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Gene expression analysis in RA: towards personalized medicine
AN Burska1, K Roget2,10, M Blits3, L Soto Gomez4, F van de Loo5, LD Hazelwood6, CL Verweij3, A Rowe7, GN Goulielmos8,
LGM van Baarsen9 and F Ponchel1

Gene expression has recently been at the forefront of advance in personalized medicine, notably in the field of cancer and
transplantation, providing a rational for a similar approach in rheumatoid arthritis (RA). RA is a prototypic inflammatory
autoimmune disease with a poorly understood etiopathogenesis. Inflammation is the main feature of RA; however, many biological
processes are involved at different stages of the disease. Gene expression signatures offer management tools to meet the current
needs for personalization of RA patient’s care. This review analyses currently available information with respect to RA diagnostic,
prognostic and prediction of response to therapy with a view to highlight the abundance of data, whose comparison is often
inconclusive due to the mixed use of material source, experimental methodologies and analysis tools, reinforcing the need for
harmonization if gene expression signatures are to become a useful clinical tool in personalized medicine for RA patients.
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INTRODUCTION
Gene expression profiling is the analysis of the activity (the
expression) of thousands of genes, in isolation or all at once, to
create a global picture of biological functions. Many technical
platforms allow the measure of the entire genome activity
simultaneously in a particular cell or tissue or even organ. Gene
expression profiling has recently been at the forefront of advance
in personalized medicine, notably in the field of cancer and
transplantation. The value of gene expression signatures was
demonstrated for the prediction of tumour behaviour in several
types of cancer, distinguishing groups of patients with specific
tumour grades and/or prognosis,1–5 notably compared with
the sole use of clinical variables in lung adenocarcinoma,6,7

acute lymphoblastic leukaemia,8 B-cell lymphoma,9–11 prostate
cancer,12 breast,13,14 endometrial,15 colorectal,16 hepatocellular
carcinoma17,18 and other gastrointestinal cancers.19 Estrogen
receptor status in breast tumour was reflected by specific gene
expression patterns dividing high- and low-grade tumours and
associated with specific biological, histological or stage features as
well as metastatic propensity.20–22 Similar advances were also
seen in organ transplantation with respect to rejection. Peripheral
blood gene profiling was shown to provide adequate monitoring
of immuno-suppression in individual patients who received a liver
transplant23 as well as actually provide an alternative monitoring
technology to cardiac biopsy after allograph heart transplant with
significantly lower discomfort for patients.24 The AlloMap test for
allograph heart transplant rejection has been Food and Drug
Administration (FDA) approved (in 2008) in the USA, and three
main clinical trials provided evidence of the usefulness of this
gene expression signature.25–27 However, as for any other

biomarkers, adoption in clinical practice is slow, and evidence
that they have/will change practice are still lacking. Altogether,
these results demonstrated the utility of gene expression as a
modern tool able to provide personalized-specific information.

Inflammation is a biological process associated with the
production of many factors, therefore suggesting that changes
in gene expression could provide signatures at different phases or
stages of inflammatory diseases such as rheumatoid arthritis (RA).
This review will analyze currently available information with
respect to RA diagnostic, prognostic and prediction of response to
therapy with a view to highlight the current abundance of data,
whose comparison is often inconclusive due to mixed use of a
different material source, experimental methodology and statis-
tical tools, reinforcing the need for harmonization if gene
expression signature are to become a useful clinical tool in
personalized medicine for RA patient’s benefit.

Gene expression as a tool to investigate pathogenesis in RA
RA remains a prototypic inflammatory autoimmune disease with a
poorly understood etiopathogenesis despite recent advances
in unraveling the genetic contribution to RA revealing over
50–60 risk loci.28–31 RA is very heterogeneous as highlighted
by a stronger genetic contribution to anti-citrullinated protein
antibodies (ACPA)-positive disease compared with ACPA-negative
disease, potentially resulting in two divergent pathogenic
models32–34 with different rates of progression35–37 and
response to treatment.36,38

Besides these genetic advances in the understanding of RA,
gene expression profiling can provide useful information to this
understanding as well. Genome-wide gene expression analysis
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Table 1. Gene expression studies investigating the pathogenesis of RA

Number of
samples

Technology Analysis methodology Comparison Important findings Reference

Synovium
21 RA
9 OA

In-house cDNA
18000 spots
representing
genes of
relevance in
immunology

Hierarchical clustering
Tree view
Significance analysis of
microarrays (SAM)

RA vs OA
Within RA

Multiple pathways of tissue destruction and
repair

van der
Pouw Kraan
et al.40

15 RA In-house cDNA
11 500 genes

Clustering
Tree view
SAM

Within RA 160 genes distinguishing two RA subsets van der
Pouw Kraan
et al.156

5 RA
10 OA

In-house cDNA
5760 genes

Clustering
Tree View

RA vs OA Genes differentially express between RA and
OA

Devauchelle
et al.56

12 early RA
4 late RA

In-house cDNA
23 040 genes

Clustering
Tree View

Early vs
longstanding RA

Early RA divided into two groups based on
differences in genes critical for proliferation and
inflammation

Tsubaki
et al.44

13 RA In-house cDNA
29 717 genes

Expression Analysis
Systematic Explorer
Hierarchical structure of
gene ontology

Intra- and inter-
individual patients

Gene expression differences between patients
are greater than between biopsies obtained
from the same joint

Lindberg
et al.157

12 RA In-house cDNA
11 500 and
18 000) and qPCR

SAM hierarchical
Clustering Tree View
gene set enrichment
analysis using pathways

Within RA IL-7 signaling pathway
lymphoid neogenesis

Timmer
et al.158

12 RA
10 OA
9 HC

Affymetrix (Santa
Clara, CA, USA)
54 000 probes

MAS 5.0 software Inter-individual
variances in RA, OA
and HC

Disease-relevant pathways of RA pathogenesis
in different individuals
depend less on common alterations of
expression of specific key genes than on
individual variation

Huber
et al.159

66 RA
51 OA
72 HC

Affymetrix
15 000 clones

SAM, hierarchical
clustering

Within RA
RA vs Oa
RA vs ND

Molecular signatures between:
RA and OA
RA and HC
OA and HC

Ungethuem
et al.160

17 RA cDNA microarrays
B20 000 unique
genes

Cluster analysis,
TreeView, SAM, pathway
analysis PANTHER

Within RA Gene expression differentiated RA synovial
tissue into high and low inflammatory
subgroups.
Histological tissue subclassification matched
the subclassification based on gene expression
analysis. This subclassification was not reflected
in peripheral blood samples

van Baarsen
et al.46

Fibroblast-like synovial cells and cell cultures
5 RA
5 HC

Atlas cDNA array
588

RA vs HC Tumour-like growth pathways Watanabe
et al.161

19 RA 18 000 genes SAM hierarchical
clustering

Within RA Heterogeneity between patients is reflected in
FLS cultures (passage 4)

Kasperkovitz
et al.162

17 RA
20 OA
6 HC

Affymetrix ArrayAssist RA vs OA and HC Expression heterogeneity between patients
with the same disease
Home box-specific patterns for RA
Six gene signature specific for OA
FLS signature is related to clinical characteristics
with respect to diagnostic, prognostic and
response to treatment

Galligan
et al.43

Whole blood
35 RA
15 HC

18 000 SAMhierarchical
Clustering Tree View
gene ontology analysis

Within RA and vs HC Increased type I IFN signature in a
subpopulation of patients

Van der
Pouw Kraan
et al.163,164

109 RFþ ve
and/or
ACPAþve
arthralgia
patients
25 RA
6 HC

cDNA microarrays
B20 000 unique
genes.
Taqman low-
density arrays

SAMCluster analysis,
PAM
PANTHER

Within arthralgia
patients and vs HC
and RA

Identification of gene expression profiles (IFN-
mediated immunity and B-cell activity genes)
predictive for the progression to arthritis in
autoantibody-positive individuals at risk for
developing RA

van Baarsen
et al.69

115
seroþ ve
arthralgia
25 seroþ ve
no
symptoms
45 HC

Fluidigm
(Fluidigm
Corporation,
South San
Francisco, CA,
USA)

Within arthralgia
population
converters and non-
converters to
arthritis

Seven IFN gene signature as predictors of
progression to RA

Lübbers
et al.70

Peripheral blood mononuclear cells
14 RA
(8 RFþ ve, 6
RF� ve)
7 HC

10 000 Within RA (RFþ ve
vs RF� ve)
RA vs HC

No genes differentially expressed between
RFþ and RF�
Increased expression of immune-inflammatory
response genes,
phagocytic functions

Bovin et al.165
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(using micro-array approaches) between RA and osteoarthritis
(OA) synovial tissues have shown clear gene signatures differ-
entiating diseases (Table 1).39,40 Groups of genes associated with
RA clearly identified adaptive inflammatory response-related
genes, bone and cartilage degradation enzymes and
transcription factors, particularly the STAT1 (signal transducer
and activator of transcription 1) pathway. Several other
publications also highlighted differences with diseases such as
SLE (systemic lupus erythematosus), ankylosing spondylitis or
psoriatic arthritis and healthy controls.41–43 Importantly, many
genes were consistently associated with all diagnostics reflecting
inflammation or autoimmune bias rather than disease specificity;
others were clearly defining RA-specific events, including
interleukin (IL)-7R, matrix metalloproteinase-12 (MMP-12), S100
calcium-binding protein A8, chemokines, chemokine receptors, IL-
2–inducible T-cell kinase, tumour suppressor p53-binding protein,
Homeo box genes, T-cell receptor, regulators of T-cell activation,
CD62L Selectin and Runt-related transcription factor 3.

Heterogeneity within RA can already be associated with the
progression of disease, and obvious differences have been
observed in gene expression between early (o12 months) and

late (45 years) RA synovial tissue samples,44 suggesting
involvement of different pathophysiological mechanisms over
the course of disease. In a specially designed study, gene profiling
was applied to identify gene signatures corresponding to different
stages of RA comparing synovial biopsies from early RA (disease
duration o12 months, untreated), longstanding patients RA and
control synovia.45 Using a small microarray chip containing only
10 000 transcripts, early and longstanding RA have distinct
molecular signatures with different biological processes
participating at different times over the course of the disease,
such as host defences, stress responses, T-cell-mediated immunity,
tumour suppressor and MHC (major histocompatibility complex)
class II-mediated immunity. Additional pathways involved in T-cell
activation, endothelial signalling, hypoxia response and
plasminogen-activating cascade were also recognized. Similar
data were obtained showing differential signatures between low
and high inflammatory subsets of RA patients.46

Gene expression profiling in established RA further revealed
three main types of synovial tissue, the first with mainly T and B
cells, antigen-presenting cells and MHC gene signature, a second
signature included mainly stromal genes and a third showed

Table 1. (Continued )

Number of
samples

Technology Analysis methodology Comparison Important findings Reference

19 RA
14 SLE
11 asthma
9 post
vaccine

4300 Cluster analysis RA vs other diseases
Within RA

Early stage of RA is associated with a distinct
gene expression profile in PBMCs subset of
patients with SLE shared the ERA signature

Olsen
et al.166

29 RA
21 HC

12 626 Hierarchical clustering RA vs HC Monocyte-associated gene signature Batliwalla
et al.167

18 RA
15 HC

Illumina
48 701

Supervised hierarchical
clustering
Tree view
Gene Ontology analysis

RA vs HC Increased biological mechanism: immunity and
defense.
No significant downregulated ontology groups
Biomarkers for diagnostic interventions
Biomarkers for therapeutic interventions

Teixeira
et al.168

23 RA In-house
4500 cDNA
sequences

SAM Within RA 29 gene signature for SEþ ve RA
91 gene signature for active RA (DAS2845.0)
101 gene signature for CCPþ ve RA

Junta et al.169

49 RA
50 SpA
17 OA
HC

TaqMan custom-
made array

MedCalc software
package

RA vs SpA, OA, HC Bone metabolism signature in blood form RA/
OA/SpA

Grcevic
et al.170

17 early RA
9
established
RA

In-house
cDNA 4133 cDNA

SAM, hierarchical
clustering

Early vs established
RA

19 gene signature of disease severity in patients
with early and established RA

Liu et al.171

96 RA Illumina
25 000 cDNA

Ingenuity Pathways
Analysis

RA baseline vs 36
months

Significantly correlated with total erosions at
baseline but not with change in erosion over
time
No evidence of a signal differentiating disease
progression

Reynolds
et al.72

B-cells/ lympho-blastoid cell lines
8 RA
þ
8 HC

In-house
21 329

Pathway Analysis
(Pathway
Assist software)

RA vs HC Dysregulated B-cell biology
Pathogenic humoral immune response

Szodoray
et al.172

11 pairs of
RA-
discordant
MZ twins

Microarrays
20 000 gene

Significance analysis of
microarrays
Tree View
Gene ontology

RA twin vs the
healthy twin

Many discordant genes (upregulated and
downregulated)

Hass et al.173

Bone marrow-derived mononuclear cells
9 RA
10 OA

Affymetrix Expression Analysis
Systematic Explorer
(EASE)
Ingenuity Pathway
Analysis

RA vs OA Abnormal regulatory networks in the immune
response
Indication that the BM is pathologically
involved in RA

Lee et al.174

Abbreviations: ACPA, anti-citrullinated protein antibody; BM, bone marrow; FLS, fibroblast-like synovial cells; HC, healthy controls; MZ, monozygotic; IFN,
interferon; OA, osteoarthritis; PBMC, peripheral blood mononuclear cell; RA, rheumatoid arthritis; RF, rheumatoid factor; SE, shared epitopes; SLE, systemic
lupus erythematosus; SpA, spondylo arthropaty.
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mixed information.40 In relation with the difference in genetic
predisposition involving T-cell genes and the autoantibody status,
the first group may be speculated to reflect pathology associated
with the presence of ACPA although this was not investigated in
this paper. Studies combining gene expression and modern
imaging could also reveal association between molecular
signatures (for example, involving neo-vascularization genes)
with signals in power Doppler ultrasound examination, which is
predictive of progression towards early RA.47,48

Diagnostic, prognostic and preclinical signature in RA
Diagnostic. Given the destructive nature of RA, early diagnosis
and initiation of treatment is highly important.49–51 The recently
revised diagnostic criteria for RA (European League Against
Rheumatism) 201052 improved early diagnosis by including
ACPA in the criteria but demonstrated even more early disease
heterogeneity (only 50% of patients are positive), stressing the
need for other diagnostic biomarkers for ACPA-negative disease.53

Using a differential display reverse transcriptase–PCR approach,
genes were identified whose expression was different in early
inflammatory arthritis biopsies with a diagnosis of RA as opposed
to reactive arthritis.54 This work primarily highlighted genes that
were differentially expressed in T-cell synapse (LCK (lymphocyte-
specific protein tyrosine kinase), nil2a (Zinc Finger E-box Binding
Homeobox 1), T-plastin (plastin isoform T)), notably in relation
with anergy, which is a feature of RA (reviewed in Gatzka and
Walsh55). These also included apoptosis-related genes (caspase),
calcium signalling (calmodulin, reticulocalmin, calumenin),
transcription factors, signal transduction (ADP ribosylation
factors) and differentiation (Jagged/Notch), some of which were
also expressed in patient’s blood cells. Several genes identified in
this work (calmodulin, spermine, ADP ribosylation factors,
tropomyosin, eukaryotic translation initiation factors) were later
confirmed using micro-array technology in synovial tissues56 or
human blood cells.57 The Jagged/Notch differentiation pathway
was taken forward and identified clear differences of expression in
lymphocytes from RA patients compared with healthy controls
and also suggested a role for this pathway in regulatory T-cell
activity.58

Pratt et al. performed gene expression profiling in separated
CD4þ T cells from early inflammatory arthritis patients who later
went on to develop RA.59 A 12-gene signature distinguishing RA
from non-RA patients was derived and validated by quantitative
PCR (qPCR) in a second set of patients. Five out of the 12 genes
belonged to the IL-6-mediated STAT3 pathway. Interestingly, this
signature was valid in both ACPA-positive and -negative
inflammatory arthritis patients progressing towards RA, showing
an 85% sensitivity and 75% specificity for progression. Such 12-
gene signature, if replicated, may serve as alternative diagnostic
biomarker, particularly in seronegative patients.

Preclinical RA. Recognition of the preclinical phase of RA has
initiated a whole new field of research aimed at the discovery of
predictive biomarkers for the development of arthritis.60 Systemic
autoimmunity was shown to precede synovitis development.61

Indeed, ACPA can be present for years before disease onset.62,63 In
contrast, synovial abnormalities (that is, increased synovial
cellularity) do not occur until symptom onset,61 suggesting
that other unknown triggers/events/location are driving the
inflammatory immune response leading to RA. Alternatively,
counter-regulatory mechanisms suppressing disease
development despite the presence of autoimmunity may exist.
Animal models have suggested that the onset of arthritic disease
is preceded by phenotypic changes in draining lymph nodes
(LN).64–66 Flow cytometry data in LN biopsies from ACPA positive
at risk individuals, early arthritis patients and healthy controls
suggested increased T-cell activation in early arthritis but not in

ACPA-positive individuals.67,68 These data support the rational for
further extensive molecular analysis of LN during different phases
of (preclinical) arthritis.

Gene expression profiling of peripheral blood cells in arthralgia
patients (with confirmed absence of synovitis) and ACPA positivity
highlighted a gene signature, including interferon (IFN)-mediated
immunity and cytokine/chemokine activity that were specifically
observed in at-risk individuals who then went on to develop
arthritis.69 A second signature, including increased expression of
B-cell-specific genes, appeared to be associated with protection
from arthritis development. The increased IFN activity in the
preclinical phase of RA was confirmed in pre-onset RA patients
(samples from the Medical Biobank of Northern Sweden).70 The
combined analysis of such IFN and B-cell signature in an
independent validation cohort of seropositive arthralgia patients
confirmed a significant high risk for arthritis development in IFN-
high/B-cell-low profile (80%, odds ratio 6.22) and a low risk for IFN-
low/B-cell-high profile (26%, odds ratio 0.16). To demonstrate
clinical utility, a receiver operator characteristic (ROC) curve was
constructed for ACPAþ /RFþ (rheumatoid factor positive) alone
and in combination with both signatures. The area under the
curve increased substantially when including the IFN and B-cell
signatures and the sensitivity to diagnose pre-clinical RA increased
(from 16% to 52%) with a cutoff of 94% specificity.70,71

Prognostic. Another important need in RA biomarker research
relates to prognostic factors associated with disease progression
and development of (new) erosions. Reynold et al.72 performed an
extensive gene expression profiling study in peripheral blood cells
patients with early RA (disease duration o2 years, 75% ACPAþ ).
Using a 48-K Illumina chip (Illumina, San Diego, CA, USA), gene
expression signatures could be associated with severe disease
(410 erosions) at baseline and after 36 months of follow–up;
however, no clear expression profile could be associated with
disease progression and the development of new erosions.
Interestingly, pathway-level analysis suggests a relationship
between CTLA-4 (cytotoxic T-lymphocyte antigen 4) T-cell signalling
and erosive disease, consistent with a T-cell-mediated pathogenesis
early in the disease. In perspective of the genetic association
between several T-cell processes and ACPAþ /shared epitopes
positive disease,73 the increase in radiographic progression in these
patients is most likely reflected by this gene signature.35,36

Gene expression signatures as predictors of treatment response
The expanding range of various biological therapies that is
available for RA patients after failure to DMARDs like methotrexate
(MTX) has led to the detection of a significant inter-patient
heterogeneity in efficacy as well as in the appearance of important
adverse effects of these treatments. The pro-inflammatory
cytokine tumor necrosis factor a (TNF-a) has been identified as
a pivotal factor in driving inflammation in RA; however, the
spectrum of clinical responses to TNF blockade suggest that TNF
has an important role in the early phases of disease development
(with high response rate) but much less in late RA with the
development of alternative TNF-independent pathways.

The first approved target for biological therapies in RA was TNF-a.
Three antibodies (infliximab, adalimumab and golimumab), one
Fab’ antibody fragment (certolizumab) and one soluble receptor
with affinity for TNF-a and lymphotoxin-a (etanercept) were
developed over the years. Other biologicals targeted the cytokine
IL-1 (anakinra, soluble IL-1 receptor antagonist), the cytokine
receptor for IL-6 (tocilizumab, antibody), the B7 family of
costimulatory molecules (abatacept, FcIgG1–CTLA4 fusion protein)
and the pan B-cell marker CD20 (rituximab, antibody). Biologicals
are prescribed on a trial-and-error basis and approximately
30–40% of patients fail to respond to these therapies.74,75

Considering the high cost of biologicals and the possibility of
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severe side effects, the identification of responders and non-
responders to a specific biological would be a major improvement
in the management of RA patients. With the goal of optimizing
prescription of biologicals for personalized approaches, several
groups have studied gene expression profiling of blood cells or
synovial biopsies to determine molecular signatures that would
predict response to a biological therapy (Table 2).

Methotrexate. The mechanism of action of MTX (a folate
antagonist) is still largely unknown, while it is the most commonly
used drug for the treatment of RA. Its mechanism of action with
respect to the folate metabolism remains elusive in RA. Blits et al.76

investigated the cellular pharmacological impact of MTX on
peripheral blood cells using the samples obtained from MTX-naive
and MTX-treated RA patients as well as from healthy controls. The
data revealed that multiple folate metabolism-related genes were
consistently and significantly altered between the three groups.
Concurrent with an immune activation gene signature,
a significant upregulation of folate metabolizing enzymes
(g-glutamyl hydrolase, dihydrofolate reductase), and MTX/folate
efflux transporters (ABCC2 and ABCC5) was observed in the MTX-
naive group compared with healthy controls. Strikingly, MTX
treatment normalized such differential gene expression levels to
those observed in healthy controls. Hence, these results suggest
that under inflammatory conditions basal folate metabolism in
blood cells of RA patients is markedly upregulated, whereas MTX
treatment restores normal folate metabolism levels. This provides
insight into the mechanism of MTX action, paving the way for the
development of novel folate metabolism-targeted therapies,
although more work in this area will be required to determine if
a MTX predictive response signature can be established.

Infliximab. Infliximab was the first biological approved for RA, and
as such, it has been mostly studied for the identification of gene
expression signatures able to predict its response. In 2006,
Lequerré et al.77 analyzed gene expression profiles in peripheral
blood mononuclear cells (PBMCs) of RA patients before and after
infliximab treatment using an arbitrary collection of 12 000 probes
covering the PBMC transcriptome. They obtained a list of 41
transcripts of which 20 were confirmed by qPCR as predictors of
responsiveness with performance of 90% sensitivity and 70%
specificity. They next determined that eight was the minimal
number of transcripts able to predict responsiveness with 80%
sensitivity and 100% specificity. This publication supported the
possibility that a test based on gene expression biomarkers can be
designed to optimize prescription of infliximab in RA patients;
however, independent validation of these results still remains to be
established. The same year, another study was published looking
at gene expression profiles in synovial biopsies. Lindberg et al.78

analyzed RA patients before and after 2 months infliximab therapy
using an in-house microarray. Two hundred and seventy-nine
differentially expressed genes were detected between responders
and non-responders. At the synovium level, the MMP-3 was
significantly upregulated in responders. Two years later, van der
Pouw Kraan et al.79 analyzed gene expression profiles in RA
synovial biopsies using a genome-wide microarray. Their main
conclusion was that patients with a high tissue inflammation
signature were more likely to benefit from infliximab treatment. In
another article by Lindberg et al.,80 gene expression profiles in RA
synovial biopsies were analyzed using an in-house microarray.
The presence of lymphocyte aggregates was observed and
correlated with response to infliximab confirming previous data
obtained using histology.81 However, these results also questioned
microarray analysis of whole synovial biopsies as an appropriate
tool to predict the response to infliximab treatment, by
stressing out that the presence of lymphocyte aggregates may
represent an important confounding factor in gene expression
analysis.

Whole blood appears to be better suited to study gene
expression signatures and has then been extensively used to
develop predictive biomarkers to infliximab response. In 2010, van
Baarsen et al.82 performed a qualitative and quantitative
pharmacological study of the response to infliximab in whole
blood using a genome-wide microarray. In all treated patients, they
observed a neutralization of bioactive TNF irrespective of the
clinical response with several biological pathways being
downregulated (inflammation, angiogenesis, B- and T-cell
activation). These results implied a common effect of drug on
TNF-driven/-related pathways independently of response;
however; no predictive signature could be identified, hence
suggesting parallel TNF-dependent and TNF-independent disease
mechanisms. Sekiguchi et al.83 analyzed gene expression profiles in
whole blood using a microarray of 747 genes selected from public
database of SAGE (serial analysis of gene expression) for activated
T cells, dendritic cells, monocytes and macrophages. Eighteen
genes differentially expressed between responders and non-
responders were identified over the course of treatment, but
these genes did not predict response before treatment. They,
however, reported a clear difference in the kinetics of IFN-related
genes during infliximab treatment between responders and non-
responders. A further study measuring 15 gene of a pre-
determined set of IFN-response genes using real-time PCR in an
independent group of patients before and post treatment and
showed an increase in type-I IFN response gene expression 1
month after treatment in patients who had a poor clinical response
to treatment.84 However, again, no association between response
and baseline IFN response gene activity could be identified. This
signature was therefore not appropriate for evaluation of
treatment outcome before infliximab initiation but still may have
value very early in the course of treatment.

The first blood-based gene expression signature predicting
treatment response was published by Tanino et al.85 A whole
human genome microarray was performed on whole blood at
baseline. A list of 10 genes was identified. This 10-biomarker set
was then validated with an accuracy of 66.7%. About the same
time, Julià et al.86 analyzed gene expression of whole blood using a
whole human genome microarray. A robust eight-gene predictor
signature was identified and applied to an independent validation
set of patients. The predictive performance of this signature was
94.4% sensitivity and 85.7% specificity. However, also here
independent validation of these results still remains to be
established.

Other anti-TNF agents. Stuhlmüller et al.87 analyzed gene
expression profiles in monocytes of RA patients and healthy
subjects before and during Adalimumab using a commercial
microarray. CD11c was identified as a response to treatment
biomarker and was validated by qPCR in a second cohort with
100% sensitivity and 91.7% specificity. In another study, Badot
et al.88 analyzed gene expression profiles before and after
adalimumab in synovial biopsies using a commercial microarray.
Four hundred and thirty-nine genes were differentially regulated
between poor responders as compared with the moderate and
good responders and were clustered into two specific pathways:
cell division and regulation of immune responses (in particular,
cytokines, chemokines and their receptors). A validation study was
performed by immunostaining on synovial samples and
confirmed the differential baseline expression of five genes,
notably CD11c.

Etanercept was evaluated for molecular discrimination between
responders and non-responders. Koczan et al.89 analyzed gene
expression profiles in PBMCs using a commercial microarray.
Forty-two genes were differentially expressed. Twenty selected
genes were studied by qPCR, and eight were able to discriminate
between responders and non-responders. However, the authors
concluded that even if gene expression profiling was able to
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Table 2. Gene expression signatures as a tool for treatment outcome prediction

Drug Tissue Number of
samples

Technology Software Comparison Results Reference

MTX CD4þ
T-cells

31 early
RA

Illumina GeneSpring XI
(Agilent
Technologies, Santa
Clara, CA, USA)

Responders
vs non-
responders

133 CD4þ T-cell transcripts
differentially expressed

EWRR 2013
Abstract Pratt
et al.175

Whole
blood

52 RA Affymetrix Hierarchical
clustering

Responders
and non-
responders

16 gene signature shows clear
discrimination between responders
and non-responders to fMTX
treatment

EWRR 2013
Abstract Mans
et al.176

Synovial
tissue
fibroblast
cells (FLS)

17 RA; 20
OA; 6 HC

Affymetrix
47 000

Hierarchical
clustering, gene
ontology
classification

RA vs OA,
within RA

Different profiles in RA and OA FLS.
Eleven genes elevated in RA on
MTX 23 genes upregulated in RA
on prednisone therapy. Prednisone
and MTX treatment affected gene
signatures

Galligan et al.43

Leflunomide PBMC 10
patients
with early
RA

DualChip 282
genes

Hierarchical cluster,
statistical
environment ‘‘R’’

Before vs 12
weeks after
treatment

Treatment of early RA
Downregulation of many genes

Soldana et al.177

IFX Synovium 10 RA In-house array
30 000 cDNA
spots

Hierarchical cluster,
statistical
environment ‘R’

Before vs
after 9 week
of
treatment

Genes specifically changed in
patients who have a good response
to IFX treatment

Lindberg et al.78

Synovium 18 RA Human cDNA
microarrays
18 000

Supervized
hierarchical
clustering. Tree view
gene ontology
analysis (PANTHER
database)

Responders
vs non-
responders
to IFX

Patients with high expression of
genes involved in tissue
inflammation before treatment are
more likely to benefit from IFX
therapy

van der Pouw
Kraan et al.79

Whole
blood

18 RA Customized
microarray 747
genes

Cluster analysis Responders
vs non-
responders

Unique set of genes with
differentially expressed in
responders and non-responders to
IFX

Sekiguchi et al.83

Whole
blood

44 RA Illumina 47 000 Statistical
environment ‘R’

Responders
vs non-
responders

Eight-gene signature predicting
response to IFX

Julia et al.86

Whole
blood

Discovery
set 42 RA,
validation
set 26 RA

Agilent 44 000 Gene ontology IFX vs MTX
responders
vs non-
responders

10 gene signature for response
65.4% accuracy of prediction

Tanino et al.85

PBMC 13 RA In-house 12 000
cDNA

Hierarchical
clustering SAM

Before vs 3
months
after
responders
vs non-
responders

Predictive signature for IFX/MTX
efficacy
Profile correlating with treatment
response

Lequerré et al.77

PBMC 23 RA In-house array
4500 cDNA

Significance analysis
of microarrays (SAM)

IFX treated
vs non-
treated with
IFX

28 signature exclusively expressed
group treated with DMARDsþ IFX

Junta et al.169

Synovial
tissue

62 RA In-house array
17 972 unique
genes

SAM), hierarchical
clusters, gene
ontology

responders
vs non-
responders

Feasibility study Lindberg et al.80

Whole
blood

Discovery
set 15 RA,
validation
set 18 RA

20 000 unique
genes

Cluster analysis, Tree
view ontology
(PANTHER)

Before and
1 months
after IFX
treatment

Downregulation of genes in several
biological pathways

Inflammation
Angiogenesis
B- and T-cell activation

Pharmacological response
signature

Van Baarsen
et al.82

Whole
blood

33 RA In house:
43 000 cDNA
qPCR TaqMan

Tree view Ontology
(PANTHER)

Candidate 34 INF gene signature
set Validated 15 IFN gene set by
Taqman Final 5 gene set signature

Van Baarsen
et al.84

Peripheral
blood

RA RT-qPCR Canonical Variates
Analysis (CVA)

Responders
and non-
responders

30 gene set signature differentiated
responders from non-responders

EWRR 2013
Abstract
Szekanecz et al.178

IFX or ADA Whole
blood

42 RA Affymetrix
17 881genes

K-mean clustering Responders
vs non-
responders

Eight-gene signature: sensitivity of
71%, specificity of 61%

Toonen et al.101

ADA Synovium 25 RA Affymetrix
39 000 genes

Baseline vs
12 weeks of
therapy.

Markers of response to TNF
blockade

Badot et al.88

Monocytes Discovery
set n¼ 7,
validation
set n¼ 77

Affymetrix Hierarchical
clustering; Gene
Ontology; gene
interaction analyses
via Ingenuity
Pathway Analysis

Responders
vs non-
responders

Increased expression of CD11c in
responders to ADA: sensitivity
100%; specificity 91.7%; power
99.6%

Stuhlmuller
et al.87

ETN or ADA PBMCs 8 RA 25 341 genes SAM Responder Meugnier et al.103
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identify genes that were associated with therapeutic outcomes, a
gene expression signature at baseline was not reliable in
predicting the clinical outcome.

Rituximab. Despite the effective depletion of circulating B cells in
nearly all treated patients, 40–50% of patients do not respond to
rituximab treatment. Julià et al. analyzed gene expression profiles
in whole blood, CD4þ T cells, and B cells using a commercial
microarray and qPCR validation. An association of TRAF1 (TNF

receptor-associated factor 1) and ARG1 (Arginase 1) expression in
whole blood and an association with TLR4 (Toll-like receptor 4)
expression in CD4þT cells were observed.90 They also reported
that the serological status of the RA patient has no predictive
value for rituximab outcome. Until now, a study wherein the use of
these markers is validated is not reported.

Recently, Raterman et al.91 analyzed the gene expression
profiles in whole blood using a commercial microarray. They
identified a type I IFN signature constituting a predicting

Table 2. (Continued )

Drug Tissue Number of
samples

Technology Software Comparison Results Reference

Signature to better understand the
mechanisms of action of anti-TNF
treatment in RA patients

ETN PBMC 19 Affymetrix
18 400þ qPCR

Gene regulatory
network

Before vs
72 h after

Gene pairs and triplets predictive
for response at an early time point

Koczan et al.89

RTX Whole
blood,
CD4 T
cells, B
cells

9 RA Illuminaþ
TaqMan real-
time PCR

Responders
vs non-
responders

Several genes were associated with
response in all three blood cell
types

Julia et al.90

PBMCs Discovery
set 20 RA,
validation
set 31 RA

qPRC three
gene signature

Clinical
response

The type I IFN signature negatively
predicts the clinical response

Thurlings et al.92

Synovium 20RA Affymetrix
39 000 genes

Pathway analyses
(DAVID), Gene
Ontology, Gene Set
Enrichment Analysis

Baselines vs
12 week

RTX displays unique effects on
global gene expression profiles in
the synovial tissue

Gutierrez-Roelens
et al.179

Whole
blood

13 RAþ 9
RA

IlluminaþqPCR SAM, clustering
(treeview), Gene set
enrichment analysis,
MetaCore Pathway
analysis

Before and
after
treatment

Significant differential expression of
of IFN-type I response genes (IRGs)
at 3 and 6 months of RTX
treatment. Pharmacodynamic
induction of IRG expression in
responders at 3 months, which is
absent in non-responders At 6
months, the IRG expression returns
to baseline in the responders

Vosslamber et al.93

Synovium 20 RA Fluidigm Clustering
hierarchical
clustering

Before and
after
treatment

Baseline synovial Gene Score
correlates with early and late
clinical responses Gene Score
biology suggests that T cells and
macrophages are important.
Expression of remodelling and IF-a
genes correlates with poor
response

Hogan et al.180

Whole
blood

Discovery
set 14 RA,
validation
set 26 RA

Illumina SAM, hierarchial
clustering (treeview),
Ingenuity pathway
analysis

Responders
vs non-
responders

Significant differential expression of
IFN-type I response genes (IRGs) at
6 months of RTX treatment.
Baseline prediction of non-
response to RTX with a 3 and 8 IFN
type I response gene signature

Raterman et al.91

TOC PBMC 13 RA Affymetrix
28 869 genes,
qPCR

Canonical variates
analysis. Tree view
ontology (PANTHER)

Responders
and non-
responders

59 genes showed significant
differences in response to
treatment. Four genes determined
responders after correction for
multiple testing. Ten of the 12
genes with the most significant
changes were validated by RT-qPCR

Mesko et al.98

ANA PBMC 32 RA cDNA array
12 000 probes

Hierarchical
clustering

Responders
vs non-
responders

52 transcripts discriminating
responders

Bansard et al.94

MTX and
anti-TNF

PBMC 25 RA 4500 cDNA
sequences

Statistical
environment ‘R’

Responders
vs non-
responders

Differentiation of responders from
non-responders to MTX and anti-
TNF

Oliveira et al.181

MTX and
anti-TNF
(ETN, ADA,
IFX)

Whole
blood

60 RA (30
MTX 30
anti-TNF)

Affymetrix Hierarchical
clustering

MTX vs anti-
TNF

Expression of 34 genes was
associated with DAS28-CRP
Expression of 16 genes differed
significantly between the treatment
groups

Parker et al.182

Abbreviations: ADA, Adalimumab; ANA, anakinra; ETN, Etanercept; HC, healthy controls; IFN, interferon; IFX, Infliximab; LEF, Leflunomide; MTX, Methotrexate;
OA, osteoarthritis, PBMC, peripheral blood mononuclear cell; PN, prednisone; RA, rheumatoid arthritis; RT-qPCR, reverse transcriptase–quanititative PCR; RTX,
Rituximab; TOC, Tocilizumab.
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biomarker of response. Good responders had a low or absent IFN
response activity at baseline, whereas non-responders display an
activated type I IFN system before the start of treatment. Such an
association was in line with previous findings, demonstrating that
patients with a low IFN signature had a significantly greater
reduction of disease activity and more often achieved a significant
response.92 Clinical utility as predictor of non-response to
rituximab was demonstrated in a validation study using ROC
curve analysis, based on an optimal set of 3–5 IFN type I genes
according to the differential disease activity score.91 These results
suggest that RA patients with an IFNhigh signature represent a
different pathogenic subset of patients. Ultimately, these results
may provide a biomarker that can be implemented in clinical
practice to prescribe the most effective therapy for a particular
patient.

Vosslamber et al.93 studied the pharmacological effects of
rituximab in RA and observed an increase in IFN response activity
after treatment in responders, whereas the IFN signature remained
stable in non-responders. The IFN signature score returned to
baseline values at 6 months after the start of treatment in
responders. Thus a pharmacological increase in IFN response
activity during rituximab treatment may be necessary for a
favourable response and may provide an insight in the biological
mechanism underlying such response. These findings notably
provide a basis for further study on the role of the IFN signature as
a biomarker for effective dosing and timing of treatment, towards
patient-tailored treatment and prevention of relapse.

Anakinra. Finally, a gene expression signature for IL-1RA
(anakinra) treatment outcome was proposed. Bansard et al.94

analyzed gene expression profiles in PBMCs using an in-house
microarray. Fifty-two transcripts linked to a gene network focused
on IL-1b were identified of which 20 transcripts were selected for
qPCR validation. Performance of this 20 transcripts signature for
discrimination between responders and non-responders showed
80% sensitivity and 87.5% specificity. Seven out of the 20
transcripts were required for an acceptable prediction of
response. Two publications sharing exactly the same technical
features (same array and batch of PCR-amplified probes for
validation)77,94 allowed for a direct comparison between anakinra-
and infliximab-response signature. No overlap between anakinra-
and infliximab-selected transcripts was observed, indicating that
the selected signature reflects drug specificity rather than
pathophysiological mechanisms. However, studies on larger
cohorts are needed to validate this hypothesis.

Tocilizumab. Tocilizumab, a humanized monoclonal antibody
against the interleukin 6 receptor, is the most recent addition to
the panel of antibodies used for the treatment of moderate-to-
severe RA. Many clinical studies have been performed so far, and
clinical responses were clearly established.95–97 So far, one
publication reports gene expression for tocilizumab. PBMC gene
expression was assessed before and 4 weeks after treatment in a
small group of patients.98 Four genes (CCDC32, DHFR, EPHA4 and
TRAV8-3) were associated with response, and another 59 showed
changes with treatment. The four predictive genes for response
were not included in any of the published response signatures for
antibody-mediated TNF blockade.

Conclusion and future need for validation. Not surprisingly, maybe
gene expression signatures for a given clinical end point
published to date do not always overlap and have not always
been re-validated. The only exceptions were the signatures for
progression from preclinical phase of RA69,70 and the prediction of
response to rituximab.91,92 The often observed lack of
reproducibility can be explained by the heterogeneity in
technical protocols and microarray platforms used (notably
when comparing in-house array to commercial ones), data

analysis methods and, most importantly, the choice of clinical
assessment of response to treatment (Table 3). Beside technical
issues, the heterogeneity of the RA disease itself may be largely
responsible for lack of replication in data generated by different
groups also taking into consideration the small number of patients
included in these studies.

As highlighted in the previous section, genetic risk associated
with RA cover over 50–60 genes.28–31 Work related to
pathogenicity has clearly shown that different pathways can be
involved at different stage of the disease evolution. Altogether,
reproducibility of data could, maybe, only be expected if patients
were analyzed taking into account disease duration, current and
past treatment, outcome measures as well as ethnical origin, all of
which suggesting the need for large numbers of patients. Finally,
lack of reproducibility itself is not uncommon in microarray
studies.99 A recent publication of interest found an association
between a polymorphism in the CD84 gene with response to
Etanercept. Utilizing publicly available gene expression data from
PBMCs, they found an expression quantitative trait loci between
the lead genome-wide association study single-nucleotide
polymorphism and CD84 transcripts. Independent analysis of
CD84 expression in PBMCs from microarray data demonstrated a
non-significant association with response to Etanercept.100

Approaches that integrate genotypic and gene expression data
may therefore aid in the interpretation of genotype–phenotype
relationships.

An external validation study101 of existing gene expression
signatures for anti-TNF treatments in RA was performed using a
genome-wide expression profiling to validate eight previously
reported signatures predicting anti-TNF therapy outcome
(Lequerré et al.77—20 and 8 genes, Stuhlmüller et al.87—82, 11
and 3 genes, Julia et al.86—8 genes, Tanino et al.85—8 genes and
Sekiguchi et al.83—18 genes) on whole blood of 42 RA patients
before treatment with infliximab or adalimumab. One hundred
and thirteen genes differently expressed between responders and
non-responders at baseline were identified. Although the
signature of Lequerré et al.—20 genes was validated with 71%
sensitivity and 61% specificity, the robustness of the validation can
be debated given that only one algorithm was used to reach that
conclusion. Nevertheless, this work clearly demonstrate the need
for standardization of any signature across different groups and
suggest that proofs of concept exist but that collaboration to
perform meta-analysis bridging between different technical
platforms will be needed to bring this data into usable
biomarker signatures with respect to individual drug (and/or
target) specificity.

One major drawback of these studies remains the small number
of patients analyzed and the absence of internal validation for
most of them. On the other hand, it may be possible to develop a
global signature able to predict response to biologicals that share
the same target. Bienkowska et al.102 analyzed gene expression
profiles in whole blood before etanercept, infliximab or
adalimumab using a commercial microarray. An eight-gene
transcript signature that predict response to three TNF-a
blockers was identified with 89% accuracy (using the
Convergent Random Forest approach, for selection of non-
redundant molecular features predictive of treatment response,
in order to identify the minimum number of features with a
maximal predictive power). This observation is in line with data
from Meugnier et al.103 comparing the effect of etanercept or
adalumimab on leukocyte gene expression in RA patients who
successfully responded to treatment.102,103

miRNA signatures in RA
MicroRNAs (miRNAs) are a recent addition to the gene regulatory
mechanisms,104,105 and researchers are now exploring the
possibility of measuring miRNA in serum samples as well as
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cells. miRNA represent a class of non-coding RNA molecules
having pivotal roles in cellular and developmental processes,
predicted to affect up to 1/3 of all human protein-encoding genes.
miRNAs are potent negative modulators of gene expression
involved in several cellular processes.106 Compared with other
gene regulatory mechanisms such as epigenetic and transcription
factors, miRNA-mediated effects allow for the fine tuning of gene
expression. Downregulation of gene expression occurs by binding
to complementary sites in the 30 untranslated region of target
mRNAs leading to the degradation of mRNA.107 miRNAs are
considered to exert fine modulation rather than switch on/off
mechanisms in the regulation of genes. In addition to regulating
biological processes such as development, proliferation, apoptosis,
hematopoiesis, angiogenesis, metabolism, anti-viral and immune
responses, miRNA research gained widespread attention with the
recognition of aberrant expression and/or function in cancer,
neurological, cardiovascular, metabolic, neurodegenerative,
infectious, chronic inflammatory and autoimmune diseases.108–113

In terms of biomarker value, increasing numbers of reports
implicate an aberrant expression of certain miRNAs (miR-21, -17,
-92, -15, -16, -18a, -103, -107 -141, -193) in response to
chemotherapy in different malignancies while, in parallel, they
can be used for the classification of patients in different
subgroups.114–117 A large study on miRNA expression in SLE
determined several patterns of differentially expressed miRNAs
involved in various biochemical pathways leading to different
subtypes of diseases.118 miRNA seem to be important players in
RA as well.107,119–121 They were shown to modulate the
inflammatory process in joints (miR-155, miR-146).122,123 Further,
differential miRNA expression was found in RA compared with OA,
in relation to inflammation, and the target genes involved were
related to cartilage and bone damage.123 Comparing miRNA
expression in RA and OA synovial fibroblasts revealed subsets of
miRNAs that could potentially be used as clinical markers.124 OA
fibroblast-like synoviocytes expressed a considerably lower level
of miR-124a than RA, with effect on proliferation and chemokine
production.125,126 In the peripheral blood of RA patients, miR-146,
miR-155 and miR-16 were upregulated, in relation to active
disease,123,127 suggesting a potential as markers of disease
activity.112 miR-346 negatively regulated the IL-18 response of
RA fibroblast,128 whereas miR-146a was found to be associated
with IL-17 expression in both PBMC and synovium of RA
patients.129 In turn, TNF and IL-1 were shown to regulate the
expression of miR-146a in RA fibroblast-like synoviocytes.130 Of
note, a methylation-dependent regulation of miR-203 expression
in RA synovial fibroblasts has been demonstrated.131

Recently, miRNA biomarkers present in plasma with diagnostic
potential were also reported121 (miR-24, miR-30a-5p and miR-
125a-5p), compared with OA and SLE.

To our knowledge, there has been no study yet investigating
whether altered expression of any miRNAs is involved in RA
patients’ response to therapy; however, these will most likely
become available in the near future. Having defined such
signature will allow either these miRNAs or their corresponding
gene targets to be examined for any potential correlation with
response to anti-TNF or other biologicals treatment in RA. These
results will clearly uphold the basic studies associating gene
polymorphisms and gene expression with the response to
treatment, towards an improved personalized medicine approach
in RA.

Ethical issues associated with development of gene expression
signature in RA: towards personalized medicine
Gene expression signatures represent molecular fingerprints that
underlie human disease, with the potential to suggest an outcome
with the highest probability of achievement.132,133 The use of
molecular tools raises several ethical and legal concerns. Not all

clinical studies involve the same risks; the number of ethical and
legal issues in biomedical research, therefore, depends on the
nature of the test/data involved. Long-term implications for health
were associated with genetic data;134 however, data derived from
transcriptome analysis, as well as proteomics and metabolomics,
carry less ethically charged information than measures of the
genome. Hence, the testing of gene expression appears much less
problematic in terms of ethics due to the fact that mRNA gene
expression analysis is functionally close to any other biochemical
biomarker or dynamic phenotype and is not a permanently affixed
label to its carrier.135 Therefore, identifiable data are less sensitive.

The initial hope that the experiment will benefit the patient
need to be carefully addressed, especially when very sick patients
are eager to accept the promise of an unproven test. How we
should use gene expression profiling to guide decisions on
preventative and therapeutic intervention without over treating
(thus probably leading to adverse effects) remains difficult to
regulate, and experience will most likely direct future guidelines,
especially considering the potential conflict of interest between

Table 3. Important records for successful comparison between gene
expression studies

Study design
1. Studied populations
(a) Demographics (age, gender, race)
(b) Biological groupings between

subjects (health or disease symptom
duration and so on)

(c) Diagnostic criteria, stratification,
concomitant medication

2. Differences in clinical management of
the patients (that is, measurements in
treatment response)

3. Power analysis and confidence
4. No validation/replication set of patients

included in analysis

Technical aspects
Sample collection
and processing

5. Methods and timing of sample
collection and processing
(a) Blood tubes PAXgene vs

Tempus vs PBMC
(b) Influence of circadian rhythm
(c) Effect of tissue handling (ex vivo cell-

isolation procedures may activate
some cell types)

Sample selection 6. Cell source
(a) Blood vs tissue
(b) Whole blood vs PBMCs vs isolated

sub-populations of immune cells
(c) Tissue anatomical differences
(d) Tissue-heterogeneity of cell types

within biopsy (synovial tissue,
synoviocytes, tissue architecture
complexity)

Analysis
methodology

7. Overlap between sets of genes
investigated in different studies

8. Methods for the final selection of
predictive genes (as an outcome of the
study)

9. Different algorithms used to select
genes for investigation

Array selection and
preparation

10. Technological variation (array platform):
custom made (in-house made) vs
commercially available arrays

Hybridization 11. Hybridization, mixing, washing,
drying, QC

Abbreviations: PBMC, peripheral blood mononuclear cell; QC, quality
control.
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commercial companies offering preclinical testing and those
offering interventions. Once the initial research phase has
validated the signature, it becomes essential to determine ‘who’
should participate in the final decision to treat the patient (in the
case of a therapy outcome signature). Hence, there must be
reasonable scientific evidence that the patient will benefit from
the test being performed, as well as acceptable risks that one will
not. This involves understanding and explaining the strengths and
limitations of the signature to the patients that is critical to the
formulation of information leaflet for safe and effective use of the
test results.136 Result disclosure to patients participating to that
research phase must also be resolved from the initial consent. An
important consideration is the problem of constructing an
accurate prediction rule, and overly optimistic estimations of
prediction performance must be avoided.136 Patients need to be
aware of real expectations. Indeed, the concept of significance of a
test is unknown to the people who are tested, and they often
literarily do not understand what they are getting into, hence it
may carry a psychosocial impact the person is not prepared for.

Considering that the costs of obtaining data for gene
expression microarray tend to be very expensive and could be
reduced by merging existing data sets, data sharing, therefore,
appears essential to allow the development and validation of
gene expression signature. Similarly to informed consent, data-
sharing approaches must also be established initially to favour
collaborative work. In terms of developing a predictive tool, result-
sharing approaches will have to be used.132

The future of gene expression tests in RA
It is clear from the above review that gene expression profiling
offers great potential for understanding RA biology as well as for
patient management and personalization of treatment decisions.
It usually takes many years for new biomarkers or sets of
biomarkers to reach clinics, starting from basic research biomarker
discovery followed by validation, clinical utility evaluation,
manufacturing development and final approval by regulatory
authorities. This is further complicated by the difference in
legislation between European Union, United States and other
part of the world, although some recent approaches are aiming to
accelerate translation of biomarker from bench to clinic.135 In the
case of novel gene expression-based test, there is a further need
for clear and specific regulations. The Minimum Information About
a Microarray Experiment (MIAME) guidelines were developed by
the Microarray Gene Expression Data Society and published in
2001 with such a goal in mind.137 The MIAME guidelines lay out
the minimum standards needed to ensure that an experiment
using microarrays can be properly and independently
interpreted.138 Several clinical application tests using gene
expression profiling assays are already available on the market.
It seems, however, that these commercialized multi-gene
prognostic and predictive tests are so far limited to the field of
breast cancer and other cancer diagnostics. Some are FDA
approved and already support clinicians in prediction of tumour
reoccurrence and making decisions in selection of treatment
(MammaPrint, Oncotype DX),139–141 but for others the evidence
supporting clinical utility is still limited (THEROS Breast Cancer
Index, Aviara MGI, Mammostrat, BreastOncPx and PAM50).21,142–149

Hence, none of these are currently recommended for the
evaluation of breast cancer recurrence risk by national
guidelines (that is, National Comprehensive Cancer Network or
American Society of Clinical Oncology), and these tests remain
considered as investigational. Recently, new tests emerged for
acute heart allograft rejection (Allomap XDx, FDA approved)24,150

for diagnosis of obstructive CAD (obstructive coronary artery
disease) in patients with chest discomfort (Corus CAD)151,152 and
for the detection of Alzheimer’s disease.153,154 As all novel
biomarkers, it will take time for these to be adopted in daily

clinical practice despite recommendation and guideline being
published by professional association.155

Thus, there is precedent that could be applied to RA and other
autoimmune diseases. The Rheumatology community is therefore
facing a challenge to pool together the necessary resources and
to use the available information already collected to reach
appropriate conclusions and proceed with further validation,
which is necessary to reach the next level. Considering the impact
of RA on our modern society and the large amount of data already
available, regulatory authorities such as the European Commission
(FP7 and 2020 Horizon programs) as well as industry (Innovative
Medicine Initiative) have developed grant schemes to overcome
this challenge. Clear guidelines and standardization for such new
technology have also been developed (MIAME guidelines).138 The
successful translation of microarray data into clinical use in cancer
provides a strong rational for a similar approach to improve the
care of patients in rheumatology.
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