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Abstract
Background

Geometrical and anatomical variations occur during the brachytherapy of carcinoma cervix and dose
optimization is necessary for every fraction of high-dose rate intracavitary brachytherapy (HDR-ICBT) for
carcinoma of the cervix. A single planned treatment is usually delivered for multiple fractions without
consideration of inter-fractional applicator positioning variations and organ motion, which may lead to
substantial differences between the planned and delivered doses.

Aim and objectives

This study was aimed at evaluating the inter-fractional variation in volume and radiation dose to organs at
risk during ICBT for cervical cancer. Furthermore, the doses to high-risk clinical target volume (HRCTV) and
the role of adaptive planning in ICBT were assessed.

Materials and methods

Twenty-two patients with carcinoma of the cervix Stage IB2-IVA receiving ICBT were enrolled in the study.
All the patients were treated with ICBT four fractions in two applications. For the first application, magnetic
resonance imaging-based planning was done, and for the next three fractions, computed tomography (CT)
scans were done before every treatment fraction. The CT images were contoured and replanned by keeping
the First (I) fraction of each application as the reference. Dose-volume histograms (DVH) were generated,
and details of D2cc (DVH on a volume of 2cc) of bladder, rectum, and sigmoid colon (organs at risk-OAR) and
D90 HRCTV (dose covering 90%) were documented.

Results

In patients receiving ICBT, variations in OAR D2cc ranged from 1.5 to 2.5Gy for the bladder (p- 0.001), from
2.0 to 3.2Gy (p-0.005) for the rectum and from 1.5 to 3.5Gy for the sigmoid colon (p 0.103). The p-value was
significant for D2cc when compared with the OAR volume for the bladder and rectum in both applications,
whereas it was not significant for the sigmoid colon. The percentage change in HRCTV coverage was 7% in
the first application and by 16% in the second application because of adaptive planning.

Conclusion

Significant variations in doses received by D2cc of the bladder and rectum as well as significant
improvement in HRCTV coverage between the fractions were observed because of replanning. Hence,
image-guided HDR-ICBT should be incorporated with adaptive planning when delivering in multiple
fractions.
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Introduction

Cervical cancer is the second most common cancer among Indian women as per GLOBOCAN 2020 and
accounts for one-quarter of the worldwide burden [1]. Cervical cancer is one of the leading causes of
mortality, accounting for 17% of all cancer deaths in women aged between 30 and 69 years. It has been
reported that more than 85% of the patients are in the age group of >40 years and that the maximum number
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of cases is in the age group of 50-59 years, amounting to 27.37% of all cervical carcinoma cases [2]. External
beam radiotherapy (EBRT) with a total dose of 45-50Gy and a dose of 1.8-2Gy per fraction and concurrent
chemotherapy with cisplatin followed by brachytherapy (BT) is the standard treatment for locally advanced
cervical cancer [3]. BT is a necessary component in the curative treatment of cervical cancers. Low dose rate
(LDR) is defined as a dose of 0.4-2 Gray (Gy)/h, and high dose rate (HDR) is defined as a dose of >12 Gy/h.
HDR BT has been utilized more frequently than LDR BT over the past two decades as there is no need for the
patient to be hospitalized for the treatment, which provides a possible economic advantage. Moreover, the
delivery of the treatment in several short fractions may permit greater control over the position of the
sources [4].

The American Brachytherapy Society (ABS) has recommended keeping the total duration of the treatment to
<8 weeks because further prolongation adversely affects local control and survival. To reduce the overall
treatment time and the logistic constraints, multiple fractions are delivered in a single application. A single
plan approach for HDR treatments involves contouring and treatment planning at the first fraction and
applying the same plan to the remaining fractions. However, this approach does not consider the inter-
fractional applicator positioning variations and organ motion that may lead to substantial differences
between the planned and delivered doses [5]. A small change in the geometry of the intracavitary
brachytherapy (ICBT) applicators may cause a considerable dose difference at various reference points owing
to the presence of a large dose gradient in the region close to the BT sources [6,7]. Therefore, calculating the
precise dose delivered to the surrounding normal tissues and the clinical target is important for successful
treatment.

Significant inter-fraction variations may result from dramatic tumor regression or progression during BT.
Thus, replanning with every fraction has been proposed and is currently recommended by the ABS [8-11].
However, a few studies are only available in the literature about the comprehensive method of analyzing the
relationship between inter-fractional organ and dose variation that considers both volumetric and organ
movement variation. Hence the present study was undertaken.

Materials And Methods

Case selection

This research was a hospital-based prospective single-arm, non-randomized study. Patients diagnosed with
squamous cell carcinoma of the cervix for whom definitive chemotherapy-radiation therapy (CTRT) was
planned were included in the study. The eligible cases were the patients with histologically proven non-
metastatic cervical cancer who were treated with curative-intent definitive CTRT with an EBRT of 46-50Gy
in 23-25 fractions with a linear accelerator-based three-dimensional conformal radiotherapy
(3DCRT)/intensity-modulated radiation therapy (IMRT) technique along with weekly chemotherapy with

cisplatin 40 mg/m?2. Following completion of the CTRT, ICBT was planned. The HDR BT procedure was
performed in accordance with the ABS guidelines.

Contouring and planning

After the procedure, for the first ICBT application, magnetic resonance imaging (MRI) was performed with
the applicators and the same used for contouring and planning. GEC ESTRO guidelines [12] were used to
contour the high-risk clinical target volume (HRCTV), bladder, rectum and sigmoid for all patients. Planning
was done using Oncentra planning system (Oncentra 4.51 software). The volumes of the HRCTV and organs
at risk (OARs) contoured were recorded. Dose-volume histograms (DVHs) were generated, and volume of
OARs, D90 and D2cc (DVH on a volume of 2cc) were noted for the bladder, rectum and sigmoid for each
treatment. HDR BT was delivered with 192Iridium sources to a prescription dose of 6.5Gy to point A after
achieving optimization. The accepted first-fraction treatment plan was used for the 2nd fraction after re-
optimization. The 2nd fraction was delivered on the next day. To perform the dosimetric study, the
computed tomography (CT) scan was done before delivering the second fraction. Contours were redrawn on
the 2nd fraction CT scan by keeping the first-fraction contoured images as a reference. The same method was
used for the 3rd and 4th fractions. All the patients were treated with 6.5Gy per fraction with two fractions per
application and a total of four fractions in two applications.

Statistical analysis

The statistical analysis was performed using SPSS statistical package version 22 (IBM Corp., Armonk, NY).
Descriptive statistics such as mean, minimum and maximum doses, standard deviation for dose received by
each OAR was calculated separately for 1st and 2nd application and similar analysis was performed for OAR
volumes. To know the significance of data further statistical analysis was performed. Pearson’s correlation
was used to find the correlation between whether change in volume of OAR results in change in dose
received by OAR and also whether change in volume results in change in D90. Paired t-test was used to
determine the significance.

Results

A total of 22 patients with newly diagnosed squamous cell carcinoma of the cervix were enrolled in the
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Number of Patients Evaluated: 22
Organ

Bladder (d 2cc)

Rectum (d 2cc)

Sigmoid Colon (d 2cc)

d90 HRCTV

study. Analysis was performed by finding the differences in D2cc of the bladder, rectum and sigmoid for the
First(I) application, which included the first and second fractions. The mean, standard deviation, maximum
dose, and minimum dose were calculated for the bladder, rectum and sigmoid. A similar descriptive analysis
was accomplished for the Second(II) application too.

The maximum and minimum in Table ! represent the dose received by organs (bladder, rectum, sigmoid)
between fractions in single application which can be in +/- from a base line(average) and hence mean lies in
the range of maximum and minimum. On average data points are distant from mean by %SD from the mean
value hence % of SD calculated using mean and average. Some of the extreme values in data have
contributed to larger variation in SD.

L Mean Standard Maximum Minimum Percentage of Standard

Application . e
cGy Deviation cGy cGy Deviation

| Application 24.89 86.96 163.33 -152.62 +/-16.26
I

o -56.10 121.73 208.89 -244.70 +/-23.65
Application
| Application -18.63 130.26 319.40 -226.52 +/-25.31
Il

o 70.433 137.54 310.25 -198.20 +/-34.50
Application
| Application  70.61 90.82 150.99 -186.28 +/-22.78
Il

o 40.32 166.50 342.08 -297.75 +/-47.29
Application
| Application -31.61 98.59 122.45 -257.32
Il

o -82.70 83.01 31.73 -258.64
Application

TABLE 1: Radiation dose received by HRCTV, bladder, rectum and sigmoid colon.

HRCTV: High-risk clinical target volume

Organ Volume

| Application
Bladder

Il Application

| Application
Rectum

I Application

| Application
Sigmoid

I Application

The bladder, rectum and sigmoid volumes were noted in the study. The difference in volume for these
organs during the 1st application was analyzed. A similar analysis was performed for the 2nd application
too. The data were applied for the descriptive analysis of mean, standard deviation, maximum and minimum
volumes for the bladder, rectum and sigmoid (Table 2).

Mean cc Standard Deviation (SD) Maximum cc Minimum cc
3.10 19.63 43.00 35.70
1.36 27.32 51.80 70.20
297 11.98 14.40 33.00
4.41 18.12 55.10 28.30
2.55 20.63 57.66 36.70
1.93 16.03 33.10 22.60

TABLE 2: Volume of bladder, rectum and sigmoid colon

The data were employed for determining the correlation of the OAR volumes with D2cc and D90 of high-risk
clinical target volume (HRCTV). Pearson correlation test was used for this purpose, and significance was
analyzed by applying paired t-test. These tests were used for both applications separately (Table 5).
Regression analysis was done to understand the significance of the variables. The variables used were OAR
volumes with respect to D2cc and D90 HRCTV (Table 4).
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Volume

Bladder
Rectum

Sigmoid

| Application

D2cc 2 tailed (Pearson
correlation)

0.012 (0.524)
0.244 (0.259)

0.060 (0.793)

D90cc 2 tailed (Pearson
correlation)

0.138 (0.327)
0.155 (0.491)

0.327 (0.137)

TABLE 3: Paired 2 test (Pearson correlation)

Il Application

D2cc 2 tailed (Pearson
correlation)

0.002 (0.620)
0.001 (0.665)

0.082 (0.082)

D90cc 2 tailed (Pearson
correlation)

0.789 (0.060)
0.764 (0.068)

0.348 (0.210)

| Application Il Application
Regression Analysis
D2cc p Value D90cc p Value D90 sig 2 tailed (Pearson correlation) D2cc sig 2 tailed (Pearson correlation)
Bladder .001 118 .000 .000034
Rectum .018 167 .000 .000019
Sigmoid 163 .087 .006 .000048

TABLE 4: Regression analysis for significance D90 and D2CC. Sig 2 tailed: This is the two-tailed
p-value evaluating the null against an alternative that the mean is not equal to 50.

Discussion

Image-guided BT has replaced the conventional point A-based dose reporting in gynecological BT in recent
years [13-16]. GEC ESTRO GYN working group has published recommendations on target volume definitions
and DVH parameters [12,17].

HDR ICBT requires multiple applications, which could lead to inter-fractional variations in the applicator
position as well as its spatial position in relation to the pelvic organs, pelvic bony anatomy and the OARs
[18-20]. To overcome this drawback, adaptive planning has been implemented in various institutes for HDR
BT for cervical cancer. Adaptive planning involves contouring and treatment planning for each fraction,
which is facilitated by daily MR images. MRI-guided ICBT allows accurate optimization of the radiation dose
and enables the administration of a higher dose to the target tissue. MRI precisely depicts the ICBT probe
and any associated complications. The use of MRI for imaging-guided ICBT is expected to increase
significantly over the coming years, thereby allowing highly individualized radiation therapy. Imaging
modalities with good soft tissue delineation, such as MRI, can be used to assess the tumor response during
treatment. By adhering to a uniform bladder filling or emptying routine, it is possible to minimize the
variations arising from organ deformation [21,22]. In our study, MR images were used for the first fraction of
ICBT planning, while CT images were employed for the second fraction treatment. For dosimetric purposes,
the contours were redrawn on the CT images using the first-fraction contours as a reference. The same
procedure was followed for the 3rd and 4th fractions too. A multicenter prospective cohort study conducted
by Potter et al. on MRI-guided adaptive BT in locally advanced cervical cancer (EMBRACE-I) collected data
pertaining to 1341 patients from 24 centers who had undergone MRI-based image-guided adaptive
brachytherapy (IGABT). The findings revealed that after a median follow-up of 51 months, the actuarial
overall five-year local control was 92%. The actuarial cumulative five-year incidence of grade 3-5 morbidity
was 6.8% for genitourinary events, 8.5% for gastrointestinal events, 5.7% for vaginal events and 3.2% for
fistulae. The researchers concluded that chemoradiotherapy and MRI-based IGABT result in effective and
stable long-term local control across all stages of locally advanced cervical cancer, with limited severe
morbidity per organ [23]. Similarly, in our study, MRI-based planning was performed for the first fraction of
ICBT.

A study involving 40 patients by Sharma et al. [24] on inter-fractional dose variations in OARs in CT-

based BT in locally advanced carcinoma of the cervix evaluated the inter-fractional minimum dose received
by the 2cc volumes of the OARs. The first fraction plan was superimposed on the second one to reduce the
dosimetric impact. The minimum and maximum D2cc for the bladder, rectum and sigmoid were in the range
of 1.3-9.4Gy, 1.4-7.0Gy and 1.6-6.8Gy, respectively, for all fractions. In our study which included 22 patients,
for dosimetric analysis, each OAR was recontoured for each fraction. The inter-fractional variations in the
dose received by D2cc were 1.5-1.6Gy for the bladder (p 0.001), 2.2-3.2Gy for the rectum (p 0.005) and 1.5-
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1.9Gy for the sigmoid (p 0.103) during the 1st application. During the 2nd application, variations in the dose
received by 2cc bladder, rectum and sigmoid were 2.1-2.5Gy, 2.0-3.1Gy and 3.0-3.5Gy, respectively.
Collectively, for all the four fractions, variations in the dose between the fractions for OARs D2cc were in the
range of 1.5-2.5Gy for the bladder, 2.0-3.2Gy for the rectum and 1.5-3.5Gy for the sigmoid.

Inter-fractional variations in organ filling and their impact on dosimetry in CT image-based HDR ICBT were
examined by Rangarajan [25] which included 170 CT datasets. The volumes of the HRCTV and OAR
contoured were recorded for every fraction. DVH were generated, and D90 and D100CTV and DO0.1cc, D1cc
and D2cc were noted for the bladder, rectum and sigmoid for each fraction. A strong positive correlation was
found between the increase in volume and dose (D2cc), which was statistically significant (p = 0.013). In our
study, there were a total of 88 data images on change in OAR volume between the fractions. When these
data were analyzed in terms of correlation of OAR volume with the dose received by D2cc, a significant uphill
positive correlation was noted for the bladder (0.524) and a weak correlation was seen for the rectum (0.259)
during the 1st application. On the other hand, during the 2nd application, a positive correlation was seen for
the bladder (0.620) as well as for the rectum (0.665) but no correlation was observed for the sigmoid. In case
of OAR volume correlation with D90 HRCTV, there was a weak positive linear correlation for the bladder
(0.327) and rectum (0.491) for the 1st fraction, while there was no correlation for the second fraction.

Furthermore, statistical significance of OAR volume with dose to D2cc was assessed using regression. The
obtained p-value (0.003) was significant for the bladder and rectum in both applications, whereas it was not
significant for the sigmoid.

A dosimetric evaluation of using a single treatment plan for multiple fractions in gynecologic BT was
conducted by Pinnaduwage et al. [26]. The study comprised one treatment plan for multiple fractions from a
single applicator insertion of HDR BT for cervical cancer. Thirteen patients with cervical cancer received the
total dose from a single applicator insertion in two fractions that were given at least 6 hours apart within a
period of 24 hours. The treatment plan was based on a CT scan taken before the first treatment fraction. A
second CT was obtained before the second treatment fraction. The co-registered image series were used to
evaluate the dosimetric impact of using a single treatment plan for both fractions. HRCTV coverage was
reduced by as much as 17.4 percentage points. This finding is similar to our study involving 22 patients who
underwent four fractions of ICBT in two applications, and the treatment plan was based on the first CT scan
of each insertion. The percentage change in HRCTV coverage was by 7% for the 1st application and by 16%
for the 2nd application. However, when the significance of HRCTV coverage to change in OAR volumes was
analyzed using paired t-test, variations in bladder and rectum volume between the fractions showed a
significant impact on D90 HRCTV in the 2nd application. However, in the 1st application, there was no
significance. This observation could not be explained entirely but could be attributed to the change in
applicator position between the fractions.

Considering the inter-fractional variations occurring during ICBT, it is necessary to repeat the imaging
process before each fraction to quantify the dose to the target and OAR. Individualized planning with each
insertion will be helpful in the accurate estimation of the dose to OAR, failing which inimical effects will be
seen in the clinical setting.

As the sample size was less in our study, and these are preliminary results, larger prospective randomized
studies with a longer duration of follow-up are needed for strong evaluation of efficacy and to draw
inferences about the inter fractional variation in ICBT of carcinoma cervix and the role of image-guided
adaptive brachytherapy.

Conclusions

Our study established the presence of significant variations in doses received by D2cc of the bladder and
rectum between the fractions, which may lead to increased toxicity and impact local tumor control. Hence,
to lower the toxicity without compromising tumor control, the incorporation of adaptive planning during
HDR BT is recommended. Our study also demonstrated the benefit of adaptive planning with respect to
improvement in HRCTV coverage. Based on the results, we recommend that image-guided HDR ICBT should
be incorporated with adaptive planning whenever ICBT for carcinoma of the cervix is delivered in multiple
fractions.

Additional Information
Disclosures

Human subjects: Consent was obtained or waived by all participants in this study. Institutional Ethical
Committee (Vydehi Institute Of Medical Sciences) issued approval VIEC/2017/APP/095. Animal subjects:
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In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services
info: All authors have declared that no financial support was received from any organization for the
submitted work. Financial relationships: All authors have declared that they have no financial
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