)
HCC827 cells labeled with CellTracker orange and H1975 labeled with CellTracker green were admixed at a 1:1 ratio and treated with 1 μM
erlotinib for 48 h. Fluorescent images were captured at 10× magnification.
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Figure 8D display the dynamics of the population under
continuous 6 μM erlotinib or continuous 15 nM paclitaxel.
Either of these drugs alone at these concentrations resulted in
POD in a relatively short amount of time. Notably, continuous
erlotinib elicited an initial reduction in tumor size that was
much more rapid than that achieved in any of the other
strategies evaluated; however, we simultaneously observed a

selection for a resistant subpopulation and subsequent rapid
POD. This finding reflects the fact that targeting the sensitive
population with a strong differential selection pressure may not
be the best strategy in the long term. The alternating
combination therapy using drugs with opposite weak differ-
ential selection profiles such as low-dose paclitaxel with
erlotinib ultimately resulted in the elimination of the NSCLC
cell population in our model.

■ DISCUSSION
In this paper, we have presented a combined mathematical
modeling and experimental approach to investigate the effects
of combination treatment strategies and schedules on the
evolution of acquired resistance in non-small cell lung cancer.
Our results suggest that optimally timed combination strategies
may achieve dramatic improvements in overall outcome over
monotherapy with the same drugs and concentration. In
addition, we found that applying high doses to achieve the
fastest possible tumor reduction rate initially was not always the
best strategy in the long term, as this additionally led to a
maximal selective pressure, which was rapidly evaded by the
acquisition of resistance mutations.
The apparent strength of targeted therapies such as erlotinib

is the ability to strongly inhibit populations harboring the
specific molecular target, leading to a dramatic tumor size
reduction if these sensitive populations comprise the majority
of the initial population. However, such strategies may lead to
progression of disease (POD) due to the outgrowth of a
resistant subpopulation. Using our mathematical model to
search the space of schedules, we identified regions on the

Figure 4. Mathematical model predictions of cell composition during constant-concentration monotherapy. (A) Total (black line), HCC827 (blue
line), and H1975 (red line) population sizes over time under constant monotherapy with erlotinib (0.1, 1, 10 μM). (B) Total, HCC827, and H1975
population size over time under constant monotherapy with paclitaxel (1, 10, 100 nM). Initial population in both panels was considered to be 106

cells with 0.1% preexisting resistant frequency.

Figure 5. Time to progression of disease for varying initial resistant
fractions. Model predictions of total (solid) and H1975 (dashed)
population size over time for populations starting with 0.01% (black),
0.1% (red), and 10% (blue) initial resistance frequencies. All
predictions were conducted under a sequential alternating treatment
schedule consisting of 3 μM erlotinib pulsed with 100 nM paclitaxel in
a 1:20 ratio.
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dose-combination map in which theoretical elimination of the
NSCLC cell population was possible. We observed that, as a
direct consequence of the growth rate response curve,

continuous paclitaxel schedules above 18 nM resulted in
eventual elimination of the tumor. However, information is not
available about whether a sustained plasma concentration of the
drug at this level can be tolerated in patients; thus we
proceeded to investigate all regions of the dose-combination
map where elimination of the cell population was possible. For
example, we found that a sequential schedule combining 6 μM
erlotinib for 28−37% of the time with 15 nM paclitaxel for the
remaining time was predicted to lead to an eventual elimination
of the tumor cells. At these doses, monotherapy with erlotinib
resulted in an initial tumor reduction followed by POD, consistent
with clinical observations, and monotherapy with paclitaxel
resulted in a lack of response.1,16,18 In contrast, the alternating
strategy was predicted to lead to elimination of the cancer cell
population. When the erlotinib concentration was increased
beyond 6 μM, favorable schedules were found at even lower
paclitaxel concentrations and shorter treatment times. For
treatment schedules for which NSCLC cell elimination was not
possible, we investigated a wide range of scheduling strategies and
identified both the optimal outcome, defined as the maximal time
until POD, and a schedule that achieved this outcome. We found
that the strategies that maximally delayed POD were closer to the
center of the dose-combination map with paclitaxel doses between
10 and 15 nM and erlotinib at doses between 1 and 10 μM
approximately symmetrically pulsed (∼50% of time on each drug).
These results suggest that sequentially pairing a targeted

inhibitor with a cytotoxic drug inducing a weak differential
selection pressure on the TKI-sensitive and TKI-resistant
populations may lead to a better overall outcome. The
inhibitory effect on the resistant cell population by the
cytotoxic agent was sufficient to enable the design of an
alternating pulsed strategy that controlled and eventually
eliminated both cell populations. Although the initial rate of
tumor reduction was not as dramatic using these sequential
combination strategies as was monotherapy of a molecularly
targeted drug, we predicted that sequential combination
strategies led to slow tumor elimination rather than POD due
to resistance. Thus, the moral of the story from the tortoise and
the hare, “slow and steady wins the race”, also seems to apply
when designing treatment strategies. We hypothesize that there
are many existing cytotoxic therapies that, at low or moderate
doses, induce a slight inhibition of the growth of cells with

Figure 6. Optimal sequential combination schedules delay progression of disease. (A) Map of sequential combination treatment space shows regions
in which elimination of the NSCLC cell population is possible (blue) and impossible (red). A range of doses for paclitaxel (0−30 nM) and erlotinib
(0−10 μM) were considered; each point on the map represents the possibility of elimination of the tumor cell population for a specific pair of dose
concentrations. Points were colored blue if there existed a treatment timing schedule with the specified dose pair that achieved overall elimination; if no
suitable schedule existed, points were colored red. (B) For each point in the no-elimination (red) region of (A), the best possible outcome (defined as
maximal time to progression of disease) was determined. Color in this map represents the maximal time to disease progression. (C) For each point in
the no-elimination (red) region of (A), the schedule achieving the optimal outcome was identified. Color in this map represents the fraction of time
spent on erlotinib in the optimal schedule. The initial population size in these maps was 106 cells with 0.1% initial resistance frequency.

Figure 7. Range of sequential paclitaxel−erlotinib schedules that can
achieve elimination of the NSCLC cell population. (A, B) Minimal and
maximal erlotinib fraction for sequential treatment strategies that
achieve cell elimination for each dose-pair in the elimination (blue)
region of Figure 6A. The initial population size in these maps was 106

cells with 0.1% initial resistance frequency.
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resistance to targeted therapies. At these low doses, these drugs
are good candidates for sequential combination trials. We
predict that sequential combination therapy will provide a
better, less costly alternative to the development of second
generation molecularly targeted inhibitors for the resistant cell
populations, which are themselves intrinsically vulnerable to
additional resistance mechanisms.
Supporting these findings, several human and mouse trials of

NSCLC suggested that sequential therapy using a cytotoxic
agent and either erlotinib or gefitinib was more effective than
monotherapy with either drug or with combination concurrent
dosing.26,27,29,42 It was postulated that doses or timing of such
sequential therapy would greatly influence the outcome. Our
mathematical model predicted that sequential therapy does
indeed provide a better outcome than either therapy alone at
the same doses. The overall outcome was sensitive to timing,
dose, and initial ratio of sensitive to resistant cells, and we were
able to identify the correct balance of pulses to overcome TKI
resistance. We predicted, and validated experimentally, that the
initial ratio of resistant to sensitive cells influenced the overall
time until POD. Identification of noninvasive methods for
monitoring the molecular genotypes of tumors throughout a
course of treatment would provide valuable real time data that
could be used to dynamically update the model to help further
guide treatment schedules. More specifically, this information
could be used to define the threshold of resistant cells at which
a particular treatment strategy would succeed or fail. Several
groups are working toward developing such platforms that
would routinely analyze circulating tumor cells or tumor DNA
in plasma to provide quantitative molecular characterization of
tumors.19

We recognize that, as with most models, our framework has
limitations. First, the two NSCLC lines used in our biological
model are not isogenic. However, they were chosen to train our
model for several reasons: (1) they carry known EGFR
mutations that are observed clinically and confer sensitivity and
resistance, respectively, to EGFR TKI therapies; (2) there exists
a significant differential growth rate between these two lines
during treatment with EGFR TKIs; and (3) we are interested in
modeling the penetrance of resistance and therefore are not
considering the rate of new mutations that would convert
sensitive cells to resistant cells. Another limitation is that the
data used as input to the model was derived from an in vitro
system. Thus, pharmacokinetic processes present in vivo such as
absorption and elimination of the drug were neglected as well
as potential drug interactions. Furthermore, interactions with
endothelial, mesenchymal, and immune system cells were not
considered in our model. However, even with these idealized
strategies and rates measured in vitro, we were able to
recapitulate key clinical findings. As long as the relative
relationships between growth rates in vitro are similar to those
in vivo, relative benefits of various scheduling paradigms can be
evaluated in our system, and our predictions will provide
starting points for preclinical and clinical evaluation of
sequential combination therapies. Thus, although the model
has limitations in terms of precise clinical predictions, two main
conclusions can be drawn: the timing of drug scheduling in
combination therapies can have a striking impact on the overall
outcome of therapy, and mathematical modeling provides a
useful and efficient method to investigate and optimize over the
multidimensional space of scheduling strategies. These
realizations serve as a starting point for future investigations
that will address more complex scenarios arising in vivo as well
as additional resistance mechanisms and drugs. Our approach
will also be useful for investigating the dynamics of resistance
against targeted therapies for other tumor types.
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