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Abstract

Background—Prediction of clinical outcomes in coronary artery disease (CAD) has been 

conventionally achieved using clinical risk factors. The relationship between imaging features 

and outcome is still not well understood. This study aims to use artificial intelligence to link image 

features with mortality outcome.

Methods—A retrospective study was performed on patients who had stress perfusion cardiac 

magnetic resonance (SP-CMR) between 2011 and 2021. The endpoint was all-cause mortality. 

Convolutional neural network (CNN) was used to extract features from stress perfusion images, 

and multilayer perceptron (MLP) to extract features from electronic health records (EHRs), 

both networks were concatenated in a hybrid neural network (HNN) to predict study endpoint. 

Image CNN was trained to predict study endpoint directly from images. HNN and image CNN 
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were compared with a linear clinical model using area under the curve (AUC), F1 scores, and 

McNemar’s test.

Results—Total of 1,286 cases were identified, with 201 death events (16%). The clinical model 

had good performance (AUC =80%, F1 score =37%). Best Image CNN model showed AUC 

=72% and F1 score =38%. HNN outperformed the other two models (AUC =82%, F1 score 

=43%). McNemar’s test showed statistical difference between image CNN and both clinical model 

(P<0.01) and HNN (P<0.01). There was no significant difference between HNN and clinical 

model (P=0.15).

Conclusions—Death in patients with suspected or known CAD can be predicted directly from 

stress perfusion images without clinical knowledge. Prediction can be improved by HNN that 

combines clinical and SP-CMR images.

Keywords

Artificial intelligence (AI); outcome prediction; coronary artery disease (CAD); cardiac magnetic 
resonance (CMR); electronic health records (EHRs)

Introduction

Background

It has been more than two decades since the launch of coronary artery disease (CAD) 

risk stratification scores, which commonly aim to estimate the 10-year risk of developing 

CAD and other related health outcomes, such as major adverse cardiovascular events, heart 

failure and mortality (1). The concept of risk factors in CAD was first coined by the 

Framingham Heart Study (FHS), which published its findings in 1957, and demonstrated 

the epidemiologic relations of smoking, raised blood pressure and cholesterol levels to 

the incidence of CAD. The findings were truly revolutionary for it helped bring about a 

change in the way medicine is practiced (2). There are several important and potentially 

modifiable risk factors for cardiovascular disease (CVD), such as hypertension (HTN), 

dyslipidaemia, diabetes mellitus (DM), obesity, smoking, chronic kidney disease (CKD), 

anxiety and depression, social isolation, low physical activity and poor diet. Non-modifiable 

risk factors also exist in fewer numbers, such as ethnicity and family history of CVD disease 

(3).

Conventionally, these risk factors are used as inputs in different risk scoring algorithms 

to produce a quantifiable output, used by clinicians to predict long-term risk, clinical 

outcome and prognosis. Recent literature has shown strong predictive power of non-invasive 

imaging modalities of CAD, adding important prognostic value in predicting outcomes in 

patients with known or suspected CAD. Broadly, these non-invasive imaging techniques are 

either focused on functional/ischaemia assessment (e.g., stress perfusion cardiac magnetic 

resonance (SP-CMR) (4), dobutamine stress echocardiography (DSE) (5) and myocardial 

perfusion scanning (MPS) (6); or focused on imaging the coronary anatomy directly 

[e.g., coronary computed tomography angiography (CCTA) (7)]. Whilst several methods 

of combining functional and anatomical non-invasive imaging have been proposed, these 

remain in largely within the research-domain (8,9).
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The revolution of artificial intelligence (AI) and neural networks within the medical domain 

over the last decade, has led to real world clinical applications with many automated 

medical tasks, including predictive analytics. Emerging studies have shown that AI can 

detect traditionally difficult to diagnose conditions, and empower outcome prediction, in 

addition to many other applications in treatment, safety, patient adherence, administration 

and precision medicine (10).

Rationale and knowledge gap

The utilisation of non-invasive imaging to assess patient risk and diagnose CAD is 

increasing our understanding of long-term patient outcomes. Contemporaneously, the use of 

AI algorithms in assessing cardiac risk factors and clinical data to predict outcome in at-risk 

patients is also being developed and adopted. Whilst findings from non-invasive imaging 

have been incorporated in such models, the algorithms largely rely on clinician interpretation 

of the imaging. Any direct relationship between the acquired images themselves and 

predicted outcome has not been investigated and is poorly understood.

Objective

This study aims to assess the probability of predicting patient outcomes from SP-CMR 

images using a novel AI approach for outcome prediction. We present this article in 

accordance with the TRIPOD reporting checklist (available at https://jmai.amegroups.com/

article/view/10.21037/jmai-24-1/rc).

Method

Study design and population

This was a retrospective observational cohort study. This study was conducted in accordance 

with the Declaration of Helsinki (as revised in 2013). The study was approved by the 

Research Ethics Committee of King’s College London Partnership (No. 20/ES/0005) and 

individual consent for this retrospective analysis was waived. Patients undergoing SP-CMR 

at a single centre (Guy’s & St Thomas’ NHS Foundation Trust) between April 2011 and 

March 2021 were screened, and only those with completed studies including full reports and 

available images were included.

The total number of all-cause mortality events was obtained for the whole population from 

electronic patients record. The follow-up period was variable depending on the date of the 

clinical scan, with data collection completed on 20 August, 2021.

Inclusion criteria

We included only patients with complete adenosine stress perfusion study and good 

quality images, who had complete reports. Exclusion criteria were: reports which were 

blinded for research purposes, conflicting reports description between main body text and 

summary findings, terminated stress study due to complications, reports with missing tissue 

characterisation information, contraindications to using stress agent, mass perfusion studies, 

dobutamine stress studies, lung perfusion studies, poor response to stress agent, and mis-
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labelled reports which were originally highlighted as perfusion studies but after inspection 

found to be otherwise.

Data extraction

Clinical data—Clinical data extraction was performed using natural language processing 

(NLP) AI-based application called CogStack (11), which allows to extract information from 

unstructured data sources in multiple formats. Once extracted, harmonised and processed, 

multiple uses of this unstructured data become possible based around information retrieval 

and extraction. For the purpose of this study, an NLP model was trained to extract CVD 

risk factors from unstructured data using medical terms from Systematic Nomenclature of 

Medicine Clinical Terms (SNOMED CT), whereas baseline characteristics of the population 

were extracted from structured data using Application Programming Interface (API) search 

engine called Elastic Search (12). Samples of documents were ingested into the Medical 

Concept Annotation Tool (MedCAT), which is used to link electronic health records (EHRs) 

to biomedical ontologies such as SNOMED-CT and Unified Medical Language System 

(UMLS) and train NLP models. For this study, SNOMED-CT UK version was used for 

annotation. Text files were tokenized, lemmatised and pre-processed, then used as inputs 

into the network with the corresponding labels. Initial self-supervised model was trained 

using named-entity recognition + linking (NER + L) annotation, this algorithm is used 

to extract and locate name entities in unstructured text into a pre-defined categories for 

labelling before training the model. Fine tuning was achieved with supervised learning 

after a group of expert clinicians labelled a sample of reports with the relevant medical 

terminology. MedCAT trainer used multiple neural networks architecture (long-short-term-

memory (LSTM), gated recurrent unit (GRU), and transformers), and the best performing 

model was deployed into CogStack. All data were anonymised. The AI-based data 

extraction pipeline is explained in Figure 1.

Image data—For image data extraction, SP-CMR images included three series of frames 

representing 3 levels of slices: basal, mid and apical left ventricular (LV) slices. These 

perfusion images were extracted in 2 stages and reviewed by a level 3 CMR reader. During 

stage 1 the frame of peak signal intensity within the LV cavity was selected using an 

automated pipeline based on sum and peak pixels per frame. An automated identification 

and discard of low resolution arterial input function frames utilised pixel gradient 

algorithms. The use of a four frames per slice allowed for visualisaton of myocardial 

contrast wash-in/wash-out. In stage 2 the images were cropped to include only the LV 

myocardium and cavity using a centre crop function. Late gadolinium enhancement (LGE) 

images were also extracted, including three long axis views (2-chamber, 3-chamber and 

4-chamber views) and multi-slice short axis imaging of the whole ventricles. Unique case 

identification numbers (IDs) were used to link each image series with the corresponding 

clinical data.

Construction of neural networks

Image convolutional neural network (CNN)—CNN architecture was used when 

training image-based prediction models. Different experiments were performed with 

different CNN architectures. Training started from a simple design with LeNet (13) to more 
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complex networks, this included: AlexNet (14), VGG19 (15), ResNet50 (16) and GoogleNet 

(17). Images were resized to equal height and width of 224 pixels and all frames were 

stacked for each case with input shape of [224, 224, 25] to include 12 images for stress 

perfusion and 13 images for LGE datasets. The final layer of each neural network was 

a Dense layer of one node with ‘sigmoid’ activation function to prediction either 1 for 

mortality event or 0 for none. Binary cross-entropy loss function was used, and an early 

stopping was used after monitoring F1 score in the validation set. Adam optimiser was 

chosen with a learning rate of 0.001.

Hybrid neural network (HNN)—A HNN was developed to have mixed input data, both 

the CMR images and clinical information, in order to extract features from both data types 

and predict outcome. CNN architecture was used to extract features from stress perfusion 

and LGE images after removing the top prediction layer and flattening the output to a 

Dense shape of 4. A multi-layer perceptron (MLP) with 2 Dense layers was used to extract 

features from continuous and categorical clinical variables after removing the top prediction 

layer and flattening the output to a Dense shape of 4, to be compatible with the output 

of CNN. Both outputs were then concatenated and passed to 2 Dense layers with the 

prediction in the final Dense layer with one node and ‘sigmoid’ activation function to predict 

all-cause mortality. Five different CNN architectures were used in the experiments in a 

similar approach to the image CNN experiments.

The full pipeline is shown in Figure 2.

Model training—Data was split into 60% for training, 15% for validation and 25% for 

testing. To overcome class imbalance, the initial bias was adjusted to reflect classes ratio and 

help training to make better initial guesses by setting the output layer’s bias to reflect that, 

this can help with initial convergence. The initial bias b0 can be calculated as the following:

p0 = pos/(pos + neg) = 1/ 1 + e−b0

b0 = − loge(1/p0 − 1) = loge( pos / neg )

[1]

This was followed by model building with the new initial bias, and outputting the bias after 

each epoch of training. Furthermore, class weights were calculated as:

w = N/(n × 2)

[2]

Where w is the class weight, n is the number of class instances, N is the total size of the 

sample and 2 is the number of classes. Class weight was used as a parameter during fitting 

the model for training.

Training was monitored with early stopping based on validation precision/recall curve or F1 

score, and binary cross-entropy was used as a loss function. After testing two optimisers 
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with various learning rates [Adam and Stochastic Gradient Descent (SGD)], Adam optimiser 

with a learning rate of 0.001 was used.

Statistical analysis

Categorical variables were expressed using number and percentage; continuous variables 

were expressed using mean and standard deviation. Follow-up was calculated as the mean 

time to all-cause mortality event, and all cases without events and with shorter duration 

from CMR date to collection date were excluded. The population was divided into three age 

subgroups given that different CVD risks vary based on adults age subgroups (18) (<65, 

65–75, >75 years). The difference in baseline characteristics, clinical risk factors and CMR 

data between all subgroups was tested using the Chi-square test for categorical variables and 

a One-Way ANOVA for continuous variables.

Multivariate logistic regression was used as a baseline for comparison with neural networks 

performance using common CVD risk factors. Continuous variables were normalised 

using mean values, and categorical variables were used as binary (yes/no) input values, 

regardless of underlying types of classes. CVD risk factors included: age, gender, CKD, 

HTN, heart failure, smoking history, previous myocardial infarction, dyslipidaemia, DM and 

cerebrovascular accident (CVA). Similar approach was taken in building the MLP pipeline in 

HNN networks.

Testing model performance was evaluated using accuracy, precision, recall, area under the 

curve (AUC) and F1 score, and compared using McNemar’s test. P value of <0.05 was 

considered statistically significant.

All statistical analysis and networks training was performed using Python programming 

language, version 3.10.

Results

Baseline characteristics

The extraction results and datasets used for models training are explained in Figure 3.

The total number of patients analysed was 1,286. The total number of patients who died 

was 201 (16%). Mean follow-up was 1,090 days (IQR, 351−1,749). The study population 

included males in around two thirds (66% male vs 34% female). More CMR studies 

were performed at 3 Tesla than 1.5 Tesla (62% vs 38%), using Siemens and Philips 

vendors. All stress perfusion imaging was conducted via the use of vasodilatory medication 

to achieve hyperaemia, with the vast majority performed using Adenosine, and a much 

smaller number receiving Regadenoson (88% vs 12%). Around a third of the population 

had inducible defects at peak hyperaemia (30%) and/or scar on LGE imaging (33%). All 

baseline characteristics, CMR data and clinical risk factors are shown in Table 1.

After dividing the population into three age subgroups, the older population (age >75 years) 

had a higher percentage of positive LGE and positive stress perfusion compared with the 

other age-defined subgroups, as shown in Figure 4.
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Mortality prediction

The clinical model with logistic regression achieved good performance level (AUC =80%, 

F1 score =37%), with intercept of −4.17 and coefficients of CKD 0.84, HTN 0.53, male 

gender 0.59, heart failure 0.26, smoking 0.02, dyslipidaemia 0.13, DM 0.17 and age 4.10. 

Within image CNN, the best performing neural network was the AlexNet, which showed 

AUC =72% and F1 score =38%, however, there was poor convergence in training and signs 

of overfitting. For HNN, GoogleNet with three inception blocks was the best model for 

feature extraction from images. The performance of HNN was superior to both the image 

CNN and the clinical model (AUC =82%, F1 score =43%). Compared to image CNN, 

McNemar’s test showed higher performance of both clinical model (P<0.01) and HNN 

(P<0.01). There was no significant difference between HNN and clinical model (P=0.15).

AUC and F1 scores for each image CNN model are shown in Table 2, for HNN models 

in Table 3, and for the clinical model in Table 4. Figure 5 shows the receiver operating 

characteristic (ROC) curves and the precision-recall curves comparison between image 

CNN, HNN and clinical model.

Discussion

Clinical practice relies on effective risk stratification to guide the management of patients 

with suspected or known CAD. Utilising clinical risk scores derived from large datasets and 

long periods of follow-up aids in clinical decision making, achieving an AUC of 80% in our 

study for the prediction of all-cause mortality based on clinical parameters. This highlights 

the high sensitivity and specificity of outcome prediction using conventional clinical risk 

factors and established prediction.

Recent literature emphasises the independent and additional prediction power of non-

invasive imaging in CAD, with identified features linked to specific outcomes (4–7), such 

as high-risk plaque features identified on CCTA (19). Integrating non-invasive imaging into 

risk scoring algorithms is likely to enhance outcome prediction, encompassing mortality, 

ventricular arrhythmia, hospitalisation, and other related health outcomes.

The increasing availability and funding, along with technological advancements like higher 

imaging resolution, improved acceleration techniques, and lower radiation dosing, have 

made non-invasive imaging essential parts of daily clinical practice.

The prediction of mortality in CAD has been a crucial aspect of clinical practice, and 

non-invasive imaging, particularly stress perfusion CMR, has played a growing role in 

predicting treatment response and improving long term outcomes (20).

Our study pioneers the incorporation of image pixel data for predicting clinical outcomes 

using deep learning and AI technology. To the best of our knowledge, this is the first 

application of using AI to link image pixels to prognosis in stress perfusion CMR. While 

prediction from clinical risk factors and CMR findings outperformed image CNN, the 

HNN combining both types of data achieved the best AUC and F1 scores. This suggests 
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the potential clinical utility of AI, which may identify subtle features missed by human 

interpretation.

The integration of AI in risk stratification, as demonstrated in this study, holds promise 

for improving prognostic assessment in patients with suspected CAD. Future research 

could explore larger and multi-centre populations, and novel AI models using unsupervised 

learning might generalise predictions on unseen data.

Limitations

This study used retrospective cohort data with heavy class imbalance, only 16% of the 

population had an event, this can have an impact on the generalisation of the model to 

external datasets.

As there was no significant statistical difference between HNN and clinical model on 

McNemar’s test, the redundant information in raw stress perfusion and LGE images are 

likely to have caused detrimental effects. More refined images with segmentation and 

quantification of the areas of interests are likely to improve the results in the future.

Conclusions

Direct prediction of mortality in patients with suspected CAD is achievable through analysis 

of stress perfusion images, even in the absence of clinical information. The utilisation 

of specific features or characteristics within stress perfusion images contributes to the 

accuracy of this direct prediction. Furthermore, the integration of HNN, which combines 

both clinical and stress perfusion CMR images demonstrates a notable improvement in 

mortality prediction.

This advancement in predictive capabilities has the potential to revolutionise clinical 

decision making in CAD. The ability to directly predict mortality, coupled with the 

refinement and combination of clinical and imaging data, positions HNNs as valuable tools 

in guiding treatment strategies and improving overall patient outcomes.
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Highlight box

Key findings

• Outcome prediction can be achieved directly from stress perfusion cardiac 

magnetic resonance images using artificial intelligence (AI).

• Outcome prediction using AI can be enhanced by mixed data types from 

image pixels and electronic health records.

What is known and what is new?

• Non-invasive cardiac imaging has additional and independent prognostic 

values.

• Outcome prediction using imaging data still relies on expert human 

interpretation of image findings.

• This study adds an insight into how to link image pixel data with prognosis 

using AI.

What is the implication, and what should change now?

• This study will open the door for a novel approach in outcome prediction 

using non-invasive imaging without former knowledge of patients’ data.

• It also introduces a novel hybrid AI prognostic tool, which has the potential to 

overcome conventional clinical risk scoring.

• More research on larger and multi-centre datasets, and more refined imaging 

data have to be performed to achieve higher performance and novel clinical 

applications.
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Figure 1. 
A diagram showing the data extraction process using CogStack. MedCAT, Medical Concept 

Annotation Tool; NER + L, named-entity recognition + linking.
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Figure 2. 
Full pipeline showing the HNN architecture combining CNN (top) and MLP (bottom). 

CNN, convolutional neural network; HNN, hybrid neural network; LGE, late gadolinium 

enhancement; MLP, multi-layer perceptron.
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Figure 3. 
A diagram showing sample selection for training both types of models, and the clinical 

variables used by the hybrid neural network. CNN, convolutional neural network; FU, 

follow-up; HNN, hybrid neural network; LGE, late gadolinium enhancement.
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Figure 4. 
Categorical bar plot showing different age groups with gender categories and comparison 

based on positive stress perfusion (left) and positive ischaemic LGE (right) (with 95% 

confidence intervals). LGE, late gadolinium enhancement.
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Figure 5. 
The ROC curves plot (left) and the precision-recall curves plot (right) showing the high 

performance of HNN over clinical prediction model and image CNN for mortality prediction 

using GoogleNet architecture. AUC, area under the curve; CNN, convolutional neural 

network; ML, machine learning; HNN, hybrid neural network; ROC, receiver operating 

characteristic.
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Table 1
Baseline characteristics by age subgroups

Variables Total (n=1,286) <65 years (n=577) 65–75 years (n=383) >75 years (n=326) P value

Death 201 [16] 28 [5] 63 [16] 110 [34] <0.001*

Sex 0.241

   Male 845 [66] 370 [64] 250 [65] 225 [69]

   Female 441 [34] 207 [36] 133 [35] 101 [31]

Clinical risk factors

   Smoking 147 [11] 47 [8] 56 [15] 44 [13] 0.004*

   DM 61 [5] 27 [5] 19 [5] 15 [5] 0.759

   HTN 515 [40] 197 [34] 174 [45] 144 [44] <0.001*

   Dyslipidaemia 281 [22] 117 [20] 106 [28] 58 [18] 0.022*

   CVA 116 [9] 37 [6] 47 [12] 32 [10] 0.004*

   CKD 81 [6] 15 [3] 30 [8] 36 [11] <0.001*

   Previous MI 319 [25] 144 [25] 104 [27] 71 [22] 0.309

   Heart failure 226 [18] 82 [14] 73 [19] 71 [22] 0.005*

Arrhythmia

   AF 194 [15] 45 [8] 72 [19] 77 [24] <0.001*

   Atrial flutter 63 [5] 22 [4] 26 [7] 15 [5] 0.059

   VT 110 [9] 40 [7] 34 [9] 36 [11] 0.010*

   VF 15 [1] 7 [1] 6 [2] 2 [1] 0.724

Field strength 0.723

   1.5 T 492 [38] 220 [38] 146 [38] 126 [39]

   3 T 794 [62] 356 [62] 234 [61] 204 [63]

Stress agent 0.041*

   Adenosine 1,130 [88] 518 [90] 339 [89] 273 [84]

   Regadenoson 156 [12] 59 [10] 44 [11] 53 [16]

LVEF 55±14 58±12 55±14 51±15 <0.001*

RVEF 59±10 59±09 59±10 58±12 0.303

+ve ischaemia 384 [30] 137 [24] 118 [31] 129 [40] <0.001*

+ve LGE 424 [33] 109 [19] 141 [37] 174 [53] <0.001*

Values are presented as number [%] for categorical variables; mean ± standard deviation for continuous variables.

*
P<0.05. DM, diabetes mellitus; HTN, hypertension; CVA, cerebrovascular accident; CKD, chronic kidney disease; MI, myocardial infarction; AF, 

atrial fibrillation; VT, ventricular tachycardia; VF, ventricular fibrillation; T, Tesla; LVEF, left ventricular ejection fraction; RVEF, right ventricular 
ejection fraction; LGE, late gadolinium enhancement; +ve, at least one positive myocardial segment.
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Table 2
Comparison of performance metrics for all image CNN models

Image CNN Accuracy Precision Recall AUC F1 score

AlexNet 0.59 0.25 0.69 0.72 0.38

GoogleNet 0.81 0.28 0.40 0.65 0.28

LeNet 0.60 0.20 0.62 0.63 0.26

ResNet50 0.52 0.19 0.61 0.63 0.22

VGG19 0.52 0.24 0.59 0.61 0.27

CNN, convolutional neural network; AUC, area under the curve.
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Table 3
Comparison of performance metrics for all HNN models

HNN Accuracy Precision Recall AUC F1 score

AlexNet 0.75 0.24 0.70 0.74 0.36

GoogleNet 0.70 0.26 0.77 0.82 0.43

LeNet 0.72 0.25 0.73 0.76 0.37

ResNet50 0.67 0.22 0.74 0.75 0.25

VGG19 0.70 0.25 0.73 0.76 0.35

HNN, hybrid neural network; AUC, area under the curve.
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Table 4
Comparison of performance metrics for the clinical model

Accuracy Precision Recall AUC F1 score

0.81 0.57 0.27 0.80 0.37

AUC, area under the curve.
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