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Abstract: China’s rapid urbanization and industrialization have affected the spatiotemporal patterns
of nitrogen dioxide (NO2) pollution, which has led to greater environmental pressures. In order to
mitigate the environmental pressures caused by NO2 pollution, it is of vital importance to investigate
the influencing factors. We first obtained data for NO2 pollution at the city level using satellite
observation techniques and analyzed its spatial distribution. Next, we introduced a theoretical
framework, an extended stochastic impacts by regression on population, affluence, and technology
(STIRPAT) model, to quantify the relationship between NO2 pollution and its contributing natural
and socio-economic factors. The results are as follows. Cities with high NO2 pollution are mainly
concentrated in the North China Plain. On the contrary, southwestern cities are characterized by low
NO2 pollution. In addition, we find that population, per capita gross domestic product, the share of
the secondary industry, ambient air pressures, total nighttime light data, and urban road area have a
positive impact on NO2 pollution. In contrast, increases in the normalized difference vegetation index
(NDVI), relative humidity, temperature, and wind speed may reduce NO2 pollution. These empirical
results should help the government to effectively and efficiently implement further emission reductions
and energy saving policies in Chinese cities in a bid to mitigate the environmental pressures.

Keywords: nitrogen dioxide pollution; extended STIRPAT model; urban environmental pressures;
Chinese cities; satellite observations

1. Introduction

The spatial patterns of nitrogen dioxide (NO2) pollution in China have changed dramatically due
to the rapid development of urbanization and industrialization in recent decades [1]. The overuse
of fossil fuels by industrial production, transportation, thermal power plants, and residential use
have led to a tremendous increase in NO2 pollution in the air. China has already become one of the
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most severely NO2 polluted countries in the world [1,2]. Moreover, the average annual surface NO2

concentration in many cities now far exceeds the “air quality standards” (40 µg/m3) issued by the
World Health Organization in 2005 [3,4]. Exposure to high concentrations of NO2 can directly affect
human health through decreased lung function and increased respiratory disease [5].

One of the major contributors to China’s environmental degradation are nitrogen oxides
(NOx = NO2 + NO), which play a vital role in tropospheric atmospheric chemistry and climate
change, including producing ozone, aerosols, and acid rain, as well as changing the radiative forcing [6].
The sources of NOx are derived from both anthropogenic emissions (mainly thermal power plants,
transportation, industries, and residential use) and natural emissions (including lightning, open fires,
and soil) [7]. NASA’s INTEX-B emissions inventory in 2006 showed that China’s NOx emissions
accounted for 57% of the total in Asia [8]. Thus, NOx has been listed in the emission reduction target of
air pollutants since the 12th five-year plan proposed by the Chinese central government [9]. In addition,
the average annual NO2 concentration has become one of the important indicators of the performance
evaluation of local governments across the country in recent years [10].

Satellite observation technology has the advantages of macroscopic dynamic monitoring in
real-time and large-scale coverage, and its observation data can reflect ground-level human activities
and environmental change. Tropospheric NO2 vertical column densities (VCDs) retrieved from a
series of satellite instruments have been widely applied to study NO2 pollution over China [1,2,11–13].
Previous studies also showed that both changes in the tropospheric NO2 columns and changes in surface
NO2 concentrations were closely correlated, indicating the possibility of using the satellite-observed
tropospheric NO2 to detect the changes in NO2 pollution on the ground over China [14,15]. NO2 is one
of the main air quality indicators that reflect the environmental quality of each city. Local governments
need to pay more attention to the reduction of NO2 pollution. Thus, it is of great significance to
quantify the driving factors of NO2 pollution at the city level while monitoring the NO2 pollution in
different ways.

By reviewing the existing literature, we can see that a growing number of studies has explored
the driving factors of air quality in China. For example, Zhao, et al. [16] found that urbanization had a
negative relationship with air quality in Chinese cities. Lyu, et al. [17] applied an index decomposition
method to analyze the driving forces of air pollution emissions from 1997 to 2012, indicating that
economic growth and energy intensity are the most important key factors affecting air quality in
China. Zhang, et al. [18] analyzed the driving factors of ambient air quality in Beijing. Unlike classical
regression models, some researchers took into account spatial effects in the models. Specifically, spatial
econometric regression models have been applied to detect the relationship between air quality and
socio-economic factors in China [19–22]. The previous empirical studies focused on the driving factors
of particulate matter, while other studies found that urban development, civilian vehicles, power
usage, population density, built-up areas, and coal consumption have close relationships with the NO2

pollution levels [6,15,Huang, et al. [23]]. However, these studies merely focused on the socio-economic
driving factors previously mentioned above, with less attention paid to the natural factors, including
the meteorological conditions and vegetation index that also affect the NO2 concentrations [5,24].
Both natural factors and socio-economic factors exert a large influence on environmental health.

One of the major sources of NO2 pollution is fuel burning [1]. However, the availability of energy
consumption data at the city level is extremely limited in China. Thus, some researchers found that
satellite-observed nighttime light data is a good proxy for describing energy consumption at different
regional scales [25–27]. Additionally, the normalized difference vegetation index (NDVI) products
observed by satellites, which describe the vegetation coverage at high spatial and temporal resolution,
are also taken into consideration [20,28]. To sum up, the contribution of this research is threefold.
First, we applied a widely-used theoretical framework, namely the STIRPAT model (a stochastic model
to study the stochastic impacts by regression on population, affluence, and technology) to examine the
driving factors of NO2 pollution at the city level. Second, we extended the STIRPAT model by taking
into account meteorological factors, namely, ambient air pressure, relative humidity, temperature,
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and wind speed, in addition to socio-economic factors. Third, we introduced the remote-sensing
technique to obtain a series of proxy indicators for economic and natural factors, such as nighttime
light data for energy use and NDVI for vegetation coverage to improve the reliability and quality of
data, since these data are not available in statistical yearbooks. To conclude, the broad purpose of this
study was to apply a theoretical model and introduce remote sensing techniques to comprehensively
reveal the driving factors of NO2 pollution in Chinese cities. The findings of the research will help
us to better understand the forces that drive increasing NO2 emissions, and to inform us of how to
effectively and efficiently mitigate NO2 pollution and improve environmental health.

In this research, we analyzed the spatial distribution of satellite-observed NO2 pollution over
China by employing spatial statistical methods. By incorporating multi-source remote-sensing satellite
observation data, the relationship between NO2 pollution and its driving factors, including both
natural factors and socio-economic factors, were then quantified by an extended STIRPAT model.
Finally, the policy implications are presented. Our results can also help the government make better
emission reduction and energy saving policies as well as reduce environmental pressures.

2. Methods and Data Sources

2.1. Methodology

2.1.1. Spatial Autocorrelation Method

According to Tobler’s first law of geography, “everything is related to everything else, but near
things are more related than distant things” [29]. Unlike ordinary correlation, the spatial autocorrelation
method is applied to investigate the relationship between a spatial unit and its neighbors. Hence, it is
useful to detect the cluster patterns as well as identify the spatial hot-spots over regions [30]. In this
work, the global Moran’s I measure was employed to examine the spatial patterns of the annual mean
tropospheric NO2 for all the prefectural-level cities (including four municipalities, Beijing, Tianjin,
Shanghai, and Chongqing) in mainland China. The global Moran’s I measures the degree of clustering
or dispersion for the whole study area. However, the results cannot identify the exact regions showing
the clustering patterns. Therefore, we subsequently perform hot spot analysis (Getis-Ord Gi* statistic)
to detect the local regions with the hot spots and cold spots of annual mean tropospheric NO2.

Global Moran’s I is expressed as follows.

I =

∑n
i = 1

∑n
j = 1 wi j(xi − x)

(
x j − x

)
S2 ∑n

i = 1
∑n

j = 1 wi j
(1)

where xi is the attribute value for a spatial unit, namely prefectural-level city i. wi,j is the spatial weight
between city i and city j by calculating the inverse Euclidean distance (the longer distance indicates the
smaller spatial weight value). Specifically, wi,j equals 1/di,j where di,j denotes the distance of each pair
of city i and city j. n is equal to the total number of cities and:

S2 =
1
n

n∑
i = 1

(xi − x)2 (2)

x =
1
n

n∑
i = 1

xi (3)

Global Moran’s I is positive, indicating that NO2 pollution at the city level tends to be similar and
show clustered spatial patterns. Moran’s I is negative indicating that NO2 pollution at the city level
presents dispersed spatial patterns. NO2 pollution is randomly distributed when Moran’s I is zero.
The results are valid only when the statistical significance of the p-value is smaller than 0.05 at the 95%
confidence level.
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The hot-spot analysis method is able to calculate the Getis-Ord Gi* statistic of tropospheric NO2

data at the city level. It is given below.

G∗j =

∑n
i = 1 wi, jxi − x

∑n
i = 1 wi, j

S

√ [
n
∑n

i = 1 w2
i, j−(

∑n
i = 1 wi, j )

2
]

n−1

(4)

The statistically significant positive Gi* statistic indicates the clustering of high values (hot spot)
and the statistically significant negative Gi* statistic indicates the clustering of low values (cold spot).

2.1.2. Econometric Methods

In order to elucidate environmental degradation and to specify the factors influencing
environmental impacts, [31] were the first to propose the IPAT model (I = PAT). The idea of the
IPAT model is that environmental impacts (I) are a function of three main driving factors, namely,
population size (P), affluence (A), and technology level (T). The environmental impacts have been
previously addressed for certain pollutants, for example, CO2 emissions [32–34], SO2 emissions [35,36],
energy consumption [37,38], wastewater discharges [39,40], etc. Moreover, PAT denotes three main
socio-economic driving factors affecting environmental quality. The IPAT model is an easy way to
investigate the factors of environmental pressures caused by anthropogenic activities.

We define the IPAT model as follows:

I = P·A·T (5)

where I denotes environmental impacts, which are measured by the tropospheric NO2 columns in
this research. Generally, the higher the NO2 value, the worse the environmental degradation, and the
greater the environmental pressure. P represents the size of the population of a region, while A denotes
the affluence level of the region, usually measured by per capita income. The increases in population
and affluence levels lead to the generation of many pollutants, with the subsequent degradation of the
environment. T denotes the technology level, which is able to reverse the negative effects of population
and affluence on the environment.

Empirically, the IPAT model is usually reformulated into a stochastic model, namely, the STIRPAT
model (a stochastic model, named for the stochastic impacts by regression on population, affluence,
and technology) [41]. It is expressed as follows:

I = aPbAcTde (6)

where a is a constant and b, c, and d denote the coefficients of the variables of population, affluence,
and technology levels, respectively. e is the error term.

In order to implement the IPAT model, we empirically transform Equation (1) into a linear model,
by means of taking logarithms. One advantage is that logarithmic transformation is able to reduce the
possible issue of heterogeneity. Then, it can be written as follows:

LnI = Lna + bLnP + cLnA + dLnT + Lne (7)

where Ln denotes natural logarithms. All other variables are the same as in Equation (2).
In this research, we employed a panel data set of 243 Chinese cities from 2005 to 2012 to discover

the factors influencing NO2 pollution. In the panel data setting, the model can be rewritten as follows.

LnIit = α+ β1LnPit + β2LnAit + β3LnTit + εit (8)

where subscript i and t denote the ith city of the year t. In addition, for simplicity we replaced the
constant term Lna with α, and Lne with ε. β is used to denote the coefficients to be estimated.
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Environmental pressures are not only driven by population, affluence, and technology but also
other socio-economic influencing factors, even natural and meteorological factors. In order to fully
understand the driving factors of NO2 pollution at the city level, we also took into account a set of
explanatory variables. Hence, the extended STIRPAT model can be written as follows.

LnIit = α+ β1LnPit + β2LnAit + β3LnTit +
∑k

j = 1
β jxit + µi + εit (9)

where x denotes a set of explanatory variables, namely, nighttime light (NTL), normalized difference
vegetation index (NDVI), urban road area (Road), and natural and meteorological factors, namely,
atmospheric pressure (Pres), relative humidity (Humi), temperature (Temp), and wind speed (WS),
which will be discussed later. βj denotes the estimated coefficients to these explanatory variables.
Besides, µi denotes city-specific and time-invariant variables that are not included in the STIRPAT
model. It can be treated as a fixed effects or random effects model. However, for the case of the Chinese
cities, a city-specific fixed effects model was likely to be better fitted than the random effects model.
The reason may lie in two aspects. One is that the unobserved disturbance in the model may be
correlated with the explanatory variables. The other is that heterogeneity between cities cannot be
random. Therefore, the omission of the fixed effects may lead to biased results. In order to verify the
hypothesis in support of the fixed effects model, we performed a Hausman test to examine if the fixed
effects model was better than the random effects model.

2.1.3. Variables

The dependent variable in the regression models was the tropospheric NO2 VCDs at the city
level, which is employed to measure the level of pollution in a region. In order to better understand
what causes NO2 pollution, we introduced an extended STIRPAT model, including population,
affluence, technology level, and a set of other explanatory variables mentioned above, which will be
discussed one-by-one.

Population (PopDen). An increase in population leads to demand for a larger amount of
various resources, for example, energy, and thus generates an increased amount of pollutants. As a
consequence, the ever-growing population is a big challenge for the environmental carrying capacity.
Specifically, China, the most populous country with approximately 1.4 billion people, needs a wide
variety of resources to support the demand for a better standard of living as China’s economy continues
to rapidly increase. However, China has also witnessed a series of severe environmental problems,
notably air pollution. Hence, it is hypothesized that population has a positive impact on NO2 pollution.

Affluence (PCGDP). Affluence is a major influencing factor that generally worsens environmental
quality. The main reason is that as income levels gradually increase, a large number of
high-energy-consuming industrial products and services are consumed, for example, vehicles,
air-conditioners, and central heating systems. As a result, various air pollutant emissions result.
Hence, it is assumed that affluence is positively correlated with NO2 pollution. In this research, the per
capita GDP of a city was used to measure local affluence.

Technology (STRatio). Technological progress is the most effective way to reduce emissions and
improve environmental quality. In this research, we employed the ratio of the secondary industry
to the tertiary industry to denote the level of technologies. This is because the industrial sector
is the largest pollutant emitter. In the rapid process of industrialization, China has witnessed the
large-scale expansion of all industrial sectors in a bid to realize the goal of economic growth, but at the
expense of the environment. In the early stage of economic development, resource-extensive industrial
sectors with low technology and added value dominated the economy. As technological progress
continued, China is facing a transition from the secondary industry to the tertiary industry, which
is characterized by a higher level of technology and higher added value. This industrial upgrade is
consistent with the technological changes that accompany economic development. Hence, the greater
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the ratio of secondary industry to tertiary industry, the lower the technology level, and vice versa.
We hypothesized that this has a positive effect on NO2 pollution.

When analyzing the factors influencing the environmental impact, we also take into account a set
of other socio-economic factors as well as natural factors in the regression model, including nighttime
light (NTL), normalized difference vegetation index (NDVI), urban road area (Road), ambient pressure
(Pres), relative humidity (Humi), temperature (Temp) and wind speed (WS), in addition to population,
affluence, and technology contained in the extended STIRPAT model.

Nighttime light (NTL). Rapid urbanization and industrialization in China have consumed a lot of
energy resources. Profligate burning of fossil fuels releases large quantities of NOx into the atmosphere,
thus deteriorating the local environment. In recent decades, China has consumed almost half of the coal
in the world, and about 70% of China’s industrial and residential energy consumption is supplied by
coal burning [42]. In recent literature [43–46], satellite-observed nighttime light data have been widely
used to explore the levels of socio-economic development. Additionally, the total annual nighttime
light data have been closely correlated with energy consumption [25,26]. Generally, the greater the
energy consumption, the more NOx is emitted, and the more NO2 in the atmosphere. To sum up,
in this study we used the total nighttime light value as a proxy to describe energy consumption at high
resolution and hypothesize that it has a positive effect on NO2 pollution.

Urban road area (Road). Vehicles in cities are one of the major sources of NO2 pollution [8].
According to the Multi-resolution Emission Inventory for China (MEIC) inventory, NOx emitted from
vehicles accounted for about 25.4% of total anthropogenic emissions in 2010 over China [47]. In recent
years, China has witnessed a rapid increase in the number of vehicles as a consequence of economic
growth and the development of the transportation industry, heavily dependent on the building of the
urban road. In other words, the expansion of the urban road area has a greater capacity to allow more
vehicles and contribute to the development of the transportation industry, which results in increased
pollution. Hence, we hypothesize that the expansion of the urban road area is positively associated
with NO2 pollution.

The normalized difference vegetation index (NDVI) can accurately reflect the surface vegetation
coverage. Cities with higher NDVI values are experiencing lighter environmental pressures and the
vegetation is well-known to reduce the air pollutants in the air. Therefore, a higher NDVI index may
exert a negative effect on NO2 pollution.

2.2. Data Sources

The ozone monitoring instrument (OMI) onboard the EOS-Aura satellite was launched on
15 July 2004. The satellite flies in a sun-synchronous orbit with the local equator crossing time
around 13:40. The OMI pixel size varies from 13 × 24 km2 at nadir to 40 × 250 km2 at the
outermost fields of view. The detailed tropospheric NO2 columns retrieval algorithms were reported
by Boersma, et al. [48]. In this research, the daily level-2 DOMINO v2 swath product dataset
(http://www.temis.nl/airpollution/NO2.html) from the Royal Netherlands Meteorological Institute
(KNMI) was applied. We mapped the daily swath data into to a 0.125◦ × 0.125◦ grid dataset using the
area-weighted averages interpolation method. We only included valid pixels with a cloud radiance
fraction <50% and removed pixels that were affected by the row anomaly. The daily NO2 VCDs were
averaged into monthly NO2 VCD values and then averaged into annual NO2 VCD values in this study.
The detailed description of the satellite data processing is the same as in Cui, Zhang, Bao, Wang, Cai,
Yu and Streets [45]. The uncertainties of tropospheric NO2 column data are ±30% (relative error) and
0.7 × 1015 molecules cm−2 (absolute error) [48].

Other ancillary data sources related to the study of contributing factors are as follows: (1) the
nighttime light data from 2005 to 2012 were retrieved from the the Defense Meteorological Satellite
Program’s Operational Linescan System (DMSP/OLS) satellite instrument. The episodic events (fires,
gas flares, volcanoes or aurora) of NTL were removed and further refined to be consistent with the
time series developed by Zhang, et al. [49]. The total annual nighttime light data at the city level

http://www.temis.nl/airpollution/NO2.html
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was then calculated; (2) normalized difference vegetation index (NDVI) data were provided by the
MODIS Version 5 NDVI Level 3 monthly product with a spatial resolution of 1 km (https://lpdaac.
usgs.gov/dataset_discovery/modis/modis_products_table/myd13a3). To ensure a better description
of vegetation conditions at the city level, we only selected the NDVI value during the growing
season (March–October) to process into the annual mean NDVI dataset [50]; (3) the ground-based
meteorological variables, including relative humidity, temperature, wind speed, and pressure were
obtained from the National Meteorological Information Center of China Meteorological Administration
(http://data.cma.cn/). We interpolated the daily meteorological station data to 3 km spatial resolution
using an inverse-distance-weighted (IDW) method, and then averaged them into an annual mean
dataset; (4) a set of yearly socio-economic indices for cities from 2005 to 2012, including gross domestic
product per capita, population, primary, secondary and tertiary industrial outputs, built-up areas and
road areas from the China Statistical Yearbook [51] and the China City Statistical Yearbook [52]. In this
work, the tropospheric NO2, NDVI, and NTL data and meteorological parameters at the prefectural
level were retrieved according to China’s administrative boundaries. Due to the consistency of the
DMSP-OLS nighttime light data, we chose the study period of 2005–2012 for this research.

The meteorological parameters, including ambient air pressure (Pres), temperature (Temp),
humidity (Humi), and wind speed (WS), are also important factors that affect the tropospheric NO2

in different regions. Increasing the temperature can enhance photochemical reactions and reduce
the lifetime of NO2 in the atmosphere; higher relative humidity causes lower tropospheric NO2 by
promoting the conversion rate from NOx to secondary aerosols; wind speed affects the rate of diffusion
and dilution of pollutants in the atmosphere; and higher pressure increases NO2 levels by enhancing
the stability of the atmosphere [5]. Therefore, the descriptive statistics of the variables involved in the
regression models (mean, standard deviation (Std. Dev), minimum (Min) and maximum (Max)) are
summarized in Table 1.

Table 1. Descriptive statistics for variables.

Variable Definitions Unit Mean Std. Dev. Min Max

NO2 Tropospheric NO2 VCDs 1015 molecules cm−2 6.76 5.54 0.80 27.86

Pop Population per km2 Capita/sq.m 438.12 323.27 15.89 2590.95

PCGDP Per capita gross domestic product Yuan/Capita 25611.11 20089.61 1652.48 151645.00

STRatio Ratio of secondary industry to tertiary industry % 1.58 0.90 0.34 9.05

Road Urban road area 10,000 km2 1376.74 1752.99 14.84 13322

NTL Nighttime light values DN 9338853 7473880 499456 48631951

NDVI Normalized difference vegetation index Unitless 0.57 0.13 0.08 0.78

Pres Ambient air pressure near ground hPa 969.96 54.60 751.03 1016.86

Humi Relative humidity % 68 8 42 84

Temp Temperature ◦C 14.31 5.00 0.43 23.72

WS Wind speed m/s 2.12 0.52 1.09 4.80

3. Results

3.1. Spatial Characteristics of NO2 Pollution over China

Figure 1 shows the spatial distribution of the annual mean tropospheric NO2 over China in
2006, 2008, 2010, and 2012. The severe NO2 pollution regions not only covered the traditional urban
clustering regions, namely, the North China Plain (NCP, including Beijing, Tianjin, Hebei, Henan and
Shandong provinces), the Yangtze River Delta (YRD), and the Pearl River Delta (PRD), but also include
Shanxi Province, the Chengyu city-cluster and the Guanzhong city-cluster. As shown in Figure 1,
the polluted regions (grids in color from light yellow to red, exceeding 7 × 1015 molecules cm−2)
gradually enlarged during this period. Moreover, the NO2 pollution of most regions presented an

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/myd13a3
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/myd13a3
http://data.cma.cn/
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increasing trend in these years, particularly the NCP region, Chengyu city-cluster, and Guanzhong
city-cluster. On the other hand, the PRD region showed a decreasing trend of NO2 pollution.

Spatial autocorrelation methods were then employed, including the global Moran’s I method and
the hot-spot analysis technique, to further quantify the spatial patterns of tropospheric NO2 at the
city level over China. Euclidean distance and inverse distance conceptualization were chosen for this
analysis. Figure 2 shows the results of the application of the global Moran’s I method from 2005 to 2012.
Overall, the index exhibited an increasing trend, with two interruptions in 2006 and 2009. The high
Moran’s I index values (0.73–0.86) suggest that tropospheric NO2 exhibited significant clustering over
China during this period. We next employed the hot-spot analysis. As shown in Figure 3, the results
of the hot-spot analysis at the city level in 2012 revealed that hot-spots are mainly concentrated in
the NCP region and the YRD region, while cold-spots are found in the southwest, mainly in Yunnan,
Sichuan, Guizhou and Guangxi provinces.Int. J. Environ. Res. Public Health 2019, 16, 1487 9 of 17 
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3.2. Regression Model Results

In this subsection, we present and discuss the estimated results of the extended STIRPAT model.
However, before addressing these estimations, the Pearson correlation coefficients between variables
are reported. These are summarized in Table 2.
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Table 2. Pearson correlation coefficients.

Variable LnNO2 LnPop LnPCGDP LnSTRatio LnRoad LnNTL LnNDVI LnPres LnHumi LnTemp LnSpeed

LnNO2 1

LnPop 0.6828
[0.0000] 1

LnPCGDP 0.4523
[0.0000]

0.1900
[0.0000] 1

LnSTRatio 0.2308
[0.0000]

0.0432
[0.0567]

0.3087
[0.0000] 1

LnRoad 0.5474
[0.0000]

0.5055
[0.0000]

0.5900
[0.0000]

−0.0776
[0.0006] 1

LnNTL 0.5271
[0.0000]

0.2748
[0.0000]

0.4453
[0.0000]

−0.0344
[0.1290]

0.6473
[0.0000] 1

LnNDVI −0.0231
[0.3079]

0.3119
[0.0000]

−0.2944
[0.0000]

−0.2389
[0.0000]

−0.0732
[0.0012]

−0.0702
[0.0020] 1

LnPres −0.0417
[0.0000]

0.4341
[0.0000]

-0.0841
[0.0002]

−0.1443
[0.0000]

0.0449
[0.0476]

−0.1092
[0.0000]

0.7222
[0.0000] 1

LnHumi −0.1070
[0.0000]

0.4213
[0.0000]

−0.1720
[0.0000]

−0.1487
[0.0000]

−0.0002
[0.9942]

−0.2034
[0.0000]

0.7325
[0.0000]

0.8837
[0.0000] 1

LnTemp 0.1649
[0.0000]

0.5543
[0.0000]

−0.0529
[0.0197]

0.0818
[0.0003]

0.0558
[0.0138]

−0.1430
[0.0000]

0.3881
[0.0000]

0.6836
[0.0000]

0.5866
[0.0000] 1

LnWS 0.2446
[0.0000]

0.0355
[0.1178]

0.3530
[0.0000]

0.0063
[0.7804]

0.2890
[0.0000]

0.4073
[0.0000]

−0.3701
[0.0000]

−0.2689
[0.0000]

−0.3503
[0.0000]

−0.3162
[0.0000] 1

Note: p-values in brackets.
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We will first present the results of the pooled least squares (PLS) model, since it generally serves as
the benchmark model. These results are summarized in Table 3. As shown in Table 3, all explanatory
variables were statistically significant at the 1% significance level. The R2 statistic indicates that 75.1%
of the total variation of the dependent variable, namely, the NO2 pollution level, can be explained
by these 10 explanatory variables. The results of an F statistic test showed that the null hypothesis
of the joint insignificance of all variables can be strongly rejected. In addition, we performed a test
for the potential issue of multicollinearity. It was found that the variance inflation factor of each
explanatory variable was not greater than 10, indicating that the model did not suffer from the problem.
To conclude, the PLS model was well fitted.

Table 3. Pooled least squares results.

Variable Coefficient Std. Err Probability VIF Tolerance

LnPop 0.7449 0.0176 0.0000 2.54 0.3946
LnPCGDP 0.2400 0.0195 0.0000 2.23 0.4476
LnSTRatio 0.1976 0.0248 0.0000 1.43 0.7014

LnRoad −0.0442 0.0167 0.0080 3.19 0.3130
LnNTL 0.2004 0.0174 0.0000 2.18 0.4589

LnNDVI 0.5498 0.0538 0.0000 3.08 0.3250
LnPres −0.2134 0.0410 0.0000 7.21 0.1386

LnHumi −2.1780 0.1679 0.0000 5.80 0.1725
LnTemp 0.0172 0.0332 0.6050 2.97 0.3366
LnWS −0.0273 0.0477 0.5670 1.60 0.6252

Constant −8.4091 0.2605 0.0000
R2 0.7514

Adj R2 0.7501
F-Statistic 584.35

p-value (F-Statistic) 0.0000

Regarding the estimated coefficients, we found that population, per capita GDP, the ratio of the
secondary industry to the tertiary industry, total nighttime light data, normalized difference vegetation
index, and wind speed were positively correlated with NO2 pollution, while urban road area, relative
humidity, and temperature had negative impacts on NO2 pollution. We did not expect that the relative
humidity would have a negative impact. Moreover, its elasticity coefficient was −2.1780 and may be
overestimated. Similarly, the wind speed variable was found to be positive, also contradicting our
expectations. The major explanation for these unexpected results was that the PLS model ignored
city-specific fixed effects, which may have led to biased results. Hence, we conducted an F test and
found that the null hypothesis of the joint insignificance of µi could be strongly rejected at the 1%
significance level. Hence, we concluded that the fixed effects model may be better fitted than the PLS
model. The next step was to compare the results of the fixed effects model and the random effects
model. The results are summarized in Table 4.

We found that all variables in the fixed effects model were statistically significant at least at the 5%
significance level. On the contrary, for the random effects model, the variables of NDVI and urban
road area were highly insignificant. In order to determine if the fixed effects model was better fitted
than the random effects model, we performed a Hausman test. The test results were in favor of the
fixed effects model.

The population variable was found to be positive, in line with our expectations, indicating
that an increase in population results in NO2 pollution. The coefficient is 0.3874, indicating that an
increase in population of 1% within the dataset was associated with a rise in NO2 pollution of 0.3874%.
Population is mainly attributed to worsening environmental quality, since inhabitants consume a large
amount of energy and other resources, and thus generate various pollutants. Although the growth rate
of the population of China has been gradually declining during the last decade, more than 1.4 billion
people will pose a huge threat to the environment in the long run.
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Table 4. Results of the fixed effects and random effects models.

Fixed Effects Model Random Effects Model

Variable Coefficient Std. Err Probability Coefficient Std. Err Probability

LnPop 0.3874 0.1032 0.0000 0.6855 0.0346 0.0000
LnPCGDP 0.3783 0.0163 0.0000 0.3456 0.0151 0.0000
LnSTRatio 0.1055 0.0377 0.0050 0.1386 0.0325 0.0000

LnRoad 0.0267 0.0135 0.0480 0.0158 0.0131 0.2280
LnNTL 0.0897 0.0233 0.0000 0.1245 0.0202 0.0000

LnNDVI −0.2064 0.0818 0.0120 −0.1316 0.0648 0.0420
LnPress 0.0439 0.0239 0.0660 0.0240 0.0231 0.2980
LnHumi −0.6783 0.1272 0.0000 −0.9016 0.1222 0.0000
LnTemp −0.1592 0.0499 0.0010 −0.2156 0.0399 0.0000
LnSpeed −0.4169 0.0667 0.0000 −0.3399 0.0581 0.0000
Constant −5.7434 0.6871 0.0000 −7.5706 0.3597 0.0000

R2 0.5712 0.5655
F-Statistic/Wald Statistic 225.24 2805.35

p-value 0.0000 0.0000

Per capita GDP also had a positive correlation with NO2 pollution. We found a positive coefficient
of 0.3783, meaning that increases in income levels of 1% within the dataset were associated with
increases in NO2 pollution of 0.3783%. We also implemented a robustness check, by testing the
quadratic term of the per capita income to verify if this generates an inverted U-shaped curve.
Specifically, we assumed that the NO2 pollution passes a turning point and is then improved as income
levels continue to rise. However, we found that the quadratic term was highly insignificant and drew
the conclusion that there was an increasingly linear relationship between income and NO2 pollution.

Regarding the ratio of secondary industry to tertiary industry, it was found that the impact of
this ratio on NO2 pollution was significant and positive, as expected. The positive coefficient, 0.1055,
indicated that within the dataset an increase in the share of secondary industry to tertiary industry
by 1% was associated with increases in NO2 pollution of 0.1055%. Secondary industry has long
dominated China’s economy, because large-scale industrialization was considered to be the best way to
stimulate economic growth and realize common prosperity in the early stage of economic development.
As a consequence, secondary industry, the largest pollutant emitter, contributes greatly to the NO2

pollution in China. Fortunately, China has been experiencing an industrial upgrade in recent years,
and the transition from pollution-intensive secondary industry to tertiary industry is characterized
by advanced technology and high added value. Hence, it is predicted that industrial upgrades and
technological changes will reduce the negative effects on environmental quality.

Nighttime light data, as a proxy for energy consumption, were also found to have a positive
relationship with NO2 pollution, indicating that energy consumption contributes to environmental
degradation. Specifically, the positive coefficient, 0.0897, implies that an increase in energy use of 1%
within the dataset may lead to increases in NO2 pollution of 0.0897%. During the past two decades,
rapid economic growth in China has consumed a large amount of energy resources, particularly fossil
fuels, with coal playing a dominant role in the energy structure. The overuse of fossil fuels generated
more NOx in the air, thus affecting the local environment. The positive coefficient for the total nighttime
light data suggests that the government should increase the levels of energy-saving technologies and
renewable energy in the energy use structure.

In terms of the urban road area variable, in contrast to the estimated coefficient of the PLS model,
it was significant and positive in the fixed effects model, in line with our expectations, implying that
the bias had been corrected because the fixed effect has been controlled for in the model. The positive
effect of the urban road area (0.0267) on NO2 pollution indicates that within the dataset an increase in
urban road area of 1% caused a rise of NO2 level of 0.067%.
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Vegetation coverage has a negative impact on NO2 pollution. The negative coefficient, −0.2064,
indicates that an increase in the vegetation coverage of 1% within the dataset is associated with a
reduction in NO2 pollution of 0.2064%. The changes in vegetation coverage largely affect local air
quality, thus changing the NO2 concentrations. Therefore, increasing the vegetation coverage can
reduce NO2 concentrations in local city regions.

Meteorological parameters also influence the NO2 pollution level. We found that cities with a
higher temperature, higher relative humidity, higher wind speed, and lower ambient pressure can
reduce the NO2 value.

4. Conclusions and Policy Implications

The main aim of this research is twofold. First, we assessed the spatial and temporal patterns
of tropospheric NO2 columns based on OMI satellite instrument observations. In the second stage,
we evaluated the driving factors that influence NO2 pollution using an extended STIRPAT model.
The findings were as follows. The highly NO2 polluted regions, which are concentrated in certain
city-clusters and polluted regions, expanded significantly during 2005–2012. Tropospheric NO2

exhibited highly clustered spatial patterns over China. We found that those factors that had a positive
relationship with tropospheric NO2 were population, per capita GDP, the share of the secondary
industry, ambient air pressure, total nighttime light data, and urban road area, indicating that these
influencing factors drive up the NO2 pollution level. On the other hand, factors that may lower the
NO2 pollution level were NDVI, relative humidity, temperature, and wind speed, which all contributed
to reducing the environmental pressure caused by an increase in the NO2 pollution level. Although the
meteorological factors may have a significant influence on the NO2 pollution level, they cannot be
changed directly. Therefore, a transformation of the patterns of human activity is necessary to mitigate
NO2 pollution at the city level in China.

Population and affluence are the major influencing factors driving up the NO2 pollution level and
causing consequent environmental pressures of many kinds. As China’s economy grows and income
levels increase, the improvement of living standards has led to increasing demand for energy and
resources. The provision of a large number of energy-intensive products and services has also posed
a challenge for the environment. Given the fact that China has a large population and is witnessing
a rise in income levels, environmental awareness needs to be enhanced. Besides, it is well known
that secondary industry is the main contributor to a variety of pollution emissions, and is a major
contributing factor to the NO2 level. We find that it is necessary to focus on industrial upgrades and a
rapid transition from highly-polluting secondary industry to tertiary industry, which is characterized
by high added value and less pollution. In addition, regarding the highly polluting and largest
NO2-emitting sectors, namely, power plants, steel, and cement, de-nitrification systems that involve
selective catalytic or non-catalytic reduction are urgently needed in order to further improve the
de-nitrification efficiency and thus reduce the environmental pressure caused by NO2 emissions from
existing sources. With regards to another large source of NO2 emissions, residential energy use,
environmental education should be improved together with the increase in income levels. In order to
sustain the trade-off between economic levels and environmental quality, environmental awareness
enhancement and low-emission lifestyles should be encouraged.
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