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ABSTRACT 35 

Background: 36 

We developed a classifier to infer acute ischemic stroke (AIS) severity from Medicare claims 37 

using the Modified Rankin Scale (mRS) at discharge. The classifier can be utilized to improve 38 

stroke outcomes research and support the development of national surveillance tools. 39 

Methods: 40 

This was a multistate study included all participating centers in the Paul Coverdell National 41 

Acute Stroke Program (PCNASP) database from nine U.S. states. PCNASP was linked to 42 

Medicare data sets for patients hospitalized with AIS, employing demographics, admission 43 

details, and diagnosis codes to create unique patient matches. We included Medicare 44 

beneficiaries aged 65 and older who were hospitalized for an initial AIS from January 2018 to 45 

December 2020. Using Lasso-penalized logistic regression, we developed and validated a 46 

binary classifier for mRS outcomes and as a secondary analysis we used ordinal regression to 47 

model the full mRS scale. Performance was evaluated on held-out test data using ROC AUC, 48 

ROC Precision-Recall, sensitivity, and specificity. 49 

Results: We analyzed data from 68,636 eligible patients. The mean age was 79.5 years old. 50 

77.5% of beneficiaries were White, 14% were Black, 2.6% were Asian, and 2% were Hispanic. 51 

The classifier achieved an ROC AUC score of 0.85 (95%CI: 0.85-0.86), sensitivity of 0.81 52 

(95%CI: 0.80-0.81), specificity of 0.73 (0.72 - 0.74), and Precision-Recall AUC of 0.90 (95%CI: 53 

0.90-0.91) on the test set. 54 

Conclusion: Among Medicare beneficiaries hospitalized for AIS, the claims-based classifier 55 

demonstrated excellent performance in ROC AUC, Precision-Recall AUC, sensitivity, and 56 

acceptable specificity for mRS classification.  57 

Key Words: Acute Ischemic Stroke (AIS), Classifier, Medicare, Modified Rankin Scale (mRS), 58 

Paul Coverdell National Acute Stroke Program (PCNASP) 59 
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 61 

Clinical Perspective 62 

What Is New?   63 

   - Developed a novel claims-based classifier to infer acute ischemic stroke (AIS) severity using 64 

the Modified Rankin Scale (mRS) at discharge.   65 

   - Integrated Medicare claims with clinical data from the stroke registry, utilizing penalized 66 

logistic regression for both binary and ordinal classification. 67 

What Are the Clinical Implications?   68 

   - Provides a robust tool for assessing stroke severity, which can enhance stroke outcomes 69 

research and quality improvement initiatives.   70 

   - Supports the development of national surveillance tools, potentially guiding clinical decision-71 

making and resource allocation in stroke care. 72 

Research Perspective 73 

What New Question Does This Study Raise?   74 

   - How can claims-based severity classifiers be effectively integrated into existing stroke 75 

research and clinical practice to enhance outcome measurement?   76 

   - To what extent is the classifier generalizable to diverse populations beyond Medicare 77 

beneficiaries? 78 

What Question Should be Addressed Next?   79 

   - Future research should evaluate the impact of incorporating such classifiers into risk 80 

adjustment processes and their effect on long-term stroke outcomes.   81 

   - Investigate whether similar modeling approaches can be adapted for other patient groups 82 

and healthcare settings to improve surveillance and treatment strategies. 83 

  84 
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INTRODUCTION 85 

Every 40 seconds, someone in the United States (U.S.) has a stroke.1 Stroke is one of 86 

the leading causes of long-term disability, affecting about 795,000 people in the U.S. annually.2 87 

Acute ischemic stroke (AIS) severity can be variable, with a significant portion of discharged 88 

patients presenting with declining functionality, leading to increased needs for rehabilitation and 89 

admission to nursing facilities.3 Both modifiable (i.e., obesity, diabetes, cardiovascular disease, 90 

certain medications, physical inactivity, etc.) and non-modifiable stroke risk factors (i.e., age, 91 

sex, race/ethnicity, genetics) can help determine prognosis, which is crucial for early tailored 92 

intervention.4 93 

Functional outcome prediction in AIS impacts the quality of patient care decisions.5,6  94 

Recent advances in computational and software technologies have greatly impacted the rise of 95 

Machine learning (ML) studies, offering more precise outcome measures.7–9 ML models have 96 

identified several crucial factors to predict and classify functional outcomes, such as an initial 97 

National Institutes of Health Stroke Scale (NIHSS) score, age, fasting blood glucose, creatinine 98 

levels, and the modified Rankin Scale (mRS).10,11 mRS has been widely used to assess AIS 99 

severity and clinical prognosis in electronic health records (EHRs) and registries.12 The creation 100 

of models and classifiers can be personalized to assess outcomes in AIS patients, including the 101 

classification of mRS.8,9,13 However, limited valid measures of stroke severity have hindered 102 

national, large-scale, claims-based studies.14  103 

Despite this limitation, claims data may offer indirect clues about a patient’s level of 104 

disability based on the types of claims filed. Leveraging a dataset that links claims to mRS 105 

scores, we explored whether supervised ML could develop a classifier to infer mRS from claims 106 

information. Such a model could enable the personalization of outcome assessments for AIS 107 

patients and the classification of mRS in large, claims-based studies, thereby configuring a tool 108 

for national surveillance of stroke severity. 109 
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We linked the Paul Coverdell National Acute Stroke Program (PCNASP) and Medicare 110 

claims-based inpatient data of older adults presenting with AIS to develop and validate the mRs 111 

classifier of stroke severity at discharge. 112 

 113 

METHODS 114 

The Medicare data supporting this study's findings are collected routinely by The 115 

Centers for Medicare & Medicaid Services (CMS) for billing purposes and were made available 116 

by CMS with no direct identifiers. All results were aggregated following CMS Cell Suppression 117 

Policies. Restrictions apply to the availability of these data, which were used under license for 118 

this study. Medicare data are available through CMS with their permission. PCNASP data are 119 

available through the CDC with their permission. 120 

This study was approved by the Mass General Brigham Institutional Review Board's 121 

(IRB) ethical guidelines and followed the Strengthening the Reporting of Observational Studies 122 

in Epidemiology (STROBE) guidelines for observational studies15 and the transparent reporting 123 

of multivariable prediction models developed or validated using clustered data (TRIPOD)16 and 124 

the updated guidance for reporting clinical prediction models that use regression or machine 125 

learning methods (TRIPOD-AI).17 126 

 127 

Study Design  128 

We conducted a retrospective analysis of claims data from AIS patients using a sample 129 

from nine large U.S states. We aimed to develop and validate a classifier based on claims data 130 

that infers mRS at discharge. 131 

 132 

Data Source  133 

We accessed data from the PCNASP registry and Medicare Claims data. PCNASP 134 

collects data on stroke cases and captures discharge mRS scores reported by clinicians or 135 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 11, 2025. ; https://doi.org/10.1101/2025.02.06.25321827doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.06.25321827
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

  6 

 

hospital staff.18 The PCNASP registry includes information from 2008 to 2020from the following. 136 

states: California; Georgia; Massachusetts; Michigan; Minnesota; New York; Ohio; Washington; 137 

and Wisconsin.  138 

We then matched the PCNASP data on individuals aged 65 or older with data from fee-139 

for-service Medicare, a national health insurance program administered by the Centers for 140 

Medicare & Medicaid Services (CMS).19 The Medicare Provider Analysis and Review 141 

(MEDPAR) files contain extensive information about these beneficiaries, including patient 142 

demographics, admission and discharge dates, diagnosis, procedure codes, provider identifiers, 143 

and comorbidities.20 144 

 145 

Study Population 146 

 We analyzed Medicare claims data for beneficiaries aged 65 and older hospitalized for 147 

AIS from January 2018 to December 2020. We included beneficiaries who were enrolled in 148 

traditional Medicare Part A (inpatient hospital insurance; care in a skilled nursing facility, 149 

hospice care, and some home health care) and Part B (physician and other medical provider 150 

services; outpatient care, medical supplies, and preventive services) who had mRS values 151 

documented in the PCNASP clinical database (based on ICD-10 code information). 152 

We used a multi-step exclusion and inclusion process to refine our patient population. 153 

First, we excluded patients with missing mRS scores and deceased patients in the PCNASP 154 

data and then linked the remaining data with Medicare claims data. We found patients with a 155 

diagnosis of AIS in the Medicare claims data during 2018-2020 and used only their first stroke 156 

encounter. We next created two groups based on the availability of an mRS score for any stroke 157 

(Supplemental Figure 1). The first group included patients admitted to the hospital with a ≥90% 158 

or more completion rate of mRS, while the second group included patients admitted to hospitals 159 

with less than <90% of mRS completion.  We used 20% of the first group and all of the second 160 
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group as a training sample; the remaining 80% of the first group was set aside as an 161 

independent test sample. 162 

 163 

Linking Databases 164 

Because there were no unique patient identifiers common to both databases, we applied 165 

a matching strategy to link individuals in the PCNASP and Medicare datasets.21 For this linkage 166 

we used variables such as age, gender, admission and discharge dates, diagnosis code, 167 

hospitals, and state. After linkage, we retained patients with unique matches, excluding cases 168 

where PCNASP IDs corresponded to multiple Medicare Beneficiary IDs and vice versa. Due to 169 

limited access to baseline institutionalized (non-outpatient) data, we excluded patients 170 

transferred from another hospital, skilled nursing facility (SNF), or other healthcare facilities. 171 

 172 

Variables 173 

We included demographic variables, medical history, treatments, and discharge 174 

outcomes. Most variables were extracted from the MEDPAR files. Those not included in 175 

MEDPAR were extracted from hospital level data by linking MEDPAR data with provider-level 176 

data and included variables such as bed size and hospital location, category and level. We 177 

included two stroke-related variables for inpatient conditions and procedures such as tissue 178 

plasminogen activator (tPA) and endovascular treatment. We used the value “1” if the condition 179 

or procedure was present and the value “0” if not. For continuous variables such as age and 180 

length of stay, we standardized their values. Categorical variables, such as race and admission 181 

type, were converted into dummy variables for use in the model. We used the variables included 182 

in the Chronic Conditions Warehouse (CCW) algorithms from Medicare to determine 183 

comorbidities and relevant patient medical history in our patient population.22 CCW flagged 27 184 

chronic conditions for each beneficiary within the study period, which we used to determine if 185 
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the beneficiary had any comorbidities. We selected the first-ever criteria a beneficiary met for 186 

the chronic condition. 187 

 188 

Construct of Interest (Endpoint) 189 

Our primary endpoint was the accurate classification of mRS at discharge. We 190 

dichotomized the mRS scale into “favorable” if valued as equal or less than 2 (from no 191 

symptoms to slight disabilities) and “unfavorable” if the mRS score was > 2 (interval from 192 

moderate disability to death).12,23  193 

 As a secondary analysis, we developed ordinal classifiers using the previous sampling 194 

approach to obtain more granularity among mRS categories. The two approaches of ordinal 195 

classification consist of a full mRS scale, one represented by 0: no symptoms; 1: no significant 196 

disabilities, despite symptoms; 2: slight disabilities; 3: moderate disability; 4: moderate to severe 197 

disability; 5: severe disability; 6: death.23, 24 The second ordinal model consists of the same full 198 

scale but excludes the death category. 199 

 200 

Model Development 201 

 Primary analysis - Binary Classifier: The binary classifier outputs probabilities for each 202 

class. A threshold of 0.5 was used to convert the probabilities into binary values. Predictions 203 

with a probability greater than or equal to 0.5 were assigned to the unfavorable mRS category, 204 

and those below 0.5 to the favorable class. 205 

For development of our binary classifier, binary logistic regression with a lasso penalty 206 

was trained to predict the binary mRS category (favorable vs unfavorable). The best 207 

hyperparameters were determined through a grid-search hyperparameter tuning process. The 208 

hyperparameters included a range of the inverse regularization strength C (10⁻ ⁴ to 100), 209 

tolerance values (1e-4 to 1e-1), maximum iterations (5000 to 50000), solver methods ('liblinear' 210 

and 'saga'), and class weight settings (None and Balanced). The hyperparameters that 211 
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generated the largest area under the receiver operator characteristic curve (ROC AUC) were 212 

chosen. Stratified 5-fold cross-validation was used to evaluate the classifier's performance 213 

within the training set. The model was separately evaluated on the test set, which was not used 214 

in model development.  215 

Secondary analysis - Ordinal Classifier: We also trained a classifier on the full-scale 216 

mRS values using ordinal regression. The ordinal regression model outputs probabilities for 217 

each class. To assign class labels, we selected the class with the maximum predicted 218 

probability.  219 

We fitted the model as a parallel classifier with a logit link and Lasso L1 penalty using 220 

the ordinalNet R package. Grid-search hyperparameter tuning was performed on the training 221 

dataset to select the best model based on lambda and family values. We defined a sequence of 222 

lambda values (ranging from 0.001 to 0.01) and multiple family values (cumulative, acat, sratio, 223 

cratio). 224 

For each family type in the classifier, models were fitted across a range of lambda 225 

values and log-likelihood was used to evaluate model performance. The optimal lambda for 226 

each family type was selected as the value that achieved the highest log-likelihood, once we 227 

selected the optimal family type and lambda value, we refitted the final classifier on the training 228 

data with the chosen parameters. We tested the refitted model on the test dataset to check for 229 

its generalizability.  230 

 231 

Performance Metrics 232 

For both primary and secondary analyses, we evaluated classifier's performance using 233 

ROC AUC and Area Under the Precision-Recall Curve (PR AUC) to assess the model’s ability 234 

to distinguish between classes. Sensitivity and specificity, were included to evaluate the model’s 235 

ability in identifying true positives and true negatives.  236 
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To calculate confidence intervals (CI) for our performance metrics, we performed 10,000 237 

iterations of bootstrap random sampling with replacement in each iteration.  We created a 238 

distribution for each metric and calculated 95% confidence intervals to show the classifier's 239 

performance variability. 240 

 241 

RESULTS 242 

Characteristics of the samples 243 

We assessed 295,241 hospital admissions for AIS between January 2018 and 244 

December 2020 for eligibility. After applying our inclusion and exclusion criteria, our sample 245 

included 68,636 unique Medicare beneficiaries who were 65 years old or older with a first 246 

admission for AIS and available discharge mRS scores. We obtained distinctive patient hospital 247 

encounters with < or ≥ 90% completion of the mRS (N= 33,654 and N= 34,982, respectively) 248 

(Supplemental Figure 1). 249 

The mean age for the full sample was 79.53 (SD 8.7), and 77.5% of beneficiaries were 250 

White, 14% were Black or African American, 2.7% were Asian, and 2% were Hispanic (Table 1). 251 

The mean age for our test data was 79.76 (SD 8.7). Approximately 91% of our patient sample 252 

was admitted through emergency care. Regarding discharge disposition, the test set data was 253 

more evenly distributed between home, SNFs, and inpatient rehabilitation facilities with 28%, 254 

23%, and 19%, respectively, followed by interventions, such as receipt of tissue plasminogen 255 

activator and endovascular intervention. The remaining percentage was distributed between 256 

approximately 100 other discharge disposition variables. Concerning comorbidities, 71% of 257 

beneficiaries had hypertension, 39% diabetes, and 29% congestive heart failure. A further 258 

breakdown of the full sample, training, and test set demographics can be found in Table 1. We 259 

used 63 covariates to predict a scale score, such as demographics, medical history, treatments, 260 

and discharge outcomes (a list can be found in Figure 1 and Supplement Table 5).   261 

 262 
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Binary Classifier  263 

On the held-out test data, our binary classifier achieved an ROC AUC score of 0.85 264 

(95%CI: 0.85 – 0.86, Figure 2), sensitivity of 0.81 (95%CI: 0.80 – 0.81), specificity of 0.73 (0.72 265 

- 0.74), and Precision-Recall AUC of 0.90 (95%CI: 0.90 – 0.91, Figure 3). Figure 1 shows the 266 

model’s feature coefficients sorted/ranked by their contribution to its predictions. Palliative care 267 

was the strongest predictor (2.02) of unfavorable mRS outcomes. Similarly, coded hemiplegia 268 

(0.71), and the use of ventilator during the AIS hospitalization (0.61) were strong predictors of 269 

unfavorable outcomes. Several features were also associated with a lower likelihood of 270 

unfavorable outcomes. For instance, binary discharge disposition (home vs others) had the 271 

strongest negative coefficient (-1.95), suggesting that favorable discharge outcomes strongly 272 

predict better recovery. Transesophageal echocardiogram (-0.31), and tPA administration (-273 

0.25), were associated with favorable outcomes. 274 

 275 

Ordinal Classifier  276 

 For our secondary analysis, the ordinal model's overall performance on the test data is 277 

presented in Table 2.  The model demonstrates a stronger ability to distinguish between mRS 278 

scores 0 (No Symptoms) and 5/6 (Severe Disability/Death) compared to its performance in 279 

differentiating intermediate outcomes (1–4) [see Supplementary Figure 2].  280 

Classes 2 (Slight Disability) and 3 (Moderate Disability) showed the lowest ROC AUC 281 

and PR AUC scores. Supplementary Figure 4 presents a box plot of grouped probabilities, 282 

highlighting how the model conflates mRS scores 2 and 3 with mRS score 4. The model's ability 283 

to distinguish between mRS scores 0 (No Symptoms) and 5/6 (Severe Disability/Death) is 284 

higher compared to its performance in differentiating intermediate outcomes (1–4) [see 285 

Supplementary Figure 2].  286 

 Additionally, we excluded death to evaluate whether the model's performance improves 287 

in predicting intermediate outcomes 2 and 3, however, no significant changes in performance 288 
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were observed. The model's performance is presented in the supplementary section. The 289 

coefficients from both ordinal models (see Supplementary Tables 6 and 7) were consistent with 290 

those observed in the binary model. For instance, in the full-scale mRS ordinal model, discharge 291 

disposition [i.e., discharged home] (coefficient = 1.99) increased the odds of falling into a lower 292 

(better) mRS category, whereas palliative care (coefficient = –2.72) increased the odds of a 293 

higher (worse) category. 294 

 295 

DISCUSSION 296 

 Considering the clinical burden of AIS and its influence on patient mortality, rate of 297 

disability, medical complications, and healthcare expenditures, it is fundamental to monitor the 298 

impact, severity, and prognosis of this condition.1,31,34 Our interpretation of the identified factors 299 

driving the classification highlights their strong face validity and consistency with existing 300 

literature as they align with clinical expectations and prior studies. Palliative care, hemiplegia, 301 

endotracheal intubation, and feeding device usage were strong predictors of unfavorable mRS 302 

outcomes, which is consistent with established knowledge on poor prognostic factors in acute 303 

ischemic stroke. Similarly, favorable discharge disposition (e.g., discharged home), tPA 304 

administration and brain imaging (CT or MRI) were associated with better outcomes, reinforcing 305 

the importance of early and effective stroke management. 306 

We developed and validated a claims-based classifier to accurately identify stroke 307 

severity measured by mRS at discharge in patients aged 65 or older who experienced AIS. By 308 

leveraging administrative claims data, our classifier demonstrates strong predictive performance, 309 

achieving excellent accuracy for categorizing stroke severity. This tool holds significant potential 310 

for facilitating large-scale research on stroke outcomes and improving national surveillance 311 

efforts, enabling more effective monitoring of stroke care quality and recovery outcomes. 312 

Validated claims-based classifiers for AIS surveillance are also important for observing 313 
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geographic trends and are essential for population health research, which in turn can inform 314 

public health policy and national guidelines to improve clinical practice.3  315 

Previous studies have utilized ML methods for stroke functional outcome 316 

assessment.5,13,28 Joon Nyung Heo et al. measured mRS 90 days after hospital discharge using 317 

three learning algorithm models: deep neural network, random forest, and logistic regression. 318 

The study had similar results with the logistic regression model (AUC 0.85), while the best 319 

performance was by the deep neural network model (AUC 0.88) 28 In our study, logistic 320 

regression for mRS classification at discharge yielded positive results with the ROC AUC score 321 

of 0.85, reiterating the results seen in other models.5,13,28,31 322 

Most importantly, the previous studies were limited by selection bias due to their 323 

sampling from single regions of the US.5,13,28,31 Our study overcomes this challenge by including 324 

a national, large-scale sample with representation of patients and practices from nine U.S. 325 

states spanning all regions of the US. Therefore, our cohort provides a more robust, inclusive, 326 

and representative claims-based classifier for beneficiaries with AIS than has been heretofore 327 

available.   328 

Prior studies creating mRS stroke-severity classifiers used a random assignment 329 

approach within hospitals to create training and test sets.9,13 This approach is potentially biased 330 

because random sampling does not account for hospital-level patterns in patient intake and 331 

reporting. We addressed this by categorizing the training and test data sets depending on 332 

whether hospitals reported < or ≥ 90% mRS completion. We only used data from those with 333 

≥90% mRS completion as the test set, with a random 20% allocated to the training set for 334 

representativeness, allowing the classifier to be trained and tested with higher-quality data and 335 

partially accounting for potential bias in random sampling. 336 

Furthermore, our study used binary and ordinal regression methods to classify the mRS 337 

score in AIS patients. Binary analyses yield results that are more easily interpreted by 338 

examining the absolute risk reduction between the two groups but do not exploit the within-339 
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group variation .23  We therefore also implemented an ordinal approach to achieve better use of 340 

the dataset.23,32 The use of the ordinal method increased statistical power and decreased loss of 341 

information when compared with previous studies.5,33 342 

Other research groups have focused on validating admission stroke severity, such as 343 

electronic health record (EHR)-based classifiers of NIHSS at admission.25 This is important work, 344 

as classifiers of stroke severity at admission can inform resource allocation while patients are 345 

admitted and guide other care measures. However, we focused on leveraging claims data to 346 

classify stroke functional outcomes at discharge using the mRS. The mRS is important because 347 

it provides information on patient functional outcomes, which can inform the prioritization of 348 

post-discharge stroke care allocation and predictions of long-term outcomes, among other 349 

applications.26,27 The score's ability to predict the level of functionality makes it an essential tool 350 

for national-level surveillance using administrative databases.5 351 

 352 

Limitations 353 

While we used a nationally representative stroke registry covering nine U.S. states and 354 

its major stroke centers linked to administrative claims data, results may not be generalized to 355 

states not included in our data set or smaller community healthcare centers. In addition, our 356 

selection of older adults ≥65 covered by fee-for-service Medicare may not represent other 357 

patient populations. Slightly over half of eligible Medicare beneficiaries are now enrolled in 358 

Medicare Advantage "Part C" instead of traditional Medicare. Beneficiaries must also be 359 

enrolled in Parts A and B, as well as Part B premium. Recent studies have shown that 360 

enrollment in lower-cost Medicare Advantage plans has increased among low-income and 361 

racial/ethnic minorities.35 Future studies assessing these groups would benefit these 362 

populations. 363 

We excluded also 12,894 patients transferred from another hospital, skilled nursing 364 

facility (SNF), or other healthcare facilities from the analytical sample, which may have omitted a 365 
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subset of the AIS population with a higher burden of baseline comorbidities. We selected this 366 

approach due to limited access to predictor data from these groups. Including these patients 367 

could have enhanced classifier representativeness and performance by increasing the sample 368 

size and introducing greater variability. Nevertheless, our classifier demonstrated high 369 

performance while capturing a broad and still nationally representative segment of the AIS 370 

population. 371 

We were limited by data availability for the Medicare and PCNASP datasets. While 372 

utilization of administrative claims linked to data registries represents a vast source of 373 

information for research purposes,36 some inherent limitations (e.g., human-type errors of 374 

scores and clinical scales and missing data e.g., missing mRS scores and other stroke-related 375 

variables) are surely present. Despite these limitations, national administrative claims data 376 

remains valuable in representing large-sized populations and their reflections.37,38 377 

Lastly, the replicability of our classifier can present some challenges, for example, 378 

requiring at least two databases to perform linkage of common unique identifiers and extract 379 

multiple variables. Users looking to replicate should have experience in Python and R 380 

Programming and can refer to the GitHub link in the Supplementary Material for replication. 381 

 382 

Conclusion 383 

We developed a claims-based classifier to identify stroke severity in AIS patients using 384 

discharge mRS. Importantly, we partially addressed potential bias by accounting for hospital-385 

level patterns in sampling using mRS completion rates. Our classifier has expanded on previous 386 

research by using PCNASP and Medicare-linked data from several states to assess stroke 387 

severity.  388 
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TABLES AND FIGURES 525 

Table 1. Demographic Characteristics 526 

Characteristics 
Full Sample 

(N = 68,636) 

Training / 

Validation 

(n = 40,650) 

Test 

(n = 27,986) 

Age, mean (SD) 79.53 (8.67) 79.38 (8.63) 79.76 (8.71) 

Gender (%)       

Female 37,439 (54.54) 22,045 (54.23) 15,394 (55.00) 

Male  31,197 (45.45) 18,605 (45.76) 12,592 (45.00) 

Race (%)       

White 53,192 (77.49) 31,794 (78.21) 21,398 (76.45) 

Black 9,629 (14.02) 5,394 (13.26) 4,235 (15.13) 

Asian 1,821 (2.65) 1,146 (2.81) 675 (2.41) 

Hispanic 1,361 (1.98) 753 (1.85) 608 (2.17) 

Other 1,483 (2.16) 876 (2.15) 607 (2.16) 

Unknown 997 (1.45) 593 (1.45) 404 (1.44) 

North American Native 153 (0.22) 94 (0.23) 59 (0.21) 

Admission Type (%)       

Emergency 62,639 (91.26) 36,657 (90.18) 25,982 (92.83) 

Urgently 4,911 (7.15) 3,375 (8.30) 1,536 (5.48) 

Trauma Center 559 (0.81) 326 (0.80) 233 (0.83) 

Intensive Care Unit (ICU) Type (%)      

Intermediate IOCU 13,325 (19.41) 8,379 (20.61) 4,946 (17.6) 

General 11,569 (16.85) 6,786 (16.69) 4,783 (17.09) 

Medical 3,033 (4.41) 1,599 (3.93) 1,434 (5.12) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 11, 2025. ; https://doi.org/10.1101/2025.02.06.25321827doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.06.25321827
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

  22 

 

Surgical 1,501 (2.18) 1,073 (2.63) 428 (1.52) 

Trauma 153 (0.22) 117 (0.28) 36 (0.12) 

Other 144 (0.20) 63 (0.15) 81 (0.28) 

Discharge Disposition (%)*       

Home/Self-care 18,931 (27.58) 11,233 (27.63) 7,698 (27.50) 

Skilled Nursing Facility 15,426 (22.47) 9,056 (22.27)  6,370 (22.76) 

Inpatient Rehabilitation Facility 

Interventions (%) 

12,856 (18.73) 7,213 (18.67) 5,266 (18.81) 

Tissue Plasminogen Activator 9,001 (13.11) 5,579 (13.72) 3,422 (12.22) 

Endovascular Intervention 3,089 (4.50) 1,780 (4.37) 1,309 (4.67) 

Comorbidities (%)    

Acute Myocardial Infarction 4,290 (6.25) 2,544 (6.26) 1,746 (6.24) 

Atrial Fibrillation 13,304 (19.38) 7,700 (18.94) 5,604 (20.02) 

Diabetes 26,708 (38.91) 15,581 (38.33) 11,127 (39.76) 

Congestive Heart Failure 19,766 (28.80) 11,555 (28.43) 8,211 (29.34) 

Hypertension 48,451 (70.59) 28,418 (69.91) 20,033 (71.58) 

Legend: Baseline demographics, admission type, Intensive Care Unit (ICU) Type, and 527 

comorbidities stratified by sample, training, and test groups. 528 

*We did not include all discharge disposition variable in the table, as there are over 100 existing 529 

items. We reported the most relevant ones to this table.  530 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 11, 2025. ; https://doi.org/10.1101/2025.02.06.25321827doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.06.25321827
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

  23 

 

Table 2. Full-Scale Ordinal Model Performance 531 

Metric  Score [CI] 

ROC AUC 0.81 [0.80 – 0.81]  

Precision-Recall AUC 0.39 [0.37 – 0.39]  

Sensitivity  0.42 [0.41-0.2]  

Specificity  0.89 [0.88 - 0.89]  

Legend: Performance Metrics from Full-Scale Ordinal. We report micro-average ROC 532 

AUC and Precision-Recall AUC.  533 
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Figure 1. Model Features 534 

 535 

Legend: The full list of the classifier's features and their coefficient values. COPD: Chronic 536 

obstructive pulmonary disease; ICU: Intensive Care Unit; tPA, tissue plasminogen activator; CT, 537 

computed tomography; MRI, Magnetic resonance imaging. 538 

 539 
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Figure 2. ROC (Receiver Operating Characteristic) Curve 540 

 541 

Legend: Comparison of the ROC in both the training and test sets of the classifier. 542 

 543 
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Figure 3. Precision-Recall Area Under the Curve for Binary Classifier 544 

 545 

Legend: Comparison of Precision-Recall Curve of the classifier in the training and test sets. 546 

 547 
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