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Abstract

It has been generally acknowledged that the module structure of protein interaction networks plays a crucial role with
respect to the functional understanding of these networks. In this paper, we study evolutionary aspects of the module
structure of protein interaction networks, which forms a mesoscopic level of description with respect to the architectural
principles of networks. The purpose of this paper is to investigate limitations of well known gene duplication models by
showing that these models are lacking crucial structural features present in protein interaction networks on a mesoscopic
scale. This observation reveals our incomplete understanding of the structural evolution of protein networks on the module
level.
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Introduction

The understanding of evolutionary processes is not only of great

interest to reconstruct the history of organic life and its evolution

but can also help to shed light on the molecular functioning of

organisms [1–6]. With the availability of large-scale sequence

information and protein structures, the information stored in these

entities could be systematically exploited with the help of

computational and statistical methods [7–12]. Such studies have

in common that a functional understanding is usually not obtained

by direct investigations of molecular interactions but by inductive

reasoning based on a comparative analysis. This is in contrast to

studies based on the analysis of gene networks [13], because with

the advent of network biology [14] and the availability of genome-

scale networks, evolutionary questions can be addresses on the

network-level [15]. Due to the fact that the structure of gene

networks, e.g., metabolic, protein, or transcriptional regulatory

networks, represent causal molecular interactions, direct studies of

the biological function are enabled [16–18].

Since the introduction of random networks in the 1950s [19,20]

many new network classes have been invented [21–24], commonly

called complex networks, and shown to provide better models for

numerous natural phenomena [25–27]. Over the years, the

interest in these complex networks has been gradually shifted from

studying local properties, e.g., degree distributions, toward larger

substructures or subnetworks forming motifs or communities [28–

31]. In biology, the rational for this shift lies in the opportunity

that gene networks offer in revealing insights about functional

working mechanisms of a cell, if studied appropriately [13,32,33].

Similarly, this trend can be also observed in studies of the

structural evolution of gene networks [34,35].

The major purpose of this paper is to study two biologically

motivated models that have been introduced to describe the

evolution of protein-protein interaction (PPI) networks. More

precisely, we study the question if the network gene duplication (NGD)

model [36,37] and the duplication-mutation complementation (DMC)

model [38] resemble the module structure of biological protein

interaction networks. Due to the similarity of both models, as

described in detail in section ‘Network data and models’, we use

the term gene duplication model (GDM) to either indicate the network

gene duplication model or the duplication-mutation complementation

model. The general idea of our study is to probe these evolutionary

models by comparing networks generated with these models with

biological PPI networks from various organisms [39,40] to gain a

deeper understanding of their capabilities. Here, the fact that a gene

duplication model may have limitations would be of no surprise, since

every model is merely an abstraction of reality sacrificing certain

aspects to gain a mathematical representation. However, it is

important to understand what specific limitations a gene duplication

model is suffering from to judge its usefulness to serve as a model for

the evolution of protein interaction networks. Considering the

results from investigations studying either the NGD model or the

DMC model with respect to the degree distribution of the

networks, it appears unlikely that on this level of description

refuting information can be found. Instead, in this article we are

focusing on mesoscopic properties of networks in form of modules

[41,42]. The motivating idea for choosing this level is not only the

fact that the module structure of networks is by far less well studied

compared to the degree distribution, but, from a biological point

of view, a module appears to be a more important entity with

respect to the biological function of an organism than the degree of

a gene. More specifically, genes and gene products establish by
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interacting with each other a biological function. This entity is of

central importance to understand the functioning of an organism.

In more abstract terms the interactions among genes establish an

information flow that gives rise to this biological function. In this

respect, modules can be considered to represent basic entities of

information processing on a molecular level. Due to the fact that

both, the network gene duplication model and the duplication-mutation

complementation model, have been introduced to resemble gene

inheritance [43], but not information processing in modules, the

answer to the question if these models resemble the module

structure of biological protein interaction networks does not

immediately follow from their definition, but needs to be

investigated. For reasons of completeness, we would like to

mention that the two evolutionary models [36–38] are not the only

models that has been proposed for the evolution of protein

networks but there are a few other models, e.g., [44–46].

However, the NGD model and the DMC model investigated in

this paper might be the most widely used and studied models in

the literature.

In order to study the proposed question quantitatively, we

pursue the following approach. First, we select an algorithm to

identify the modules in networks. Second, we define several

network-based measures that capture important information about

the module structure of a network. These measures will form the

components of a feature vector that represents the network. Third,

we use agglomerative clustering to cluster the feature vectors in

order to reveal similarities respectively differences between the

clustered networks.

This paper is organized as follows. In the ‘Methods’ section we

specify the network data we are analyzing and the methods we are

applying. In the ‘Results’ section we present numerical results of

our analysis and discuss our findings. The paper finishes with the

‘Discussion’ section presenting a summary and an outlook to

future problems.

Methods

In order to study the question if gene duplication models resemble

the module structure of biological protein interaction networks, we

need to realize that any gene duplication model (GDM) is formally a

stochastic process [36–38]. That means if we generate two

networks using the same model parameters, these networks will

most likely not be identical. However, they share certain

characteristics quantifiable by network-based measures, e.g., the

exponent of their degree distribution or their edge density. This

implies that a GDM, as any other stochastic process that generates

networks, constitutes a network population or a network class.

Throughout this paper, we use both terms synonymously. In the

following we describe our general approach to study the

population properties of a GDM.

Our overall approach is schematically visualized in Fig. 1. The

basic idea is to map networks, which are part of a population, to

feature vectors. That means the feature vectors are used as a

representation of the networks, respectively the population of

networks. We assume that there exists an underlying stochastic

mechanism, or a model, that generates networks with common

characteristics. These characteristics may vary from network to

network because the underlying mechanism is stochastic rather

than deterministic. The commonality of all networks generated

from such a model forms a population. A specific example of a

biologically motivated mechanism that generates protein networks

is either the NGD model [36,37] or the DMC model [38]. For a

given set of model parameters these models establish a population

of networks sharing common properties. Another example for

such a mechanism is the preferential attachment model which

generates scale-free networks [21]. In the following, we assume

that also (biological) protein networks constitute a population

which have been generated by evolutionary forces.

The quantitative analysis we will perform is based on the feature

vectors derived from the networks. We conduct a comparative

analysis applying a hierarchical clustering to investigate similarities

between feature vectors. This allows us to conclude about the

similarities of the underlying networks and, hence, about the

similarities of the populations. We want to re-emphasize that our

focus is on the properties of the network populations rather than

on individual networks. This difference is crucial because we do

not aim to derive results about individual networks but for the

population.

Figure 1. A schematic visualization of our approach to study properties of network populations. First, we map networks to feature
vectors. Then we analysis these feature vectors with a hierarchical clustering. The resulting clustering allow us to conclude back to the similarity of the
network populations.
doi:10.1371/journal.pone.0035531.g001
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Finding modules
In recent years, many algorithms have been introduced for

finding the community or module structure in networks which are

based on a variety of different principles and approaches [47–50].

In this paper, we use the edge-betweenness algorithm introduced in [51]

for finding the modules in the networks we study. This method is

probably the best studied module algorithm. Together with the

measure modularity, Q, it has been widely used for analyzing

biological networks [52–56]. The principle working mechanism of

the edge-betweenness algorithm is to start from a connected network

and remove successively edges with the highest edge-betweenness

values, i.e., edges that occur on many shortest paths. The idea is

that edges connecting separate modules are more likely to have

high edge betweenness values because paths between modules

must pass through them. Successively removing edges with the

highest edge betweenness values results in a hierarchical tree of

network components. The optimal partitioning of the network is

obtained by finding the optimal cut of this tree. This is

accomplished by using an optimization function, called modularity

Q. Application of this algorithm results in a non-overlapping

module structure meaning that each node in the network is

allowed to belong to exactly one module.

Module measures
In order to characterize the modular structure of a network G,

found by the application of a partitioning method A, we use 8
different measures introduced in the following. Some of these

measures bear a resemblance to indices frequently used for the

analysis of biological or chemical networks [57–61]. The

motivation for the selection of the following measures is to obtain

a heterogeneous set of network-based measures because we will

use them as components of feature vectors.

For each network G we determine the number of communities

M and its modularity value Q found by application of the

partitioning algorithm A [51]. These measures provide a course

overview of the network structure. To obtain more detailed

information we calculate 4 additional measures which are based

on the connectivity matrix of the modules, Am, of the module

structure of G. The components of Am(i,j), for i=j and

(i,j)[f1, . . . ,Mg, give the number of connections between nodes

in module i to nodes in module j. All self-connections, Am(i,i), are

set to zeros. In the following we consider only undirected networks

G, hence, Am is a symmetric matrix. In addition, we calculate a

vector Im whose components Im(k) correspond to the number of

nodes in module k. From these auxiliary measures we obtain

further measures. We want to remark that the matrix Am can be

considered as (weighted) adjacency matrix of a new network Gm,

whose nodes correspond to modules. We call Gm the module network.

The reason for this is, formally, Gm can be seen as the result from a

functional mapping from G, namely, Gm~M(G). The last

equation illustrates that the application of a method for finding

a community structure in G leads to a new network Gm. This is

illustrated in Fig. 2. The measures defined in the following are

calculated for module networks Gm in which one node

corresponds to one module, as defined above. Due to the fact

that we apply these measures to the module network Gm, and not

to the network G, we enforce these measures to capture module

specific information because Gm represents explicitly the modules

found by the partitioning algorithm A.

We define the relative size, s, of the largest module with respect to

the size of the network,

s~
smax

N
, ð1Þ

smax~ max
k
fIm(k)g: ð2Þ

Here smax gives the number of nodes found in the largest module

and N is the total number of nodes in the network G. Further,

we determine the normalized entropy of the module connectivity, hc,

given by

hc~
H(pm)

log (M)
, ð3Þ

with

Nb~
XM

i

XM
j

Am(i,j) ð4Þ

pm(i)~
1

Nb

XM
j

Am(i,j), Vi[f1, . . . ,Mg, ð5Þ

Figure 2. Mapping from the unweighted network G to the weighted network Gm by application of a partitioning method A. The
numbers next to the edges of the module network Gm refer to the values of the edge weights which correspond to the number of connections
between nodes from module i to module j, i.e., Am(i,j).
doi:10.1371/journal.pone.0035531.g002
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H(pm)~{
XM

i

pm(i)log(pm(i)), ð6Þ

whereby Nb is twice the number of connections between all

modules and H() corresponds to the Shannon Entropy [62]. The

measure hc allows to get an impression of the connectivity among

the different modules.

Next, we calculate the mean normalized module-wise entropy, hmw, by

NA(i)~
XM

j

Am(i,j), Vi[f1, . . . ,Mg, ð7Þ

pA(jDi)~
1

NA(i)
Am(i,j), V(i,j)[f1, . . . ,Mg, ð8Þ

h(pA)(i)~{
1

log(M)

XM
j

pA(jDi)log(pA(jDi)),Vi[f1, . . . ,Mg ð9Þ

hmw~~
1

M

XM
i

h(pA)(i): ð10Þ

Both entropy measures are normalized because hc,hmw[½0,1�, due

to the factors that we included in their definitions. The difference

between the normalized entropy of the module connectivity, hc, and the

mean normalized module-wise entropy, hmw, is that for hc we calculate

for each community i a probability value, pm(i), based on its total

connectivity to all other modules. In contrast, hmw is obtained by

calculating a probability vector, pA(jDi), with j[f1, . . . ,Mg, for

each community i. Hence, both measures focus on different

structural aspects and for this reason have different discriminative

properties with respect to the modular structure of the commu-

nities.

Finally, the normalized mutual information (nMI) [63] is defined as

MI~
XM
i~1

XM
j~1

Am(i,j)

F
log

Am(i,j)F

Ar
m(i)Ac

m(j)
ð11Þ

nMI~
{MI

PM
i~1

Ar
m(i)

F
log

Ar
m(i)

F
z
PM
j~1

Ac
m(j)

F
log

Ac
m(j)

F

ð12Þ

with Ar
m(i)~

P
j Am(i,j), Ac

m(j)~
P

i Am(i,j) and

F~
P

i

P
j Am(i,j). Because the module matrix Am is symmetric

for undirected networks G, Ar
m~Ac

m holds. Briefly, Eqn 12 can be

written as nMI~{MI=(2 �H(Ar
m=F )), whereas H() is the

Shannon Entropy.

In order to illustrate the numerical usage of our measures we

present in Fig. 3 an example. Suppose we have an undirected,

unweighted network G and application of an algorithm M for

community finding results in the shown results. Here each node in

the network corresponds to a module which may consists of a

variable number of nodes, indicated by a varying size of these

nodes. Let’s call these weighted network Gm, because it describes

the structural connectivity among the modules found in G. The

modules are numbered from 1 to 5 and Am(i,j) gives the number

of connections between module i and j. For instance in Fig. 3,

module 3 is connected to module 5 via 18 links. These links are

obtained by using the partitioning which is found by application of

M to G, and its corresponding adjacency matrix (not shown). For

reasons of simplicity we represent the number of links as weights of

edges, instead of 18 individual links. When two modules are not

directly connected then the corresponding component of Am is

zero, e.g., Am(1,4)~0. Numerically, we obtain for the example

shown in Fig. 3:

Am~

0 0 0 0 11

0 0 0 0 9

0 0 0 0 18

0 0 0 0 3

11 9 18 3 0

0
BBBBBB@

1
CCCCCCA

ð13Þ

M~5 ð14Þ

hc~0:815 ð15Þ

hmw~0:153 ð16Þ

nMI~0:528 ð17Þ

Network data and models
Table 1 provides an overview of the 11 protein interaction

networks we are using for our analysis. These data are taken from

the BioGrid (BG) and IntAct (IA) database [39,40]. GCC shown in

the fifth column corresponds to the giant connected component of the

respective network which is the size of a subnetwork with the

property that any two nodes are connected via an undirected path.

In addition to the protein networks, table 1 contains also three

non-biological networks. Specifically, one technological (power

grid) and two social networks (netscience and hep-th) are also used

in our analysis. ‘Power grid’ is the Western States power grid

network, ‘Netscience’ represents a coauthorship network of

scientists working on network theory, and ‘hep-th’ is a coauthor-

ship network between scientists posting preprints on the high-

energy theory e-print archive. The data for these networks are

obtained from [24,64,65]. The merit for including these networks

in our analysis will become clear in the results section.

We would like to remark that using the GCC of the protein

interaction networks has the positive side effect to serve as a

denoising of the network data. That means due to the fact that

Figure 3. An illustrative examples to demonstrate the usage of
our measures (see text). Different modules are shown as colored
nodes.
doi:10.1371/journal.pone.0035531.g003
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none of the available PPI networks is neither complete (comprises

all proteins) nor error free nor unbiased with respect to the

coverage of the biological processes, certain parts of the PPI

networks are more reliable than others [66]. Here with reliable we

mean having a lower error as measured by the false negative and

false positive rate of interactions. Due to the fact that the GCC has

the property, among others, to be the largest connected

subnetwork, it appears to represent such a lower-error region in

the network compared to, e.g., an unconnected subnetwork

composed of many separate protein complexes and interactions.

However, an explicit quantification of this effect is currently

difficult because it would require to introduce assumptions about

the occurring errors and their estimates.

In addition to the above (real) networks, we generate three types

of synthetic networks with three different algorithms. The first two

algorithm are very popular models to emulate the evolution of

protein networks, namely the network gene duplication (NGD) model

[36,37] and the duplication-mutation complementation (DMC) [38]

model. Briefly, the NGD model starts with a very small number of

genes and connections among them, selects one of these genes

randomly and makes a copy thereof including its connections to

other genes. This corresponds to the introduction of a new gene to

the genome. Then two probabilistic mechanisms are applied

separately to emulate the divergence of these two genes. The first

mechanism consists of a deletion of common links (with probability

d) and the second establishes new connections between the new

gene and the rest of the genome (with probability a). A schematic

visualization of the three steps of the network gene duplication model

are shown in Fig. 4. In the first step, gene Y and all its connections

are duplicated, resulting in the gene highlighted in grey. In the

second step, the three common edge pairs, highlighted in blue, red

and green are independently tested and one randomly selected

edge of each pair is deleted with probability d. In the third step,

the new gene receives with probability a a new interaction to an

existing gene. The dashed edges in Fig. 4 correspond to these

potential new edges. A summary of the networks and their

characteristics we generated with the NGD model, which we use

for our analysis, can be found in table 2. In table 3 we provide the

corresponding model parameters for their generation. The second

algorithm we use models also the evolution of protein networks

and is called the duplication-mutation complementation (DMC) [38]

model. The DMC model is very similar to the NGD model,

sharing the first two steps, namely gene duplication and edge

deletion; step 1 and 2 in Fig. 4. However, the third step of the

DMC model (step 39) is different, consisting in the connection of

the new gene with its template gene with probability a. That

means this model does not allow to create new connections to

other genes already present. Regarding the selection of the

parameters of the NGD and the DMC model, we choose N
(number of genes) to cover the size of the protein networks we use

in our analysis listed in table 1. Also for the probabilities a and d
we choose values to result in edge densities that are comparable to

the protein networks. In the ‘Results’ section, we provide an

additional discussion of the chosen parameters.

The third algorithm we use to generate networks was

introduced in [67] for generating a test set of networks with

known community structure. The algorithm itself is not based on a

biologically plausible mechanism that would correspond to an

interpretable genomics mechanism, but serves purely as a

benchmark generator. We name networks generated with this

method synthetic community networks (SCN). In table 2 we show an

overview of SCN networks we use for our analysis and table 3

provides the corresponding model parameters.

Results

In order to perform a numerical analysis to investigate the

similarity respectively dissimilarity between protein networks and

either synthetically generated or technological and social networks,

we calculate for each of these networks 8 different network-based

features, f ~(M,s,d,hc,hmw,smw,nMI ,Q), as described in the

‘Methods’ section. All networks we are using in the following

analysis are listed in table 1 and 2. For each of the SCN and NGD

networks we generated 5, and for each of the DMC parameter

settings 2 different networks in order to capture the variability of

the stochastic process underlying each of the three network

models. This gives a total of 84 networks we are using in our study,

namely, 11 PPI networks, 70 synthetic and 3 technological and

social networks.

From the 8 features f ~(M,s,d,hc,hmw,smw,nMI ,Q), we

identify by an exhaustive search the best performing subset with

the highest discriminatory power to separate PPI networks and

gene duplication networks from each other. From this analysis, we

found the 6-dimensional feature vector

x~(M,s,hc,smw,nMI ,Q): ð18Þ

to perform best. The resulting hierarchical clustering is shown in

Fig. 5. As distance measure for the feature vectors we used the

Canberra distance [68]

d(x,y)~
X6

i~1

Dxi{yi D
xizyi

ð19Þ

and for the agglomerative clustering we used the Mcquitty method

[69] which joins clusters if they are reciprocally similar to each other.

Table 1. Overview of networks used in our analysis.

network type N E density GCC

Arabidopsis thaliana (BG) 1675 2953 0.00210 1212

Homo sapiens (BG) 8429 29321 0.00082 8114

Mus musculus (BG) 545 490 0.00330 141

Drosophila melanogaster (BG) 7034 22222 0.00089 6907

Caenorhabditis
elegans (BG)

2806 4457 0.00113 2575

Saccharomyces cerevisiae (BG) 5620 53309 0.00337 5611

Schizosaccharomyces
pombe (BG)

1411 2478 0.00249 1313

Escherichia coli (DIP) 2856 6712 0.00164 2159

Helicobacter pylori (DIP) 1066 1415 0.00249 976

Mycoplasma pneumoniae (IA) 415 735 0.00855 375

Rattus norvegicus (IA) 1232 1421 0.00187 1095

Western States Power Grid 4941 6594 0.00054 4941

Coauthorship Netscience 1589 2742 0.00217 379

Collaboration Hep-th 8361 15751 0.00045 5835

The first 11 networks are protein networks and the bottom 3 are technological
and social networks. The columns refer to the number of nodes (N) and edges
(E) in the network, density is the edge density and GCC is the giant connected
component. BG: BioGrid database, IA: IntAct database.
doi:10.1371/journal.pone.0035531.t001
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The dendrogram in Fig. 5 consists of 8 principle clusters

(branches), each consisting of related networks, e.g., SCN, NGD,

DMC or PPI networks. The colors of these eight clusters are from

left to right: purple, gray, green, brown, magenta, blue, gold and

red. For example, the left most cluster (purple) contains only SCN

networks of various types (as defined in table 3). Similarly, the gray

and the blue clusters consist only of NGD networks (for

parameters see table 4). Also the PPI networks form two

distinguished clusters shown in green and magenta, containing 8
of the 11 PPI networks. Interestingly, the remaining 3 PPI

networks are clustered together with the 3 non-biological

networks, namely, the coauthorship networks (Netscience and

Hep-th) and the power grid (brown and red cluster). We want to

remark that we repeated the above analysis also for other

clustering methods, e.g., complete-linkage and Ward’s method,

and received qualitatively similar results to the presented ones.

From the dendrogram in Fig. 5 follow two important

observations. First, the 6 network-based measures we employ to

characterize the module structure of a network, result in feature

vectors that allow a very good separation of the different network

classes (populations). The class of a network can be seen as a label

that assigns a network to a specific network category. Due to the

fact that clustering analysis represents a form of unsupervised

learning [70] these network labels haven’t been used for this

analysis. Hence, our feature vectors would allow to discover

network classes, without a training sample, in a predictive manner.

This demonstrates that our feature vectors, respectively the

network-based measures, capture sensible information about the

module structure of the networks that corresponds with an

intuitive separation of them. Here, it is important to emphasize

that the resulting clustering provides the intuitive grouping of

network classes, although, the components of the feature vectors

Figure 4. A schematic visualization of the three steps of the network gene duplication model (steps 1, 2 and 3: NGD) and the
duplication-mutation complementation model (steps 1, 2 and 39: DMC). The colored and dashed edges highlight links or potential links effected
with probability d or a.
doi:10.1371/journal.pone.0035531.g004
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are abstract entities which may have no intuitive appeal at first

sight. It is also interesting to highlight that the protein interaction

network of Mus musculus is closest to the coauthorship network

‘Netscience’. From table 1, one can see that the GCC of Mus

musculus is the smallest of all PPI networks and, hence, a largely

incomplete network, because the available PPI network contains

545 proteins of which only 141 are in the GCC (see table 1),

whereas the estimated number of genes for mouse is *>20:000.

Further, Arabidopsis thaliana is the only PPI network from a plant in

our analysis. This distinctiveness may explain the separation of

these two PPI networks from the two principle PPI clusters in Fig. 5

(green and magenta cluster). On the other hand, due to the fact

that the PPI networks of Mus musculus and Arabidopsis thaliana are

not randomly scattered in the dendrogram, there seems to be a

clear signal with respect to the underlying characteristics of the

population of PPI networks that is detactable by our feature

vectors, even for such atypical networks. This is also the reason for

using the PPI networks of Mus musculus and Arabidopsis thaliana in

our analysis, because it allows for an indirect test of our

assumption we made about the GCC, as explained in the section

‘Network data and models’.

The second interesting observation from Fig. 5 is that the

networks generated with the duplication-mutation complementation

(DMC) model are similar to 2 of the 11 PPI networks, namely

the PPI network of Mus musculus and Arabidopsis thaliana (brown

cluster). In contrast, the networks generated with the NGD model,

appear not to resemble important structural characteristics of the

PPI networks, because otherwise these networks would not be

assigned to distinct branches of the clustering but would be found

in the same clusters as the PPI networks. Here, the fact that there

exist parameter settings of the network gene duplication model that lead

to very different network structures which can be discriminated

easily, as the purple cluster on the left-hand side shows, is not as

important as the none existence of a parameter setting that would

lead to a common cluster consisting of PPI and NGD networks.

We tried many different combinations of probabilities to add

and delete links for the NGD and DMC model, as controlled by

the two model parameters a and d, to explore the parameter space

of these two models, however, none resulted in clusters that would

be significantly different from the presented ones. Another

interesting observation in this respect is that the second type of

synthetic networks, indicated by SCN2, leads to network structures

that are quite similar to the NGD8 networks (gold cluster). This is

interesting because the model that underlies the SCN networks

hasn’t been conceived with the purpose to produce biologically

plausible results. Instead, the underlying idea was solely to

generate a set of benchmark networks with a know module

structure [67].

It is amazing to see that the coauthorship network (Netscience)

and the power grid resemble the module structure of PPI networks

similarly good as the networks generated with the DMC model.

This motivates also the reason for including them in the analysis

because this finding hints that naturally generated networks are

significantly different to mathematically constructed networks. Here, we

consider the SCN, NGD and DMC networks as mathematically

constructed.

The contribution of individual structural features
The above analysis is based on a 6-dimensional feature vector,

namely, x~(M,s,hc,smw,nMI ,Q). In order to gain insights into

the differences of the structural properties of PPI networks and

gene duplication networks, we conduct an analysis to estimate the

contribution of individual features to the separation of these

networks. We start from a set of 8 different features

(f ~(M,s,d,hc,hmw,smw,nMI ,Q)) and eliminate subsets thereof.

Specifically, we eliminate up to 5 features from

(M,s,d,hc,hmw,smw,nMI ,Q) which gives a total number of

nf ~
X5

i~1

8

i

� �
~218 ð20Þ

different feature vector combinations, fx’ig218
i~1. Here, a x’i

corresponds to such a feature vector. The hierarchical clustering

for each of these x’i is assessed by a clustering score. This score is

additively defined over all branches in a hierarchical cluster-

Table 2. Overview of SCN, NGD and DMC networks.

network type N E density GCC

SCN1 2500 8904.6 0.00285 2500.0

SCN2 2500 8995.0 0.00287 2497.4

SCN3 3000 8271.6 0.00183 3000.0

SCN4 3000 12491.2 0.00277 2995.0

NGD1 500 1069.2 0.00857 461.6

NGD2 1000 2183.2 0.00437 826.8

NGD3 1500 7713.4 0.00686 1487.6

NGD4 1500 4495.4 0.00399 1058.2

NGD5 2000 12658.8 0.00633 1988.6

NGD6 2000 14332.2 0.00716 1988.4

NGD7 3000 28013.4 0.00622 2997.2

NGD8 7000 9056.0 0.00369 5826.6

DMC1 3000 5006.0 0.00112 3000.0

DMC2 1000 1423.0 0.00284 1000.0

DMC3 2000 5731.0 0.00286 2000.0

DMC4 3000 5018.5 0.00111 3000.0

DMC5 3000 5003.0 0.00112 3000.0

The shown network measures are averaged over 5 networks.
doi:10.1371/journal.pone.0035531.t002

Table 3. Parameters used to generate the NGD and DMC
networks shown in table 2.

network name N a d

NGD1 500 0.0100 0.75

NGD2 1000 0.0050 0.70

NGD3 1500 0.0070 0.90

NGD4 1500 0.0050 0.70

NGD5 2000 0.0050 0.80

NGD6 2000 0.0050 0.70

NGD7 3000 0.0050 0.80

NGD8 7000 0.0005 0.95

DMC1 3000 0.47 0.80

DMC2 1000 0.22 0.85

DMC3 2000 0.27 0.65

DMC4 3000 0.52 0.80

DMC5 3000 0.12 0.80

doi:10.1371/journal.pone.0035531.t003
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ing, whereas for each branch we calculate the product of the

number of PPI networks and the number of NGD and DMC

networks. That means branches with a mixed population of

networks have a high score and branches with only one network

type have a score of zero. Coarsely speaking, the clustering score

quantifies the mixing of the PPI and gene duplication networks

and a perfect score of zero corresponds to a perfect separation of

these networks.

The results of this analysis is shown in the left Fig. 6. Here the x-

axis corresponds to the indexed feature vector combinations, x’i,
and the y-axis is the normalized clustering score. The color of the

dots indicate the number of features used for the hierarchical

Figure 5. Hierarchical clustering of all 84 networks used in our analysis. The color of the eight clusters from left to right (for a discussion see
text): purple, gray, green, brown, magenta, blue, gold, red. The ‘NetType’ refers to the four principle network types: 1- synthetic networks (SCN), 2 -
PPI networks, 3 - non-biological networks, 4 - network gene duplication networks (NGD), 5 - duplication mutation complementation networks (DMC).
doi:10.1371/journal.pone.0035531.g005

Table 4. Parameters used to generate the synthetic
community networks (SCN) shown in table 2.

network name N k maxk mu minc maxc

SCN1 2500 6 150 0.10 4 50

SCN2 2500 6 180 0.15 4 200

SCN3 3000 6 50 0.10 20 50

SCN4 3000 8 60 0.05 10 150

For explanation of the parameters the reader is refered to [67].
doi:10.1371/journal.pone.0035531.t004
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clustering. From left to right: blue (7 features), green (6 features),

orange (5 features), purple (4 features) and brown (3 features).

From Fig. 6 one can see that there is just one feature vector

combination that leads to a minimal score of 0:20, which means

that there only a few branches in the hierarchical clustering where

PPI and gene duplication networks can be found together. This

corresponds to the hierarchical clustering shown in Fig. 5.

To obtain a quantification for the contribution of individual

features on these results, we conduct the following analysis. First,

we estimate for each of the 8 features fi its score density, i.e., Pfi
.

That means if a feature has not been used for a clustering, we use

the obtained score for this clustering for a density estimation.

Then, we calculate from the score densities the cumulative distribution

function (CDF), Ffi
, and the complementary cumulative distribution function

(CCDF),

Ffi
(s)~1{Ffi

(s)~1{

ðs

0

Pfi
(s’)ds’: ð21Þ

The meaning of Ffi
(s) is as follows: If feature vector fi is not part of

a feature vector combination than the probability of observing a

score larger than s is Ffi
(s), i.e.,

Ffi
(s)~Prob(scorews : fi is not used): ð22Þ

The results for the 8 different complementary cumulative

distribution functions are shown in the right Fig. 6. For any

selected value of the score, one observes always the same two

CCDFs with the highest probability, highlighted in green and red.

These two CCDFs belong to the features f2~s (green) and

f7~nMI (red). Hence, the absence of these features in a feature

vector leads always to a higher probability to observe higher

clustering scores. In other words, if the features s or nMI are not

considered for a hierarchical clustering, the discriminative power

of any feature set is compromised. However, due to the closeness

of all 8 CCDFs, see Fig. 6, this effect is not strong enough to claim

that only these two features are sufficient to result in a clustering

with a low or even the lowest score. This is confirmed by a

numerical analysis which gives a score of 0:29 for the feature

vector x~(s,nMI).

This analysis demonstrates that there is no individual structural

property in a network that has enough discriminatory power to

allow separating branches of PPI and gene duplication networks.

Instead, the combination of a variety of different features is

needed.

Connecting data with models
Finally, we discuss the rational behind our analysis, which will

also shed light on the robustness and interpretation of our results.

In order to simplify the following discussion, a visual summary is

presented in Fig. 7. First, we assume the existence of a

(evolutionary) process that leads to the emergence of different

species. For our discussion a species is represented by its

underlying PPI network. An evolutionary process we consider

abstractly as a model M(H’), which, depending on a set of

parameters H’, generates PPI networks. The entity of all possible

PPI networks that can be generated from the model M(H’)
constitutes the population of PPI networks. From each PPI

network G we can derive a feature vector x, of a certain

dimension, whose components represent properties of G. This

leads to the population of feature vectors that represents these

properties for the whole population of PPI networks. It is

important to note that we assume the dimension of x to be finite.

For this reason, there is an unidirectional mapping from G to a

feature vector x which means that the properties given by x may

not be sufficient to reconstruct the network itself. Theoretically,

one can assume that these feature vectors are drawn from an

Figure 6. Left: Clustering score in dependence on the index of the used feature vectors. The colors indicate the number of features used for the
hierarchical clustering. From left to right: blue (7 features), green (6), orange (5), purple (4), brown (3). The red surrounded dot (index 18) corresponds
to the lowest score that was obtained for the features: M,s,hc,smw,nMI ,Q. Right: Complementary cumulative distribution function (CCDF) for each of
the eight features in dependence on the score.
doi:10.1371/journal.pone.0035531.g006
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unknown probability distribution, p(xDH). However, neither

M(H’) nor p(xDH) are known or observable. The data available

for an analysis are the PPI networks from a (small) number of

different species. These PPI networks can be seen as a sample from

the population of all possible PPI networks from all species

obtained experimentally. From this sample of networks, one can

derive feature vectors which constitutes theselves a sample. We

would like to note that the sample of feature vectors fxgsample is

only given indirectly via the observation of fGgsample because

p(xDH) is not accessible experimentally. In summary, we assume a

mapping from an evolutionary model that constitutes the

population of PPI networks, which is unobservable, to a sample

of feature vectors, each representing one species. The practical

merit from this mapping is that feature vector can be statistically

studied within the framework of multivariate analysis. The model

visualized in Fig. 7 describes exactly the way feature vectors were

obtained for both synthetically generated network models. For

example, in the case of the network gene duplication model we have

M(H’) with H’~(a,d,N).
From the above model follow several implications that are

important for the interpretation of our results shown in Fig. 5.

First, we do not need to make detailed assumptions about the

evolutionary model. That means it could be just one model or

three different models, e.g., one for Bacteria, Archaea, and

Eukaryota. Instead, it is enough to assume that a PPI network is

represented by a random vector. From the clustering of feature

vectors shown in Fig. 5 one can see that the 11 different PPI

networks are not randomly scattered, but clustered together in 2
clusters. This is an indicator that despite the differences that

certainly exist among the individual PPI networks, respectively the

underlying species, they are more similar among each other than

with other network types. As a side note, this could imply that they

are describable by just one underlying evolutionary model M(H’)
to represent all PPI networks, but with different parameter values

for different species. The fact that the PPI networks are not

clustered in just one branch is no counter argument against this,

because also the SCN and NGD networks, of which we know they

are generated from the some underlying model, are distributed

over several clusters.

More important for our analysis is the effect of the errors in the

PPI networks. It is clear that none of the available PPI networks is

error free, either missing true positive connections among proteins

or, probably less likely, included false positive connections. In

order to estimate these errors explicitly one would need to

introduce a specific error model, which is based on assumptions.

However, our framework does not require us to explicate such

assumptions. More specifically, it is known that the errors in the

PPI networks (false positives, false negatives) were created in a

biased manner [66] effecting all networks. With respect to Fig. 5

this corresponds to a mechanism that influences the mapping

fG*M(H’)gpopulation �?experiment fGgsample ð23Þ

in the following way

fG*M(H’)gpopulation �?experimentzerror f~GGgsample: ð24Þ

This leads to the actually observed networks f~GGg, which are

different to the (true) PPI networks fGg. Due to the fact that our

analysis is comparative, based on a hierarchical clustering,

investigating networks with respect to their similarity to other

networks rather than individually, the effect of the presence of

errors in the PPI networks is alleviated, when all PPI networks are

approximately homogeneously effect by errors. If the differences

between the errors on the feature vectors would be severely

heterogeneous, we would not be able to observe clustered PPI

networks, but they would be randomly scattered in the

dendrogram. Hence, the presence of clusters of PPI networks in

the dendrogram supports the claim that all PPI networks are

similarly effected by errors and also that the noise level in these

networks is smaller than the signal, as captured by the feature

vectors, because otherwise there would be no meaningful

clustering possible leading to discernible separations of networks

of different classes.

Discussion

In this paper, we studied the question if gene duplication models

allow to generate networks with a module structure that resembles

the module structure one can find in experimentally obtained

protein interaction networks. The results from our clustering

analysis revealed the existence of different structural features on

the module level, the NGD model and the DMC model exhibit

compared with biological protein interaction networks and, hence,

demonstrate limitations of these models [71]. We want to

emphasize that we studied not only the parameter settings of the

models listed in table 2, but many more. However, none resulted

in qualitatively different results. This points to a general limitation

Figure 7. A schematic visualization of the connection between the underlying model M(H’) to generate networks and the feature
vectors x, used in our study.
doi:10.1371/journal.pone.0035531.g007
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of these models in the description of the evolution of modules in

protein networks.

We would like to highlight that we found from our analysis the

duplication-mutation complementation model [38] to be a better model

for PPI networks than the network gene duplication model, at least for

the two protein networks of Mus musculus and Arabidopsis thaliana.

This difference in these two models hints that the new

establishment of functional interactions between a new gene and

genes already present in a genome (step 3 in Fig. 4) are less

beneficial than their neglect (setp 39 in Fig. 4). Hence, this

information could be utilized to revise an evolutionary duplication

model, e.g., in combination with other biological mechanisms. For

example, higher-order extensions with respect to the number of

duplicated genes may be needed to rectify the obtained module

structure of the resulting networks. Biologically, there is a

multitude of genomic mechanism ranging from whole-genome

duplication (polyploidy) to a restricted duplication of chromosomal

regions [43,73–75] that provide ample opportunity for exploring

plausible modifications of an extended duplication model.

From analyzing the influence individual features have on the

separation of PPI and gene duplication networks, we found that

there is no single structural feature that possess sufficiently

discriminatory power to accomplish such a separation, but one

needs a combination of several features. As most influential

features we identified the relative size of the largest module (s) and

the normalized mutual information (nMI ). Interestingly, for PPI

networks one finds a negative correlation coefficient of {0:21
between the values of s and nMI . For NGD networks their

correlation is 0:78 and for DMC networks {0:72. Further, the

correlation between the number of modules (M ) and the

modularity (Q) is for PPI networks negative ({0:51) and for

NGD and DMC networks positive (0:31 and 0:70). This indicates

structural differences of modules in the two gene duplication

models, but also between these models and the PPI networks.

Interestingly, for gene duplication networks an increasing number

of modules (M ) is associated with an increasing modularity (Q),

whereas for PPI networks it is associated with a decreasing

modularity.

The absence of individual features, allowing a separation of PPI

and gene duplication networks, is not surprising because the

module structure of networks corresponds to a mesoscopic level of

description. This implies that systems properties are playing an

important role which can not be reduced to individual proteins or

features. Hence, our results are in accordance with the view of

evolutionary systems biology [72] considering evolution as a high-

dimensional process.

The NGD model and the DMC model have been studied

numerously over the last few years and demonstrated to reproduce

several features that are in accordance with protein networks

[35,76–80]. However, these studies focused either on global

properties of protein networks, e.g., degree distributions, studied

individual protein networks only or investigated network motifs.

Instead, in this paper we studied the module structure of protein

interaction networks, which is generally believed to play a key role

in the functional understanding of an organism. Another

difference is that in our analysis we did not focus on individual

protein networks but we considered all protein networks to belong

to a population (or a sample thereof). This is an important

difference because it allows to capture biological variability that is

inevitably present in protein interaction networks from different

organisms as well as in any stochastic process that generates

networks like the NGD or DMC model. Hence, conducting a

comparative, instead of an individual protein interaction network

analysis allows to borrow strength from different members of the

population (sample) to alleviate errors. As a direct consequence

thereof, the basic entities of our analysis are the resulting branches

of the clustering and their composition and not the position of

individual networks. A related, yet different aspect of our approach

and the fact that a clustering analysis performs a comparative

analysis is that our study does not aim to provide precise estimates

for specific network statistics, e.g., by means of interval estimators

and their corresponding confidence intervals. The latter would

require the introduction of additional assumptions and a different

methodology, specifically adopted to the characteristics of the

studied networks; see [81] as an example for such a study. In

general, a clustering analysis is considered as an exploratory

analysis which provides a valuable comprehension into the pattern

of data without the need of making strong assumptions [82].

Hence, the simplicity of our approach is that it requires only a

minimum of assumptions compared to more elaborate method-

ological approaches, e.g., confirmatory methods [83], and, hence,

constitutes in the light of our limited knowledge about the

evolution of protein interaction networks a sensible first step to

gain insight into the complex and important module structure of

protein networks.

We would like to emphasize that the modularity of a network is

just one property of a network, like the degree distribution or the

average path length. For this reason, it would be interesting to

study further network properties of the network gene duplication

model, the duplication-mutation complementation model and protein

interaction networks to see if there are additions differences

between these networks. Using the module structure was guided

by biological considerations, however, one could also approach

this problem from a more theoretical perspective probing different

network characteristics. If such an abstract distinctive network

property could be found, it would be interesting to think about a

biological elucidation for this effect. The potential gain from such

an analysis could be to discover novel biological features that may

have been overlooked so far, because only properties with a clear

biological interpretation have been studied.

Despite the fact that the primary concern of this paper is a

biological topic in evolutionary biology the similarity of module

structures between PPI networks and the coauthorship networks

(Netscience and Hep-th) and the power grid is interesting. It hints

that much can be learned from analyzing networks from different

origin and different disciplines [84].
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