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Abstract
Purpose of Review To review the current knowledge on interactions between dietary factors and microRNAs (miRNAs) in
essential hypertension (EH) pathogenesis.
Recent Findings There exists an integration of maintenance signals generated by genetic, epigenetic, immune, and environmental
(e.g., dietary) factors that work to sustain balance in the gut-liver axis. It is well established that an imbalance in this complex,
intertwined system substantially increases the risk for EH. As such, pertinent research has been taken to decipher how each signal
operates in isolation and together in EH progression. Recent literature indicates that bothmacro- andmicronutrients interrupt regulatory
miRNA expressions and thus, alter multiple cellular processes that contribute to EH and its comorbidities. We highlight how
carbohydrates, lipids, proteins, salt, and potassium modify miRNA signatures during EH. The disruption in miRNA expression can
negatively impact communication systems such as over activating the renin-angiotensin-aldosterone system, modulating the vascular
smoothmuscle cell phenotype, and promoting angiogenesis to favor EH.We also delineate the prognostic value ofmiRNAs in EH and
discuss the pros and cons of surgical vs dietary prophylactic approaches in EH prevention.
Summary We propose that dietary-dependent perturbation of the miRNA profile is one mechanism within the gut-liver axis that
dictates EH development.
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Introduction

An appropriate bidirectional crosstalk within the gut-liver axis
(GLA) is essential to sustain physiological homeostasis. As

summarized in Fig. 1, the liver initiates an enterohepatic rela-
tionship by synthesizing and metabolizing a variety of endog-
enous solid constituents, such as bile salts, bilirubin, phospho-
lipids, and cholesterol [1]. These components are packaged
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with water as bile and deposited into the biliary tract for stor-
age in the gallbladder. Upon ingestion of food, the gallbladder
is signaled to contract and secrete bile into the small intestine
for assimilation of nutrients. Food (e.g., indigestible carbohy-
drates like dietary fiber) that is not hydrolyzed by host diges-
tive enzymes travels to the large intestine and is catabolized by
commensal microorganisms known as the gut microbiota [2].
At the same time, host compounds like bile salts and bilirubin
that enter the colon are susceptible to biotransformation into
secondary-derived microbial products [3, 4]. This collection
of dietary, host-derived, and microbial-derived components is
transported via portal vein to the liver, where absorption of
such contents can dictate the degree of immune stimulation
and thus, inflammatory responses in the liver. For instance,
gut-derived products can activate IL-6 production from
Kupffer cells (resident macrophages in the liver), which have
been suggested to stimulate acute phase protein production
from hepatocytes [5]. Importantly, acute phase proteins there-
after impact the gut microbiota to complete the bidirectional
communication circle, as we and others have shown that gut
microbiota stimulation of lipocalin-2 limits the bioavailability
of iron and therefore restricts the growth of iron-dependent
pathobionts in the intestine [6–8].

In cases of gut barrier dysfunction, more commonly termed
a “leaky gut,” excess release of microbial components can
serve as ligands for pattern recognition receptors that instigate
excessive inflammation and increase the risk for hepatic tissue
damage [9]. One of the major responses upon liver injury is
the transactivation of hepatic stellate cells into pro-fibrotic

myofibroblasts [10, 11]. End-stage fibrosis (i.e., cirrhosis)
can obstruct portal vein blood flow, resulting in portal hyper-
tension characterized by intrahepatic vascular resistance and
elevated blood pressure [12]. Alongside portal hypertension,
our group was one of the first to reveal the link between gut
microbiota and salt-sensitive hypertension [13••], where
our later studies identify more mechanistic insights to
how disruption in the GLA negatively impacts blood
pressure [14–16, 17•]. A recent review by Simbrunner
et al. elegantly introduces several molecular mechanisms
for GLA signaling in portal hypertension, including
host-microbiome co-metabolism [18]. Another respective
review by Guo et al. describes the therapeutic potential
of microRNAs (miRNAs) in regulating hepatic stellate
cell differentiation to treat portal hypertension [19••].
Furthermore, a meta-analysis by Marques et al. charac-
terizes miRNA signatures in the major blood pressure
regulatory organs from rodent models and human stud-
ies of essential hypertension [20••].

Herein, we expand by compiling available evidence
on how dietary perturbation in the GLA alters miRNA
expressions during essential hypertension (as summarized
in Fig. 2). This includes examining the reported effects
of macro- and micronutrients, such as carbohydrates,
lipids, proteins, salt, and potassium. We also discuss
the prognostic and therapeutic value of miRNAs in es-
sential hypertension and outline potential dietary factors
that could prove fruitful for prevention and management
of essential hypertension via modulation of miRNAs.

Fig. 1 Bidirectional communication between the gut and the liver is
required to maintain physiological homeostasis. The liver supplies bile,
which is an aqueous solution of bile acids, bilirubin, organic solutes, and
hormones, for nutrient assimilation, immune system stimulation, and

intestinal development. The hepatic portal vein transfers venous blood
enriched with nutrients and metabolites from the gut to the liver, which
instigates xenobiotic metabolism and immune cell activation
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Fig. 2 Altered miRNA expressions within the gut-liver axis from
response to diet promote essential hypertension. Dietary components
such as carbohydrates, lipids, and proteins can alter the miRNA
signatures that favor for increased vascular tone and renin-angiotensin-
aldosterone system activation, but reduced vascular integrity, which all

collectively contribute to essential hypertension development. In
addition, therapeutic approaches such as probiotics to increase short
chain fatty acid levels and/or bariatric surgery can affect miRNA-
dependent regulation of vascular function and thus, increase risk for
essential hypertension
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microRNAs in the Gut-Liver Axis

miRNAs are single-stranded, non-coding RNAs approx-
imately 21–25 nucleotides long that are required for
nearly all cellular processes related to animal and plant
development [21]. Processing from immature to mature
miRNAs is a two-step system: (i) primary miRNA tran-
scripts are cleaved by the RNase III nuclear enzyme
Drosha and (ii) the released stem-loop pre-miRNA is
cleaved by the RNase III cytosolic enzyme Dicer to
make a mature miRNA [22, 23]. The mature miRNA
then forms an effector RNA-induced silencing complex
in collaboration with members of the Argonaute family
of proteins to repress protein-coding messenger RNAs
via degradation [24]. When considering that miRNAs
are predicted to regulate around 30% of protein-
encoding genes [25], it is not surprising that miRNAs
have been implicated in a variety of pathophysiological
outcomes. It is noteworthy that the miRNA signature is
specifically altered in liver diseases and can dictate ei-
ther pro- or anti-inflammatory, pro- or anti-fibrotic, and
oncogenic- or tumor-suppressive gene expressions [26].
Interestingly, miRNAs and the gut microbiota have a
reciprocal regulatory interaction on each other in both
physiological and pathological conditions [27]. This
suggests that miRNAs may be an important GLA com-
ponent in modulating both liver and gut homeostasis.

In portal hypertension, most research to date has fo-
cused on miRNA signatures associated with hepatic cir-
rhosis and splenomegaly as the causation and secondary
consequence, respectively. The impact of miRNAs on
hepatic stellate cells and other signaling pathways in
cirrhosis has been reviewed in-depth [28–31], whereas
the molecular role of miRNAs in hypersplenism has
only been recently described. Whole-genome microarray
analysis has identified a distinct miRNAome in the en-
larged spleens of animals with partial portal vein
ligation-induced hypertension, including twenty-two
downregulated miRNAs that would normally suppress
fibrotic related mRNAs (e.g., Col1a1, Serpine1) [32•].
Intriguingly, miRNA-615-3p was found to be highly
expressed in the splenic macrophages of cirrhosis-
related portal hypertensive patients who underwent sple-
nectomy [33]. Further analysis revealed that excess
miRNA-615-3p repressed the ligand-dependent nuclear
receptor corepressor, followed by enhanced PPARγ-
dependent phagocytic capacity from macrophages [34],
which delineates one potential cellular mechanism of
hypersplenism during portal hypertension. Considering
the reported impacts of the miRNA-mRNA network on
physiology, we propose that miRNAs may also be re-
sponsible for the GLA-dependent mechanisms in essen-
tial hypertension (EH).

Prognostic Value of microRNAs in Essential
Hypertension

EH is a complex, multi-factorial, polygenic condition with
heterogeneous etiological risk factors. Extensive molecular
genetic research has identified single nucleotide polymor-
phisms in several genes for Mendelian categorized EH [35].
High-salt intake, excessive alcohol, stress, and low potassium
consumption have also been pinpointed as dominant environ-
mental contributors to EH pathogenesis [36]. Most recently,
epigenetics has emerged as a novel and powerful hallmark of
EH progression, which encompasses DNA methylation, post-
translational histone modifications, and miRNAs [37, 38]. By
studying epigenetics, the heredity aspects of EH and its phe-
notypes may be clarified [39, 40]. In this scenario, the
miRNAs are clinically relevant due to their capability to affect
several gene expressions.

Importantly, specific miRNAs have been suggested as po-
tential stable circulating biomarkers for EH diagnostic appli-
cations. This includes a collection of miRNAs reported to be
either upregulated (e.g., miR-1, miR-21, miR-122, miR-198,
miR-202-3p, miR-208b, miR-499, miR-505, miR-510, miR-
575, miR-1183) [41••, 42, 43•, 44–50] or downregulated (e.g.,
miR-9, miR-10a-5p, miR-26b, miR-29a, miR-29b, miR-29c,
miR-30e-5p, miR-126, miR-133a, miR-136, miR-143, miR-
144-3p, miR-145, miR-146a) [43•, 48, 50–55] in circulation
of EH patients compared to healthy controls. This miRNA
profile is correlated with sub-clinical cardiovascular diseases
such as left ventricular hypertrophy, cardiac remodeling, ca-
rotid intima-media thickness, nephropathy, albuminuria, en-
dothelial dysfunction, and vascular dysfunction [42, 44–46,
48, 51, 52, 54, 56–58]. In addition, miRNAs are associated
with alterations in specific cellular communication systems
like renin-angiotensin-aldosterone system, vascular smooth
muscle modulation, angiogenesis, and mineral ion binding,
which all reportedly contribute to EH pathogenesis [43•, 44,
49–51]. Investigation of EH in rodent and zebrafish models
identified miR-27a and miR-27b as additional pro-
hypertensive miRNA candidates, as their increased presence
in extracellular vesicles was linked to reduction in endothelial
nitric oxide synthase phosphorylation, impaired angioten-
sin-(1-7)-dependent vasodilation, and increased angiogenesis
[59••, 60]. Overall, analyses of the circulating miRNA signa-
tures present a prognostic tool as well as pave the way for
precision medicine of EH patients.

Nutritional Impact on microRNA Signatures
in Essential Hypertension

There exists multiple environmental and genetic factors that
can perturb the gut microbiota to cause dysbiosis and aid in the
blooming of opportunistic pathogenic bacteria at the expense
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of beneficial commensals [61]. Recent studies highlight a
strong association between gut dysbiosis and EH [62] and
suggest that the microbiome composition contributes to EH
pathogenesis [63••]. Thus, interventions at the gut microbiota
level to normalize blood pressure and vascular function may
be beneficial. Guidelines from the American College of
Cardiology and American Heart Association suggest dietary
lifestyle changes to manage and prevent EH [64••]. In addi-
tion, the emerging field of nutritional epigenetics [65] show
that dietary perturbations within the GLA may have down-
stream effects on miRNA signatures. In this section, we dis-
cuss the potential of leveraging nutritional epigenetics for EH
treatment.

Carbohydrates

It is well recognized that a Western-style diet, composed of
excessive simple carbohydrates and saturated fats, is a risk
factor for EH development [66]. One ingredient that has re-
ceived heavy research attention to date is high-fructose corn
syrup found in sweetened beverages and Westernized foods.
Consumption of dietary fructose alone is sufficient to elevate
blood pressure in adolescents and adults [67–69] whereas glu-
cose ingestion does not change blood pressure [69]. As such,
fructose has been acknowledged as an independent risk factor
for EH progression for humans [70] and rodent hypertensive
models [71, 72]. Several studies delineate the role of fructose
on sodium and electrolyte balance, nitric oxide (NO) bioavail-
ability, oxidative stress, and vascular integrity [73, 74], which
in turn promotes EH.

In view of the evidence, it is plausible that fructose
could alter miRNA expression in the GLA during EH. A
study by Sud et al. found that a high-fructose diet signif-
icantly altered the expression levels of certain miRNAs
related to lipid metabolism [75••]. Intriguingly, some of
the same miRNAs are associated with regulating endothe-
lial function and blood pressure. For instance, expression
levels of miR-19b and miR-101a were suppressed follow-
ing a high-fructose diet [75••], and this could attribute to
EH pathogenesis considering that both miRNAs demon-
strate anti-atherogenic properties [76]. While this evi-
dence suggests miR-101a as anti-hypertensive, this
miRNA is reportedly a part of an underlying mechanism
of increased diastolic blood pressure from air pollution
exposure [77], highlighting the complexity of miRNA
function. Overconsumption of fructose also upregulated
the expression of miR-145a [75••], a candidate pro-
hypertensive miRNA and potential biomarker for diagnos-
ing EH as silencing miR-145a in spontaneously hyperten-
sive rats protected against EH by restoring NO metabo-
lism [78]. These studies collectively suggest that future
research should investigate the potential role of fructose-
induced augmentation of miR-145a in EH.

In addition to the reported effects of fructose on miRNAs,
other evidence suggests the renin-angiotensin-aldosterone
system (RAAS) as an intermediate in fructose-miRNA inter-
action. As low blood pressure initiates the RAAS cascade to
elevate blood volume and arterial tone, the liver is the primary
site of angiotensinogen production, a precursor for angioten-
sin II (Ang II), which acts as a potent vasoconstrictor and
promotes sodium and water reabsorption via angiotensin II
type I receptor (AT1) in the kidney, adrenal cortex, arterioles,
and brain [79]. Interestingly, excessive levels of intra-renal
Ang II [80] and increased AT1 signaling [81] have been im-
plicated in the hypertensive effects from high a fructose diet.
Moreover, miR-155 functions downstream of Ang II signal-
ing as a negative feedback regulator, a suggested protective
mechanism against cardiac hypertrophy [82••]. This posits
that the negative regulation of Ang II by miR-155 might be
impaired during EH; however, further studies are required to
delineate this possibility.

The role of miRNAs in fructose-induced EH may also
be mediated via advanced glycation end (AGE) products.
F r u c t o s e , l i k e o t h e r r e d u c i n g s u g a r s , c a n
nonenzymatically react with free amino groups from pro-
teins, lipids, or nucleic acids through the Maillard reac-
tion (glycation) to produce AGE [83, 84]. It is important
to note that glucose is the lesser/slower reactive sugar that
participates in glycation when compared to fructose [84].
Associative studies have found that AGE are significantly
higher in EH patients [85], as they reportedly contribute
to endothelial dysfunction [86]. A study by Wu et al.
demonstrates that AGE can suppress miR-200b and
miR-200c, leading to unregulated RhoA/ROCK2 signal-
ing during endothelial injury [87]; however, whether this
relates to EH etiology remains unknown. Thus, the role
of elevated AGE [88] and/or impaired endothelial
mechanotransduction [89] as a result of dietary sugar
consumption needs further investigation in EH.
Noteworthy is that chronic ingestion of sucrose reported-
ly increased circulatory miR-21 and miR-223 [90].
Therefore, this miRNA change may be a compensatory
response when considering that (i) EH patients have ele-
vated levels of miR-21 in circulation, (ii) delivery of
miR-21 lowered blood pressure in spontaneously hyper-
tensive rats via restoration of mitochondrial function, and
(iii) miR-223 is anti-atherogenic by targeting β1 integrin
[91•, 92]. Overall, future studies should directly explore
whether perturbation of the GLA by fructose and/or su-
crose changes the miRNA profile to favor EH.

Lipids and Fatty Acids

Adoption of a sedentary lifestyle and dietary changes (i.e.,
excessive intake of lipids) that lead to a positive energy bal-
ance can cause hyperlipidemia. In addition to lipid
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overconsumption, which leads to hyperlipidemia, as a risk
factor for EH progression [93], there exists is a coupling
effect for dietary fats to aggravate developed EH [94].
Impressively, mothers consuming high-fat diet (HFD)
during the perinatal period increases the probability for
offspring to exhibit fetal reprogramming toward EH de-
velopment [95]. Alterations in the gut microbiota and
their metabolite profile [95] have been suggested to con-
tribute to the intergenerational transfer of EH risk, and
this may reflect the changes in miRNA composition. For
one, prolonged maternal exposure to HFD was associated
with downregulation of miRNA processing in the off-
spring, which contributed to fetal cardiac hypertrophy
[96••]. Additionally, a recent study by Mantilla-
Escalante et al. finds that postprandial lipemia causes spe-
cific miRNA responses including tissue enrichment of
miR-206-3p, miR-543-3p, miR-466c-5p, miR-27b-5p,
miR-409-3p, miR-340-3p, miR-1941-3p, miR-10a-3p,
miR-125a-3p, and miR-468-3p [97•]. Analyses of circu-
lating miRNA profiles in EH associated with hyperlipid-
emia conditions show an increase for miR-21, -146a, -
221, -143, -34a, and miR-204 in plasma levels, elevated
miR-126, -146a, -223, -222, and miR-214 and reduced
miR-143, miR-10a, and miR-145 in platelets, and in-
creased miR-222, -221, -210, and miR-34a and decreased
miR-223, -214, -146a, -143, -10a, and miR-145 in platelet
derived vesicles [98]. Thus, it could be theorized that the
vascular hyperreactivity and cardiac remodeling during
EH is due to hyperlipidemia-dependent changes in
miRNA expressions, such as downregulation of miR-
10a, miR-139b, miR-206, and miR-222 and/or upregula-
tion of hsa-miR-223-3p, hsa-miR-21-5p, and hsa-miR-
146a-5p [99, 100••]. Furthermore, miR-21 is upregulated
in enriched lipid environments and disrupts the remodel-
ing of vascular smooth muscle cells during EH [50].

There are four types of fat ty acids: saturated,
monosa tu ra ted , po lyunsa tu ra ted , and t r ans - fa t .
Comparatively, saturated, monounsaturated, and trans-
fats, but not polyunsaturated fatty acids (e.g., ω3 and
ω6), are associated to EH [101]. In line with this, HFD-
fed rats that consumed linoleic acid (ω6) were found to
have lower miR-27a (pro-hypertensive candidate) and
restoration of miR-143 (normally blunt in EH) [102],
suggesting that polyunsaturated fatty acids could be ther-
apeu t i c aga ins t hype r l i p idemia -a s soc i a t ed EH.
Accordingly, much research has focused on understand-
ing the role of saturated fatty acids in EH progression
because it is the most consumed form of dietary lipids.
Palmitic acid, in particular, has received much attention
for obesity-associated EH by upregulating endothelin-1
levels through induction of endoplasmic reticulum stress
[103]. Multiple mechanisms may exist via which saturat-
ed fatty acids influence EH, including damaging the

integrity of the inner lining of blood vessels in the vas-
cular endothelium, diminishing NO production, increas-
ing oxidative stress, exacerbating inflammation, and pro-
moting the activation of RAAS [104]. It is noteworthy
that postprandial lipemia resulting from ingestion of
enriched saturated fatty acids—mostly composed of
palmitic acid—downregulated miR-300 and miR-369-
3p but upregulated miR-495-3p, miR-129-5p, and miR-
7-2-3p in peripheral blood mononuclear cells [105]. This
connection among lipemia, miRNA, and EH is evident
but requires additional mechanistic studies to confirm
how these changes in miRNA levels impact EH etiology
and progression.

Proteins and Amino Acids

Dietary Approaches to Stop Hypertension (DASH) studies
[106] indicate that long-term intake of a high-protein diet,
at the expense of carbohydrates, from either animal or
plant sources has protective benefits to lower the risk of
EH [107] and to maintain reduced blood pressure even
after weight loss [108]. While no studies have currently
looked at the direct effects of protein on miRNA expres-
sion in EH, evidence indicates that certain amino acid
intermediates may play a role in EH pathology. For in-
stance, homocysteine and asymmetrical dimethylarginine
(ADMA) are two byproducts from post-translational mod-
ification (i.e., methylation) of arginine [109]. Metabolism
of methionine is another source for homocysteine [110].
Hyperhomocysteinemia (serum homocysteine levels >10
μmol/L) [111, 112] and significantly increased ADMA
levels [113] have become more widely recognized as risk
factors for EH development. ADMA is primarily known
to inhibit NO bioavailability and induce endothelial dys-
function [113], whereas homocysteine can also inhibit NO
synthesis while promoting oxidative stress. Recently, Li
et al. found that homocysteine can competitively inhibit
Ang II when activating AT1 in the RAAS pathway
[114••]. Homocysteine is also well known for stimulating
proliferation of vascular smooth muscle cells [115], re-
portedly via miR-143 hypermethylation [116] and blunted
miR-145/CD40 [117, 118] but this can be abated by (i)
miR-217 suppression of the N-methyl-D-aspartic acid re-
ceptor [119], (ii) miR-217 promotion of senescence [120],
or (iii) miR-145 repression of PI3K/Akt/mTOR signaling
[121••]. Furthermore, cardiac remodeling from homocys-
teine is linked to the differential expression of 11
miRNAs with miR-188 showing dramatic downregulation
in HHcy cardiomyocytes [122]. Despite the reports that
homocysteine is related to the phenotypical switches
found in EH and that these changes are associated with
specific miRNA signatures, these observations need to be
confirmed in EH rodent models.
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Micronutrients

There are five main micronutrients that are known to regulate
blood pressure: sodium, chloride, calcium, potassium, and
magnesium [123]. Accordingly, the molecular compound so-
dium chloride has been heavily investigated in EH pathogen-
esis [124].Mechanistically, high salt intake has been shown as
pathological in EH by regulating immune responses [125],
causing renal dysfunction [126], and modulating the gut mi-
crobiota and metabolic profile [127]. This also includes dys-
regulated sodium and water reabsorption, higher glomerular
filtration rate, and increase of protein catabolism in EH pa-
tients [128]. In line with this, mice deficient in the sodium
chloride cotransporter have increased blood pressure when
fed a diet with high salt and low potassium [129].

High-throughput miRNA sequencing technology has iden-
tified 9 miRNAs suitable as biomarkers for salt-sensitive EH
in humans, including upregulation of hsa-miR-15b-5p, hsa-
miR-362-5p, and hsa-miR-361-5p, but downregulation of
hsa-miR-19a-3p, hsa-miR-210-3p, hsa-miR-26b-3p, hsa-
miR-382-5p, and hsa-miR-423-5p [130]. miRNA libraries
have also been created for Dahl salt-sensitive and Lewis rats
administered with either normal or high-salt diets, as Naraba
and Iwai confirmed 91 previously reported miRNAs and un-
covered 12 new miRNAs expressed in the kidney [131].
Interestingly, miR-429 is reportedly necessary for HIF-1α-
mediated sodium excretion in response to high salt intake,
whereas deficiency in this miRNA aggravated salt-sensitive
EH [132]. In line with this, a recent study by Lu et al. finds that
the circular RNA, termed circNr1h4, regulates fatty acid re-
ductase 1 by spongingmiR-155-5p, which contributes to renal
injury during deoxycorticosterone acetate-salt hypertension
[133]. Comparatively, miR-29b is indicated as potentially
beneficial against renal fibrosis in salt-induced EH as it sup-
presses a wide array of genes that encode collagen [134]. Of
note is that administration of a first generation β1-selective
blocker (i.e., nebivolol, atenolol) substantially alleviated car-
diac remodeling, hypertrophy, and fibrosis in salt-sensitive
EH by attenuating miR-27a and miR-29a [135].

Surgical vs Dietary Prophylactic Approaches
to Prevent Essential Hypertension

Bariatric Surgery

In association with hyperlipidemia, obesity is a prominent risk
factor for EH [136]. Therapeutic approaches have included the
coupling of a calorie deficit diet and intense exercise, but
recent evidence suggests that surgical procedures such as bar-
iatric bypass, adjustable gastric banding, vertical banded
gastroplasty, and biliopancreatic diversion are more success-
ful inmaintenance of long-termweight loss and as such, lower

the incidence of EH [137]. Sleeve gastrectomy and Roux-en-
Y gastric bypass are the two most common types of bariatric
surgeries that involve a partial resection of the stomach, which
alters bile flow and metabolic pathways to stimulate weight
loss in patients with a body mass index greater than 40 [138].
Interestingly, changes in the systemic profile of regulatory
miRNAs have been noted by a marked decrease of circulating
miR-140-5p, miR-122, miR-193a-5p, and miR-16-1 but an
increase of miR-221 and miR-199a-3p following surgery-
induced weight loss [139]. Urinary levels of miR-192, miR-
200a, and miR-200b were also found to be upregulated fol-
lowing bariatric surgery [140]. Additionally, liver-specific
miR-122, miR-885-5-p, and miR-192 were reduced to levels
found in non-obese patients 3 months post-surgery [141].
Changes in the miRNA profile also corresponded with the
suppression of pro-inflammatory genes in adipose tissue
[142], which could attribute to how miRNAs switch toward
an anti-inflammatory metabolic state after gastric bypass.

A recent meta-analysis further affirms that bariatric surgery
significantly alters miRNA expressions: (i) downregulated
hsa-miR-93-5p, hsa-miR-106b-5p, hsa-let-7b-5p, hsa-let-7i-
5p, hsa-miR-16-5p, hsa-miR-19b-3p, hsa-miR-92a-3p, hsa-
miR-222-3p, hsa-miR-142-3p, hsa-miR-140-5p, hsa-miR-
155-5p, and rno-miR-320-3p, but (ii) upregulated hsa-miR-
7-5p and hsa-miR-320c [143•]. Since miRNAs were positive-
ly correlated with reduced body mass index, percentage fat
mass, blood glucose levels, and liver transaminases, these re-
sults have instigated the miRNAome as a potential diagnostic
tool to indicate the success of bariatric surgery [144].
Considering the drastic weight loss experienced by patients
after bariatric surgery, the high rates of EH remission 1 year
after surgery are surprising [145]. However, a recent longitu-
dinal genome-wide methylation study revealed that Roux-en-
Y gastric bypass patients obtain novel CpG sites associated
with dysregulation of systolic blood pressure, which has pro-
vided a plausible epigenetic mechanism to EH post-surgical
treatment [146]. Future studies are necessary to delineate if the
above changes in the miRNAome could be also contributing
to the EH remission observed after bariatric surgery.

Probiotics and Prebiotics: Targeting the Gut
Microbiota

Novel dietary supplements are currently explored to imple-
ment either in the pre-hypertensive stage or as co-adjuvants
with standard treatment plans for EH. When determining ap-
propriate dietary therapeutics, it is important to note which
metabolites are generated once the food is digested by the
gut microbiota. In the proximal colon, for instance,
saccharolytic (i.e., carbohydrate) fermentation by microbes
can generate beneficial short chain fatty acids (SCFA) and
vitamins B and K [147, 148]. Comparatively, proteolytic
(i.e., amino acid) fermentation in the distal colon can generate
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branch-chain fatty acids but also some potentially detri-
mental metabolites such as ammonia and phenols [147,
148]. As such, one of the major mainstream options in
EH management is the incorporation of either probiotics
or prebiotics [149–152, 153•] into the diet to boost
saccharolytic fermentation from beneficial commensal
microbes and thus generate SCFA like acetate, butyrate,
and propionate. This rationale is further supported by the
clinical observations that EH patients have greater excre-
tion and less absorption of SCFA [154••, 155, 156].

Dietary supplementation with probiotics may include com-
mensal strains from Lactobacillus and Bifidobacteriawhereas
prebiotics encompass ingestion of dietary fibers as a nutrition-
al source for the resident gut commensals. The blood pressure
regulatory role of SCFA has been delineated in-depth with
back-to-back reviews from Dr. Jennifer Pluznick [157, 158].
To summarize, administration of one type of SCFA or as a
cocktail mixture has been found to reduce blood pressure by
(i) activating olfactory G-protein coupled receptors in the kid-
ney [159, 160] and (ii) acting as a histone deacetylase inhibitor
[161]. Even though SCFA possess well-established epigenetic
effects via inhibiting histone deacetylase function, only one
article to date makes a connection between SCFA andmiRNA
in EH, as Weber et al. note that the miRNA-dependent hyper-
tensive phenotype may be due to its regulation of SCFA re-
ceptors in the kidney, which can be normalized by hydrogen
sulfide administration [162]. Future studies should aim to fur-
ther understand the SCFA-miRNA-EH axis.

Conclusion and Future Direction

This review highlights our current understanding of how
miRNAs may influence EH progression in the context of the
GLA. Specifically, we delved into the interplay between die-
tary factors and gut microbiota metabolites in the “turning on”
vs “turning off” expression of certain miRNAs, which may
dictate a pro-hypertensive vs normotensive state. Noting that
our review is one of the first to make the connection among
dietary factors, GLA-derived metabolites, and miRNAs in
EH, additional research is needed to validate these correla-
tions. The diagnostic value of miRNA in EH has been sub-
stantiated, but mechanistic studies are needed to identify the
targeted miRNA for precision medicine in EH. Intriguingly,
the study by Teng et al. demonstrates that miRNAs from
exosome-like nanoparticles in ginger can positively affect
the composition of gut microbiome and its metabolites
[163], but whether this could be translated to alleviate EH
has not yet been explored. Our review indicates that studying
the differences between a Westernized style diet vs plant-
based diet could provide prevention and/or treatment of EH.
Other research also indicates that a Mediterranean diet may
provide a beneficial alteration of the miRNA signatures and

lower endothelial dysfunction [164]. We acknowledge that
miRNAs may be one of many epigenetic factors contributing
to EH and further research should determine if other non-
regulatory RNAs, such as small and long regulatory RNAs
or cyclic RNAs, may have similar implications as miRNAs
in EH pathogenesis.
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