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Abstract

Genome-wide association studies (GWAS) have discovered numerous genomic loci associated 

with Alzheimer’s disease (AD), yet the causal genes and variants remain incompletely identified. 

We performed an updated genome-wide AD meta-analysis, which identified 37 risk loci, including 

novel associations near CCDC6, TSPAN14, NCK2, and SPRED2. Using three SNP-level fine-

mapping methods, we identified 21 SNPs with greater than 50% probability each of being causally 

involved in AD risk, and others strongly suggested by functional annotation. We followed this with 

colocalization analyses across 109 gene expression quantitative trait loci (eQTL) datasets, and 

prioritization of genes using protein interaction networks and tissue-specific expression. 

Combining this information into a quantitative score, we find that evidence converges on likely 
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causal genes, including the above four genes, and those at previously discovered AD loci, 

including BIN1, APH1B, PTK2B, PILRA, and CASS4.

Genome-wide association studies (GWAS) for family history of disease, known as GWAS-

by-proxy (GWAX), are a powerful method for performing genetic discovery in large, 

unselected cohort biobanks, particularly for age-related diseases1. Recent meta-analyses 

have combined GWAS of diagnosed late-onset Alzheimer’s disease (AD) with GWAX for 

family history of AD in the UK Biobank2,3, and reported 12 novel disease-associated 

genomic loci. However, the causal genetic variants and genes which influence AD risk at 

these and previously discovered loci have only been clearly identified in a few cases. 

Discovering causal variants has led to deeper insight into molecular mechanisms of multiple 

diseases, including obesity4, schizophrenia5, and inflammatory bowel disease6. For AD, 

known causal variants include the ε4 haplotype in APOE, the strongest genetic risk factor 

for late-onset AD, and a common nonsynonymous variant that strongly alters splicing of 

CD33 exon 27. Likely causal rare nonsynonymous variants have also been discovered in 

TREM2 8, PLCG2 and ABI3 9. These findings have strengthened support for a causal role of 

microglial activation in AD.

Although non-synonymous variants are highly enriched in trait associations, most human 

trait-associated variants do not alter protein-coding sequence and are thought to mediate 

their effects via altered gene expression, which is likely to occur in a cell type-dependent 

manner. A growing number of studies have mapped genetic variants affecting gene 

expression, known as expression quantitative trait loci (eQTLs), in diverse tissues or sorted 

cell types10,11. While it has become common to integrate GWAS results with eQTLs, this is 

often limited to a small number of datasets thought to be relevant.

To identify putative causal genetic variants for AD, we performed a meta-analysis of GWAX 

in the UK Biobank with the latest GWAS for diagnosed AD12, followed by fine-mapping 

using three alternative methods. Notably, this updated GWAS tested more genetic variants 

than the Lambert et al. study13 used in meta-analyses by Jansen et al.3 and Marioni et al.2 

(11.5 vs. 7.1 million). The increased power from our meta-analysis revealed four additional 

AD risk loci, and the higher density genotype imputation identified new candidate causal 

variants at both novel and established loci. We also performed statistical colocalization 

analyses with a broad collection of eQTL datasets, including a recent study on primary 

microglia14, to identify candidate genes mediating risk at AD loci. We find that multiple 

lines of evidence, including colocalization, tissue- or cell type-specific expression, and 

information propagation in gene networks, converge on a set of likely causal AD genes.

Results

Meta-analysis discovers 37 loci associated with Alzheimer’s disease risk

We performed a GWAX in the UK Biobank for family history of AD, based on 53,042 

unique individuals who were either diagnosed with AD or who reported a parent or sibling 

having dementia, and 355,900 controls. This identified 13 risk loci (P < 5 x 10-8), 10 of 

which have been reported previously. Three novel loci were located near NCK2, PRL, and 
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FAM135B. Notably, PRL has been reported as a CSF biomarker of AD15. We next did a 

fixed-effects meta-analysis of these GWAX results with the Kunkle et al. stage 1 GWAS 

meta-analysis of 21,982 cases with diagnosed AD and 41,944 controls12, across 10,687,126 

overlapping variants (Fig. 1). This revealed 34 AD risk loci (P < 5 x 10-8), 22 of which were 

reported in Kunkle et al., while 8 others were reported in either Jansen et al.3 or Marioni et 

al.2. Four loci were novel, located near NCK2, TSPAN14, SPRED2, and CCDC6. Notably, 

the PRL and FAM135B regions showed no evidence of association in Kunkle et al. (P > 

0.1), and hence were not significant in meta-analysis. We included 37 loci in our follow-up 

analyses, which included three loci found at suggestive significance (P < 5 x 10-7) near 

IKZF1, TSPOAP1, and TMEM163 (Fig. 1 and Supplementary Table 1). LD score 

regression16 showed that most of the inflation in summary statistics was due to the 

polygenicity of AD rather than confounding by population structure (lambda_GC = 1.140, 

intercept = 1.0285 with SE = 0.0069; Supplementary Table 2). Of our 37 loci, 16 were 

nominally replicated (P < 0.05) in either the Gr@ace study17 (4,120 probable AD cases and 

3,289 controls) or the FinnGen biobank (v3, 3,697 cases and 131,941 controls) 

(Supplementary Table 3). Among our four novel loci, only TSPAN14 replicated with P < 

0.05 (in FinnGen), although power was limited in these smaller datasets (estimated at 

28-76%), and most of the alleles had concordant directions of effect. In a meta-analysis with 

all four datasets, support for most loci was strengthened (Extended Data Fig. 1), including 

novel loci TSPAN14, CCDC6 and NCK2, but was weakened for SPRED2 (meta-analysis P 
= 1.3 x 10-7). Although not included in downstream analyses, four new loci became 

genome-wide significant, near GRN, IGHG1, SHARPIN, and SIGLEC11 (Supplementary 

Table 3).

Next, we applied stepwise conditioning using GCTA18, with linkage disequilibrium (LD) 

determined from UK Biobank samples, to identify independent signals at the discovered 

loci. Apart from APOE, 9 loci had two independent signals, while the TREM2 locus had 

three signals (Fig. 1c). Interestingly, a number of the loci discovered recently2,3,12 had 

multiple signals: NCK2, EPHA1, ADAM10, ACE, and APP-ADAMTS1. To extract insight 

from both new and established AD GWAS discoveries, we performed comprehensive 

colocalization, annotation, fine-mapping and network analyses to identify causal genes and 

variants (Fig. 1a).

Colocalization between AD risk loci and gene expression traits

To identify genes whose expression may be altered by risk variants, we performed statistical 

colocalization19 between each of 36 risk loci (excluding APOE) and a set of 109 eQTL 

datasets representing a wide variety of tissues, cell types and conditions (Fig. 2 and 

Supplementary Table 4). The eQTL datasets include a study of primary microglia from 93 

brain surgery donors14, a meta-analysis of 1,433 brain cortex samples20, 49 tissues from 

GTEx11, and 57 eQTL datasets uniformly reprocessed as part of the eQTL catalogue10. The 

latter include multiple studies in tissues of potential relevance to AD, such as brain, as well 

as sorted blood immune cell types under different stimulation conditions21–37. For each 

gene, the colocalization analysis reports the probability that the GWAS and eQTL share a 

causal variant, referred to as hypothesis 4 (H4).
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Some studies using colocalization have suggested that there is relatively limited overlap 

between GWAS associations and eQTLs above that expected by chance6,38. A possible 

reason is that colocalization analyses can have low sensitivity to detect shared causal 

variants between traits, which could occur for a number of reasons. First, when a locus has 

multiple causal variants, and not all causal effects are shared between the two studies, 

colocalization may not be detected19. Second, if the relevant tissue, cell type, or cellular 

context has not been assayed, then a colocalization may not be found. Third, differences in 

LD patterns between studies can reduce the likelihood of a positive colocalization. Lastly, 

low power in either study can further reduce the colocalization probability. To mitigate the 

first effect, we performed colocalizations separately for each conditionally independent AD 

signal, to model the case where not all causal variants are shared, as well as for the 

combined AD signal at each locus. Problems relating to power, LD mismatch, or missing the 

relevant cell type or context are partially mitigated by our use of a large number of highly-

powered eQTL datasets, which include those with stimulated conditions.

Across the 36 loci, we found 391 colocalizations with at least 80% probability of a shared 

causal variant between AD and eQTL, representing 80 distinct genes at 27 loci 

(Supplementary Tables 5 and 6). The genes implicated by colocalization include many that 

have previously been investigated for roles in AD, such as PTK2B 39,40, BIN1 41,42, PILRA 
43, CD33 44,45, and TREM2 46,47, as well as novel candidates including FCER1G, 

TSPAN14, APH1B, and ACE. However, the presence of multiple genes with colocalization 

evidence within individual loci suggests that additional lines of evidence are important for 

prioritizing relevant genes.

Fine-mapping identifies credibly causal variants

Confirming the causal genes underlying AD risk will ultimately require experiments to 

identify the molecular mechanisms by which gene function is altered. Such experiments 

must be motivated by strong hypotheses regarding potentially causal variants and their 

possible effects. To identify candidate causal variants, we used three distinct fine-mapping 

methods: single causal variant fine-mapping48 on each conditionally independent signal; 

FINEMAP49, limiting the number of causal variants at each locus to the number of signals 

determined by GCTA; and PAINTOR50, a method that leverages enrichments in functional 

genomic annotations to improve causal variant identification (see Methods).

As a reference panel for our analyses, we used LD computed from UK Biobank participants. 

Previous work has shown that using reference panels that are either too small or poorly 

matched can result in spurious fine-mapping signals51. For this reason, we conducted a 

sensitivity analysis (described in the Supplementary Note) by using the same reference panel 

for conditional analysis and fine-mapping on the non-UK Biobank portion of our meta-

analysis (Kunkle et al.). This gave comparable independent signals and SNP probabilities to 

the full meta-analysis, with the exception of a few loci, namely ABCA7, HLA, EPHA1, and 

ECHDC3 (Extended Data Fig. 2).

We used 44 annotations individually as input to PAINTOR (Supplementary Table 7); these 

included ATAC-seq peaks from primary microglia52 or iPSC-derived macrophages53, DNase 

peaks from the Roadmap Epigenomics project54, variant consequence annotations55, and 
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evolutionary conservation56 (Fig. 3). We also used scores from DeepSEA57 and SpliceAI58, 

deep-learning methods that predict the effects of variants on transcription factor binding or 

splicing. Missense mutations were the most enriched annotation, with 19.2-fold increased 

odds of being causal SNPs, but they comprised only 1% of input SNPs. Blood or immune 

DNase hypersensitivity peaks merged from 24 Roadmap Epigenomics tissues provided the 

highest model likelihood, as these peaks covered 16% of SNPs, despite a lower 6.4-fold 

enrichment. Variants with a non-zero score from SpliceAI, which predicts changes to gene 

splicing, were also highly enriched (9.3-fold).

We next built a multi-annotation model in PAINTOR following a stepwise selection 

procedure, which identified a minimal but informative set of three annotations: blood and 

immune DNase, nonsynonymous coding variants, and variants with SpliceAI score greater 

than 0.01. We used probabilities from this PAINTOR model, and computed the mean causal 

probability per variant across the three fine-mapping methods.

There were 21 variants with mean causal probability above 50% across the fine-mapping 

methods, and 79 further variants with probabilities from 10-50% (Table 1 and 

Supplementary Table 8). These include SNPs near established AD risk genes, such as 

rs6733839 ~20 kb upstream of BIN1, which has recently been shown to alter a microglial 

MEF2C binding site14 and to regulate BIN1 expression specifically in microglia42. High-

confidence variants also include a well-known missense SNP in PILRA 43, and a splice-

altering missense SNP in CD33 7. Missense SNP rs4147918 in ABCA7 had 55% causal 

probability, and ABCA7 harbored 5 further missense SNPs with probabilities greater than 

0.01%, at varying allele frequencies. Notably, rs4147918 and 6 other variants within 

ABCA7, including the lead SNP rs12151021, had positive SpliceAI scores. This is 

consistent with reports of a burden of deleterious variants at ABCA7 associated with AD59, 

as well as potential changes to splicing caused by intronic variable tandem repeats60.

A number of newly identified AD risk genes had high-confidence fine-mapped variants. 

These include the NCK2 rare intronic SNP rs143080277 (>99% probability, MAF 0.4%), 

APH1B missense SNP rs117618017 (90% probability), rs2830489 near ADAMTS1 (72% 

probability), and rs268120 intronic in SPRED2 (56% probability).

Manual review highlighted a number of candidate causal variants, where the annotation-

based SNP probability was higher than that of the other two methods (Fig. 4). Within 

TSPAN14, rs1870137 and rs1870138 reside within a DNase hypersensitivity peak found 

broadly across tissues, which is also an ATAC peak in microglia. Of these, rs1870138 lies at 

the centre of a ChIP-seq peak for binding of multiple transcription factors, including 

FOS/JUN and GATA1. The AD risk allele rs1870138-G alters an invariant position of a 

binding motif for TAL1, a gene highly expressed in microglia, and which is a binding 

partner for GATA1. This allele is also associated with increased monocyte count71 and 

increased risk for inflammatory bowel disease72. Notably, the AD signal in the region 

colocalizes with both an eQTL and a splicing QTL for TSPAN14 in multiple datasets, and 

rs1870138-G associates with higher TSPAN14 expression in brain and in microglia, but with 

lower expression in some GTEx tissues.
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Missense SNP rs117618017 in exon 1 of APH1B (Thr27Ile) is the likely single causal 

variant at its locus, with fine-mapping probability of 90% (Fig. 4b). APH1B is a component 

of the gamma-secretase complex, other members of which (PSEN1, PSEN2) have rare 

variants associated with early-onset AD73. Interestingly, the AD signal colocalizes with an 

APH1B eQTL in monocytes, neutrophils and T-cells, and rs117618017-T associates with 

higher AD risk and higher APH1B expression across datasets. This allele introduces a motif 

for transcriptional regulator YY1, and is predicted by DeepSEA to increase YY1 binding in 

multiple ENCODE cell lines. Therefore, it is an open question whether AD risk is mediated 

by altered APH1B protein structure or altered gene expression.

Finally, the AD association on chromosome 20 colocalizes with an eQTL for CASS4 in 

Blueprint monocytes and in GTEx whole blood. While intronic lead SNP rs6014724 (55% 

probability) shows no evidence of transcription factor (TF) binding in ENCODE data, 

rs17462136 (7% probability) lies in a region of dense TF binding in the 5’ UTR of CASS4 
(Fig. 4c). The nucleotide position is highly conserved (GERP score 3.46) and overlaps an 

ATAC peak in microglia, and the rs17462136-C allele introduces a TEAD1 binding motif. In 

addition, rs17462136 is more strongly associated with CASS4 expression in multiple eQTL 

datasets than is rs6014724.

Network evidence prioritizes genes within and beyond GWAS loci

As a further line of evidence, we developed a method that leverages gene network 

connectivity to prioritize genes at individual loci. We first constructed a gene interaction 

network combining information from the STRING, IntAct and BioGRID databases. Next, 

we nominated 32 candidate AD genes (Supplementary Table 9), based on our other evidence 

sources as well as literature reports, and used these as seed genes similar to the approach 

used in the priority index for drug discovery74. For each locus in turn, we used as input all 

seed genes except those at the locus, and propagated information through the network with 

the page rank algorithm. The “networkScore” for a gene thus represents the degree to which 

the gene is supported by its interaction with top AD candidate genes at other loci, unbiased 

by any locus-specific features.

Across AD loci, our selected seed genes were highly enriched for having high network-

based gene scores (one-tailed Wilcoxon rank sum test, P = 5 x 10-9; Extended Data Fig. 3). 

At our four novel AD loci, the nearest gene (NCK2, TSPAN14, SPRED2, CCDC6) in each 

case was one of the top two highest-scoring genes within 500 kb. Many established or 

recently discovered AD genes were also the top gene within 500 kb by network score, 

including ACE, BIN1, CASS4, CD2AP, PICALM, PLCG2, and PTK2B. At the SLC24A4 
locus, RIN3 was strongly supported, whereas SLC24A4 was not, in line with evidence from 

deleterious rare variants that RIN3 may be causal12.

Genes highly ranked by network propagation also include many outside of genome-wide 

significant AD loci (Supplementary Table 10). Consistent with their involvement in AD, 

such genes tended to have SNPs with lower P values nearby than did remaining genes (Fig. 

5a and Extended Data Fig. 3c), suggesting that numerous AD loci remain to be discovered 

with larger GWAS sample sizes. Top network-ranked genes include LILRB2 (nearby 

rs3855678 P = 9.8 x 10-6), which encodes a leukocyte immunoglobulin-like receptor that 
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recognizes multiple HLA alleles, and which may also be involved in amyloid-beta fibril 

growth75; ABCA1 (rs59237458 P = 4 x 10-6), involved in phospholipid transfer to 

apolipoproteins and previously associated with AD76; SREBF1 (rs35763683 P = 2 x 10-6), 

required for lipid homeostasis; and AGRN (rs2710871 P = 4 x 10-6), involved in synapse 

formation in mature hippocampal neurons. Overall, genes with high network ranks were 

strongly enriched in biological processes and pathways that have previously been associated 

with AD, including clathrin-mediated endocytosis, activation of immune response, 

phagocytosis, Ephrin signaling, and complement activation (Supplementary Table 11).

AD risk is enriched near genes with high microglial gene expression

To understand the contribution of cell-type specific gene expression to AD risk, we used 

fgwas78 to assess the genome-wide enrichment of SNPs near genes highly expressed in 

specific cell types, based on a single-nucleus sequencing dataset of 49,495 nuclei from six 

human brain cortical areas77,79. Out of 18 broad cell type clusters, only microglia showed 

clear enrichment of AD risk (odds ratio (OR) 6.0) near genes with expression above the 90th 

percentile across cell types (Fig. 5b). We performed a similar analysis looking at bulk gene 

expression across human tissues from GTEx, along with a small number of additional RNA-

seq datasets, including sorted primary microglia from brain surgeries14 (Extended Data Fig. 

4 and Supplementary Table 12). This gave consistent results, with microglia showing strong 

enrichment (OR 4.4), followed by tissues rich in immune cells, including spleen (OR 3.6) 

and whole blood (OR 3.2). Notably, iPSC-derived microglia showed similar enrichment to 

primary microglia, while bulk brain tissues (including hippocampus) showed no enrichment.

Integrative gene prioritization from five lines of evidence

Determining the genes responsible for AD risk across GWAS loci is challenging, in part 

because few genes have been definitively confirmed as having a causal role. We therefore 

developed a comprehensive gene prioritization score, which incorporates quantitative 

information based on five lines of evidence: gene distance to lead SNPs, colocalization, 

network score, bulk and single-cell gene expression, and the sum of fine-mapped probability 

for any coding SNPs within a gene (Fig. 6, Extended Data Figs. 5 and 6, and Supplementary 

Table 13).

We first explored how best to use colocalization information. We found that genes with 

maximum colocalization probability (maxH4) above 0.9 had higher prioritization scores 

based on the other four predictors, but this was not the case for genes with weaker 

colocalization evidence (Extended Data Fig. 5a). We also examined colocalizations in 

different cell type or tissue groups, such as brain, microglia, and other GTEx tissues. There 

was little evidence that colocalizing genes within any specific groups had higher total scores 

than other groups (Extended Data Fig. 5b), although this conclusion was limited by the low 

number of studies in some cell types, such as microglia. We therefore based our 

colocalization score on the maximum colocalization probability across tissues (> 0.9) and 

normalized this to the range 0-1.

A priori, we do not know which lines of evidence are most important for prioritizing genes. 

We therefore sought a systematic way to identify appropriate weights for the predictors. 
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Although we do not know the causal AD genes, we selected two independent, unbiased sets 

of candidate genes for use in supervised learning: genes nearest to the GWAS peaks, and 

genes with high network scores (>80th percentile). In order to identify weights for our 

predictive features, we defined two models to discriminate these two gene sets from others 

within 500 kb, in each case using cross-validated lasso-regularized logistic regression with 

the remaining variables as predictors. As expected, when predicting genes nearest GWAS 

peaks, the highest-weight predictor was fine-mapped coding variants; however, only a few 

loci have such variants. The most informative predictor, determined based on change in 

mean-squared error when the predictor is left out, was colocalization, followed by coding 

variants and then network score (Supplementary Table 14). When predicting high network 

score genes, the most informative predictor was distance to GWAS peak, followed by 

microglial gene expression, and neither colocalization nor coding variant predictors 

improved the model. For both models, including hippocampus expression (GTEx) or single-

cell astrocyte expression resulted in worse models (increased mean squared error).

We defined our gene prioritization “model score” as the average of the predictions from our 

two models. The model score identified as top-ranked many AD candidate genes previously 

suggested as causal (Fig. 6). Exemplifying the importance of integrating genetic evidence 

sources, ABCA7, SORL1, and CR1 were top-ranked by overall score at their respective loci, 

despite having only moderate network-based scores, while SORL1, PICALM, and SPI1 
were top-ranked despite having limited eQTL colocalization evidence.

While our prioritization further supports many established AD candidate genes, it also 

implicates novel genes. Among these are FCER1G, which has been reported as a hub gene 

in microglial gene modules associated with neurodegeneration81,82, and has been 

experimentally shown to influence microglial phagocytosis83. Another candidate is ZYX, 

which receives a top network score, is highly expressed in microglia, and which was recently 

nominated as an AD risk gene based on chromatin interactions between the ZYX promoter 

and AD risk variants in a ZYX enhancer84.

Discussion

Identifying therapeutic targets for human diseases is a key goal of human genetics research, 

and is particularly important for neurodegenerative diseases such as AD, for which no 

disease-modifying therapies yet exist. However, identifying the causal genes and genetic 

variants from GWAS is challenging, since non-coding associations can act via regulation of 

distal genes. We approached this challenge for AD by performing comprehensive fine-

mapping, eQTL colocalization, network analysis, and quantitative gene prioritization.

Our meta-analysis identified four novel associations near NCK2, SPRED2, TSPAN14, and 

CCDC6. Each of these was the nearest gene to the association peak and was supported by 

both eQTL colocalization and network ranking. Yet, despite the large number of eQTL 

datasets that we used, colocalization of likely AD risk genes was sometimes found in only 

one or a few datasets; this was the case for SPRED2 (TwinsUK LCL coloc probability 0.99), 

RIN3 (GTEx frontal cortex probability 0.94), and PILRA (Fairfax LPS-2hr monocyte coloc 

probability 0.99). Many factors could account for dataset-specific colocalizations, such as 
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biological differences in sample state, differences in LD match between the GWAS and 

eQTL datasets, and technical differences in the transcriptome annotations used for eQTL 

discovery. As a result, absence of colocalization provides only weak evidence for lack of an 

effect in a given tissue type, whereas positive colocalization provides strong support for a 

shared genetic effect. It is therefore useful to look broadly across eQTL studies for 

colocalization, which will be facilitated by resources that simplify access to these datasets, 

such as the eQTL catalogue11.

One of our most confidently prioritized genes was APH1B, encoding a gamma-secretase 

complex component involved in APP processing. APH1B harbors the likely causal missense 

variant T27I, yet also has strong colocalization evidence that higher expression correlates 

with higher AD risk. One possibility is that impaired function of APH1B due to the 

missense variant leads to upregulation of APH1B transcription. This interpretation would be 

consistent with evidence from both mice86 and humans87 that loss of APH1B and gamma-

secretase function leads to AD. It is noteworthy, however, that recent experiments failed to 

find an effect of the T27I variant on gamma-secretase activity in HEK cells88.

Among our novel associations, TSPAN14 has a role in defining the localization of 

ADAM1090, another recently discovered AD gene that is a key component of the alpha-

secretase complex and that could thus mediate AD risk via processing of amyloid precursor 

protein. However, ADAM10 also cleaves the microglia-associated protein TREM2 to 

generate its soluble ligand-binding domain91. Our fine-mapping showed that the risk SNP 

rs1870138 is also associated with higher risk for inflammatory bowel disease (IBD), an 

immune-mediated disease, and with higher monocyte count in UK Biobank participants. 

Since TSPAN14 is expressed more highly in immune cell types, including microglia, than in 

brain tissue, it is also plausible that AD risk is mediated by its effect on either immune cell 

count or activation. Recently proposed AD candidate genes supported by our analyses 

include RIN3, HS3ST1, and FCER1G. As noted above, FCER1G is a microglial master 

regulator81–83; RIN3 interacts with both BIN1 and CD2AP in the early endocytic pathway93; 

HS3ST1 is involved in cellular uptake of tau94 and was recently been associated with AD in 

an independent Norwegian sample62.

In summary, our study reports quantitative gene prioritization for 36 AD-associated regions, 

as well as AD-specific gene network scores beyond these loci. Our genetic findings 

highlight the presence of diverse mechanisms in AD pathogenesis and suggest candidate 

targets for therapeutic development.

Online Methods

GWAS on family history of AD

Sample QC, variant QC and imputation was performed on all UK Biobank (UKB) 

participants as described in Bycroft et al.95. After genotype imputation, 93,095,623 variants 

across 487,409 individuals were available for analysis. To exclude individuals of non-

European ancestry, we extracted “White British” ancestry participants as described in 

Bycroft et al.95. These individuals self-reported their ethnic background as “British” and 

have similar genetic ancestry based on principal components (PC) analysis. To extract 
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additional individuals of European ancestry, we followed a similar approach to Bycroft et al. 

and applied Aberrant96 on PCs 1v2, 3v4 and 5v6 across the individuals who self-reported as 

“Irish” or “Any other white background”. We identified first-degree relatives by applying 

KING97 v2.0 to 147,522 UKB participants who had at least one relative identified in Bycroft 

et al. (UKB Field 22021). For each first-degree relative pair, we prioritized AD cases and 

proxy-cases (see below) for inclusion, and otherwise excluded one of the pair at random. We 

also excluded variants with low imputation quality (INFO < 0.3) and/or those with minor 

allele frequencies below 0.0005, resulting in 25,647,815 variants available for analysis.

AD cases were extracted from UKB self-report (field 20002), ICD10 diagnoses (fields 

41202 and 41204) and ICD10 cause of death (fields 40001 and 40002) data. UKB 

participants were asked whether they have a biological father, mother or sibling who 

suffered from Alzheimer’s disease/dementia (UKB fields 20107, 20110, and 20111, 

respectively). We extracted all participants with at least one affected relative as proxy-cases. 

Participants who answered “Do not know” or “Prefer not to answer” were excluded from 

analyses. All remaining individuals were denoted as controls.

There were 898 AD cases, 52,791 AD proxy cases and 355,900 controls in the combined 

white British and white non-British cohorts. For association analyses, we lumped the true 

and proxy-cases together (53,042 unique affected individuals) and used the linear-mixed 

model implemented in BOLT-LMM98.

AD meta-analysis

To enable meta-analysis combining the UKB cohorts with external case-control studies, we 

first transformed the AD proxy BOLT-LMM summary statistics from the linear scale to a 1/0 

log odds ratio:

logOR ≈ βLMM /(f(1 − f))

with standard error:

se ≈ seLMM /(f(1 − f))

where βLMM and seLMM are the SNP effect sizes and standard errors respectively from 

BOLT-LMM, and f is the fraction of cases in the sample99. Since the affected individuals in 

our analysis include both true and proxy-cases, we then multiplied the transformed logORs 

and standard errors by 1.897 to approximate the logORs obtained from a true case/control 

study1.

We combined the transformed UKB white British cohort, UKB white non-British cohort and 

the Stage 1 summary statistics from Kunkle et al. using a fixed-effects (inverse variance 

weighted) meta-analysis across 10,687,126 overlapping variants. For display purposes 

(Supplementary Table 8), we used CrossMap100 to convert variant positions from GRCh37 

to GRCh38.
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Replication

To assess replication of our discovered signals, we downloaded the publicly available 

summary statistics for the Gr@ace study of AD17 from the GWAS catalog, and for the 

FinnGen GWAS of phenotypes “Alzheimer’s disease, wide definition” and “Alzheimer’s 

disease (Late onset)” from FinnGen release 3. We extracted summary results for our lead 

SNPs, or a partner in strong LD when the lead SNP was not found, and present these in 

Supplementary Table 3. We estimated power to detect our four novel loci at nominal 

significance (P < 0.05) using the genetic power calculator (zzz.bwh.harvard.edu/gpc/

cc2.html) with the genotype relative risks estimated from our meta-analysis, and the allele 

frequency and case/control count from the GWAS study of interest (Gr@ace or FinnGen), 

and assuming a disease prevalence of 5%. We performed an inverse variance-weighted meta-

analysis of all four studies (Kunkle et al., UKB, Gr@ace, and FinnGen “AD wide”), similar 

to our discovery meta-analysis.

Conditional analysis and statistical fine-mapping

To run GCTA, we prepared plink input files with genotypes from 10,000 randomly sampled 

UKB individuals at variants within +/- 5 Mb from each lead SNP. We excluded variants with 

INFO < 0.85, or which had a P-value from Cochran’s Q test for study heterogeneity < 0.001. 

We also excluded variants with minor allele frequency (MAF) in UKB below 0.1%, as LD 

estimates are unreliable at low allele counts. We selected these thresholds after manual 

examination of fine-mapping results, where we found that more lenient cutoffs led either 

FINEMAP or PAINTOR to select implausible causal variants at a few loci, such as pairs of 

very weakly associated rare variants to explain a common variant signal. We ran GCTA 

(v1.92.1) --cojo-slct with a threshold of P < 10-5 to identify secondary signals at each locus, 

and then retained only loci with a lead P-value below 5 x 10-8. For the HLA locus, we used a 

GCTA P-value threshold of 5 x 10-8. We also retained the loci TSPOAP1, IKZF1, and 

TMEM163 since they had P < 5 x 10-8 in an earlier version of our analysis. We excluded the 

APOE locus from conditional analysis and fine-mapping because the strength of association 

in the region would require a more perfect LD panel match to avoid spurious signals.

We then ran FINEMAP (v1.3) at each locus, with --n-causal-snps given as the number of 

independent SNPs determined by GCTA. For FINEMAP, we excluded variants with MAF < 

0.2%. For loci with multiple signals, we also used GCTA --cojo-cond to condition on each 

independent SNP identified in the previous analysis, and retained SNPs within 500 kb of any 

conditionally independent SNP at the locus. To fine-map based on GCTA conditional 

signals, we converted beta and standard error values to approximate Bayes Factors (BF)101 

using a prior of W = 0.1 (in Wakefield notation), and used the WTCCC single-causal variant 

method48, probability = SNP BF / sum(all SNP BFs).

To assess sensitivity of the results to our choice of reference panel, we applied the same 

steps (GCTA + FINEMAP) to summary statistics from the Kunkle et al. sub-study, which 

are described further in the Supplementary Note.
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Colocalization with eQTLs

For eQTL colocalization, we downloaded summary statistics (see URLs) and determined 

eQTL genes at FDR 5% for each dataset in a uniform manner, first using Bonferroni 

correction of lead SNP nominal P values based on the number of variants tested for the gene, 

and using the Benjamini-Hochberg method to compute FDR. QTL calling for primary 

microglia was performed with RASQUAL102 with the --no-posterior-update option. For 

datasets in GRCh38 coordinates, we first used CrossMap100 to convert back to GRCh37 

coordinates to match variants between eQTL and GWAS. We used the coloc package19 with 

default priors to perform colocalization tests between GWAS and eQTLs having lead 

variants within 500 kb of each other, and passed to coloc all variants within 200 kb of each 

lead variant. We also ran coloc using P-values for each conditionally independent GWAS 

signal, obtained with GCTA as described above.

Functional annotations

We used the Ensembl VEP online Web tool (www.ensembl.org/vep)55 to predict variant 

consequences, and to add selected annotations (Supplementary Table 7). We downloaded 

bed files based on imputed data for Roadmap Epigenomics DNase and 25-state genome 

segmentations for 127 epigenomes54. We grouped these into groups “all”, “brain” 

(epigenomes 7, 9, 10, 53, 54, 67, 68, 69, 70, 71, 72, 73, 74, 81, 82, 125), and “blood & 

immune” (epigenomes 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 62, 29, 30, 31, 32, 

35, 36, 46, 50, 51, 116). We considered 9 genome segmentation states to represent 

enhancers: TxReg, TxEnh5, TxEnh3, TxEnhW, EnhA1, EnhA2, EnhAF, EnhW1, EnhW2. 

We used bedtools103 to determine overlaps, and counted the number of overlaps for each 

variant with peaks in the above groups. We downloaded FANTOM5104 permissive enhancer 

annotations from fantom.gsc.riken.jp/5/data/. We downloaded pre-computed SpliceAI 

scores58 for variants within genes from github.com/Illumina/SpliceAI. We merged filtered 

whole-genome and exome scores together, and for each AD variant annotated the maximum 

score across splice donor gain, donor loss, acceptor gain, acceptor loss. We used DeepSEA57 

(deepsea.princeton.edu) to annotate variants selected for functional fine-mapping with 

DeepSEA’s “functional significance” score. BigWig files with PhastCons, PhyloP and 

GERP RS scores were downloaded from UCSC. We downloaded microglial ATAC-seq 

based on the study by Gosselin et al.52, aligned reads to GRCh37 with bwa 0.7.15105, and 

called multisample peaks across all 15 datasets using MACS2106. We prepared bigWig files 

from alignments by using bedtools genomecov, followed by bedGraphToBigWig. To 

visualise microglia ATAC-seq tracks we adapted code from wiggleplotr107.

Annotation-based fine-mapping

For fine-mapping with PAINTOR, we first restricted the number of considered variants for 

computational feasibility, by selecting 3,207 variants which had (i) FINEMAP probability ≥ 

0.01% based on the GCTA-identified number of causal variants at the locus, or (ii) had 

FINEMAP probability ≥ 1% when run with either 1 or 2 causal variants, or (iii) were among 

the top 20 variants at the locus by FINEMAP probability. We defined binary annotations for 

input to PAINTOR based on the features described above, thresholding certain scores at 

multiple levels (e.g. CADD ≥ 5, 10, 20). For Roadmap annotations, we included a category 
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based on whether a variant was in a peak or enhancer in ≥ 10 epigenomes. We ran 

PAINTOR v3.1 once for each of the 43 annotations (Fig. 2 and Supplementary Table 7), 

allowing two causal variants per locus.

We built a multi-annotation model using forward stepwise selection. We selected the best 

annotation by log-likelihood (LLK), Blood & immune DNase, and then ran PAINTOR again 

for each combination of this annotation and the 42 remaining annotations. We added a top-

ranking annotation at each iteration until the model LLK improvement was less than 1. This 

occurred at iteration 4, and so we kept the first three annotations in the combined model. We 

computed the mean causal probability for each SNP as the mean of the three fine-mapping 

methods at loci with two or more signals, or as the mean of the FINEMAP and PAINTOR 

probabilities for loci with one signal, since FINEMAP gives approximately the same results 

as WTCCC fine-mapping for a single causal variant.

Network analysis

For network analysis, we created a gene interaction network based on selecting all edges 

between protein-coding genes from systematic studies (>1,000 interactions) in the IntAct108 

and BioGRID databases109, and edges from STRING v10.5110 with edge score > 0.75. This 

combined network included 18,055 genes and 540,421 edges. We identified 28 top candidate 

genes across AD loci (Supplementary Table 9) to use as seed genes, and assigned weight to 

these as the -log10(P value) of the locus lead SNP. We added four genes from the literature 

(MAPT, PSEN1, PSEN2, ABI3), with a weight (equivalent -log10(P)) of 15. For three loci, 

the nearest gene was not present in the network (ECHDC3, TMEM163, SCIMP). For each 

locus, we used all seed genes as input except those at the same locus, and propagated 

information through the network with the personalized PageRank algorithm111, included in 

the igraph R package112. Since a gene’s resulting PageRank was highly correlated with its 

node degree, we compared the PageRank of each gene to the distribution of PageRanks 

obtained for the same gene in 1,000 iterations of network propagation, where the same 

number of seed genes were randomly selected. We computed the percentile of a gene’s true 

PageRank relative to the 1,000 network propagations with randomized inputs. Although the 

distribution of PageRank percentile was fairly uniform, we further normalised this to a 

uniform distribution across genes, so that a Pagerank percentile of 90% indicates that a 

gene’s PageRank relative to permutations is above that of 90% of genes. To determine gene 

set enrichment, we used the top 1,000 genes by network rank as input to gProfiler113 with 

default settings, with the set of all genes ranked by the network as a background set. To 

determine enrichment of low P-value AD SNPs near genes in specific bins of PageRank 

percentile (Fig. 5a), we first determined for each gene the minimum SNP P value within 10 

kb of the gene’s footprint. We excluded genes within 1 Mb of APOE. Then, for genes in 

each PageRank percentile bin, we used Fisher’s exact test to determine the odds ratio for a 

gene in that bin (relative to genes with PageRank percentile <50%) to have a minimum SNP 

P value in the given bin (relative to genes with minimum SNP P > 0.01).

Gene expression

Gene expression values for all tissues were determined in units of transcripts per million 

(TPM). Both GTEx v8 and the eQTL catalogue provide tables of the median TPM 
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expression across samples for each tissue and gene. For primary microglia, we obtained a 

table of read counts per gene, computed using FeatureCounts 1.5.3 as described14, from 

which we computed median TPM. For use in gene prioritization and enrichment analyses, 

we first selected four GTEx brain tissues (cortex, hippocampus, substantia nigra, 

cerebellum) to avoid over-representing brain, and then the remaining 41 GTEx tissues, as 

well primary microglia and in-house expression data from iPSC-derived microglia, iPSC-

derived NGN2 cortical neurons, and iPSC-derived neurons from growth factor 

differentiation. For each gene, we determined the TPM expression relative to all tissues/cell 

types.

Single-cell gene expression data were obtained from the Allen Brain Institute as a gene-by-

cell counts table, based on Smart-seq profiling of six human brain cortical areas77. For each 

cell type “subclass” as defined in the metadata (but excluding VLMC for having too few 

cells, and the outlier subclass labelled “exclude”), counts were summed across cells and then 

normalised to TPM within each subclass. We determined each gene’s TPM expression in 

each subclass relative to all 18 subclasses.

Genome-wide enrichment

We determined the GRCh37 coordinates of 18,055 genes present in the gene network using 

the R package annotables 0.1.91. For each AD GWAS SNP, excluding the APOE region 

(chr19:44-47 Mb), we determined the nearest gene. We defined annotation inputs for fgwas 

labelling a SNP 1 if it was nearest to a gene with network score in a given percentile bin 

(50-60, 60-70, 70-80, 80-90, 90-95, >95) and 0 otherwise. We ran fgwas78 (-cc) with all 

network annotations as input, so that enrichments are with respect to SNPs nearest to genes 

with network score < 50th percentile. For every bulk gene expression dataset selected above, 

we defined an annotation for SNPs nearest genes with relative expression above the 80th (or 

90th) percentile, and similarly for cell types from single-cell gene expression. We ran fgwas 

once for each expression annotation to determine enrichment of SNPs near high-expression 

genes relative to remaining genes (Supplementary Table 12).

Gene prioritization

Five predictors were used for gene prioritization.

The coding score is the sum of the mean fine-mapping probability for missense or LoF 

variants in a gene.

The expression score is the sum of component scores for bulk and single-cell microglial 

expression, and rewards genes with expression percentile above the 50th:

exprScore = bulkExprscore + singleCellExprscore /2
bulkExprScore = max(0, bulk_microglia_pctile‐50)/50
singleCellExprScore = max(0, sc_microglia_pctile‐50)/50

Genes without measured expression in a given dataset (bulk, single-cell) are assigned an 

exprScore of zero for that dataset.
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Recent evidence from both eQTLs114 and metabolite GWAS115 suggests that genomic 

distance from the association peak is a strong predictor of causal target genes. The distance 
score is defined to give reasonable scores over the main range of interest of 0 - 200 kb:

distScore = (log10(max Dist ) − log10((abs(x) + distBias )))/(log10( maxDist ) − log10( distBias ))

where x is the minimum distance from the gene’s footprint to the region defined by 

independent lead SNPs at a GWAS locus, maxDist is 500,000 and distBias is 100 (Extended 

Data Fig. 6).

The coloc score is defined based on the maximum value across QTL datasets of the “H4” 

hypothesis probability, and rewards colocalisation probabilities above 0.9:

colocScore = max(0, max(QTL dataset H4) − 0.9)

The network score is determined based on the pagerank percentile for a gene relative to 

permutations:

networkScore = max(0, pagerank pctile − 50 / 50

Genes not present in the network are assigned a networkScore of zero.

The total score for a gene is the sum of the above five scores.

To give appropriate weight to each component, we trained lasso-regularized logistic 

regression models with cross-validation using glmnet116. As input we used all protein-

coding genes within 500 kb of our AD GWAS peaks, excluding the APOE region due to 

lack of colocalisation information, and excluding genes not present in the network. For the 

distance model, genes within 10 kb of each GWAS peak (40 genes) were set as positives, 

genes 10-100 kb were excluded, and genes >100 kb (394 genes) were set as negatives. These 

were predicted using the four non-distance predictors. For the network model, genes with 

pagerank percentile >80% (143 genes) were set as positives, those with pagerank percentile 

50-80% were excluded, the 230 other genes were set as negatives, and these were predicted 

using the four non-network predictors. In each case, we selected the model that minimized 

mean squared error (MSE), shown in Supplementary Table 14, and used those parameters to 

generate predictions (in the range 0-1) for all genes at the AD loci. We defined the model 
score for a gene as the average prediction from the two models. To determine the importance 

of the predictors to each model (apart from looking at regression coefficients) we ran glmnet 

models excluding each predictor in turn. If the MSE was lower with a predictor excluded 

then we removed it from the final model. For each model, we compared the MSE when 

using our quantitative predictors as defined above, or using categorical predictors by 

thresholding the predictors into 2-4 bins. For both models, the quantitative predictors gave 

improved MSE. We also examined models that included as predictors expression scores 

from astrocytes (based on the single-cell data) and from brain hippocampus (based on the 

GTEx data), but for both models this resulted in higher MSE and the regularization set the 

coefficients to zero.
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Extended Data

Extended Data Fig. 1. Association of AD loci in discovery + replication (“global”) meta-analysis
Association of AD loci in discovery + replication dataset (“global”) meta-analysis. For most 

loci, association significance is increased in the global meta-analysis (blue bars) relative to 

the discovery analysis (grey bars). The dashed vertical line shows P = 5 x 10-8. P-values 

were computed by inverse variance weighted meta-analysis, and bars show the -log10(P) for 

the SNP with minimum P value at the locus in either the discovery or global meta-analysis.
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Extended Data Fig. 2. Comparison of fine-mapping in the meta-analysis vs. Kunkle et al.
Comparison of fine-mapping in the meta-analysis vs. Kunkle et al. Scatterplots showing, for 

each locus, SNP probabilities from FINEMAP applied to either the Kunkle et al. + UK 

Biobank meta-analysis (x-axis), or to only Kunkle et al. The number of causal variants at 

each locus was set to the number detected by GCTA in the meta-analysis. For most of the 36 

loci, SNP probabilities are well correlated. For a few loci that are well powered in Kunkle et 

al., this is not the case, namely ABCA7, EPHA1, ECHDC3, and HLA. For these loci, fine-

mapping results should be interpreted with caution. Six other loci are not well correlated 
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(ADAMTS4, APH1B, IKZF1, PLCG2, TMEM163, and VKORC1), but these loci are poorly 

powered in Kunkle et al. (lead P values 2.1 x 10-6 to 2.1 x 10-3).

Extended Data Fig. 3. Network enrichment
a, The Pagerank percentile of all genes (within 500 kb) at each AD GWAS locus containing 

a seed gene is shown, with seed genes highlighted in blue. b, A violin/boxplot shows that 

seed genes have a markedly higher network Pagerank percentile than remaining genes (P = 

2.4 x 10-9, one-tailed Wilcoxon rank sum test). c, Log odds ratio enrichment of AD risk 

among SNPs nearest to genes with network Pagerank percentile in different bins, determined 

using fgwas (whiskers represent 95% confidence intervals).
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Extended Data Fig. 4. Gene expression enrichments
Expression enrichments for GTEx + microglia. Shown are the log odds ratio enrichments of 

AD risk among SNPs with relative gene expression in each tissue above the 80th (or 90th) 

percentile across tissues. Whiskers represent 95% confidence intervals determined by fgwas.
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Extended Data Fig. 5. Colocalization scores
a, Genes with maximum colocalization H4 probability >0.9 have higher Pagerank percentile 

(left boxplot) and higher total score (sum of the four non-coloc predictors, right boxplot) 

than do genes without colocalisation (<0.5). Genes with intermediate colocalisation evidence 

(bins 0.5 - 0.8 and 0.8 - 0.9) show little evidence of having higher scores by the other 

metrics. Based on this, we chose a maxColoc probability of 0.9 as the lower bound for our 

colocalization score. b, Boxplot of the total score (excluding coloc) for genes that have a 

colocalisation probability > 0.9 in at least one QTL dataset within each tissue group. The 

most significant difference is between totalScore for genes with microglial colocalizations 

vs. the genes with colocalization in “other” tissues (non-immune GTEx tissues), but the for a 

difference is weak (P = 0.041, Wilcoxon rank sum test). In all cases, boxplots show the 25th, 

median, and 75th percentile of the distribution, with whiskers extending to the largest (and 

smallest) value no further than 1.5 times the interquartile range from the boxplot hinge.
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Extended Data Fig. 6. Gene distance score
The distance score assigned to genes near an AD GWAS peak, which decreases 

approximately linearly (past a distance of 1 kb) with increasing log-scaled distance up to 

500 kb.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

Summary statistics from the meta-analysis are available through the NHGRI-EBI GWAS 

Catalog under accessions GCST90012877 and GCST90012878:

www.ebi.ac.uk/gwas/downloads/summary-statistics

eQTL Catalogue: www.ebi.ac.uk/eqtl
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GTEx: www.gtexportal.org

Roadmap Epigenomics: www.roadmapepigenomics.org

DeepSEA: deepsea.princeton.edu

SpliceAI: github.com/Illumina/SpliceAI

FANTOM enhancers: fantom.gsc.riken.jp/5/data/

GERP: hgdownload.cse.ucsc.edu/gbdb/hg19/bbi/All_hg19_RS.bw

PhyloP: hgdownload.cse.ucsc.edu/goldenpath/hg19/phyloP100way

PhastCons: hgdownload.cse.ucsc.edu/goldenpath/hg19/phastCons100way

Brain eQTL meta-analysis summary statistics: www.synapse.org/#!Synapse:syn16984815

Primary microglia eQTL summary statistics, EGA Accession ID: EGAD00001005736

Primary microglia ATAC-seq, dbGaP Study Accession: phs001373.v1.p1

Allen Brain Institute: portal.brain-map.org/atlases-and-data/rnaseq

IntAct database: www.ebi.ac.uk/intact

BioGRID database: thebiogrid.org

STRING database: string-db.org

Code availability

Code for analyses described here can be found at github.com/jeremy37/AD_finemap.
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Figure 1. Analysis overview.
a, Summary of AD meta-analysis and data processing steps. b, Manhattan plot of the meta-

analysis of GWAS for diagnosed AD and our GWAX in UK Biobank. Novel genome-wide 

significant loci are labelled in blue, sub-threshold loci in red, and recently discovered 

loci2,3,12 replicated in our analysis in black. c, The number of independent signals at each 

locus which is either recently discovered or which has more than one signal, as well as the 

meta-analysis P value the lead SNP at the locus. *The PLCG2 locus was significant (P < 5 x 

10-8) when including Kunkle stage 3 SNPs. Conditional analyses were not done at APOE 
due to the strength of the signal (see Methods).
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Figure 2. Colocalization with eQTLs.
For genes with the top overall colocalization scores across AD risk loci, the colocalization 

probability (H4) is shown for selected brain, microglia, and monocyte eQTL datasets. For 

three loci with multiple signals (BIN1, EPHA1, PTK2B-CLU), scores are shown separately 

for the conditionally independent signals. The last column shows, for each gene, the number 

of eQTL datasets with a colocalization probability above 0.8 (Supplementary Tables 5 and 

6).
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Figure 3. Fine-mapping summary.
a, Number of variants with mean causal probability > 1% for each independent signal. 

Variant counts for independent signals are shown in different shades. b, PAINTOR outputs, 

showing (left) log-likelihood (LLK) of model for each individual annotation; (middle) log-

odds enrichments for individual genomic annotations determined by PAINTOR; (right) 

fraction of SNPs which are in each annotation (among those selected by FINEMAP 

probability > 0.01%). Annotations selected for the final model are shown with a black 

border.
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Figure 4. Fine-mapped variants.
a, SNP rs1870138 in an intron of TSPAN14 disrupts an invariant position of a TAL1 motif. 

b, Missense SNP rs117618017 in exon 1 of APH1B. c, SNP rs17462136 in the 5’ UTR of 

CASS4 introduces a TEAD1 motif. Each panel shows (top) locus plot with GWAS P-values, 

SNP color representing LD to the lead SNP; (middle) expanded view of a subregion showing 

the mean SNP probabilities from fine-mapping; (bottom) read density of ATAC-sequencing 

assay from primary microglia52.
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Figure 5. Genome-wide network and gene expression enrichments.
a, Enrichment of low GWAS P values within 10 kb of genes having high vs. low network 

pagerank percentile (low defined as below 50th percentile). Whiskers represent 95% 

confidence intervals based on Fisher’s exact test for n = 18,055 genes. b, Enrichment of AD 

risk near genes with high expression in each brain cell type (above 80th or 90th percentile) 

relative to the other cell types. Cell types are defined based on single-cell clusters defined in 

Hodge et al.77. Neuronal cells are defined either by cortical layer (L4, L5, L6), and/or by 

projection target (IT, intratelencephalic; CT, corticothalamic; ET, extratelencephalic-

pyramidal tract; NP, near-projecting), or by binary marker genes (LAMP5, PAX6, PVALB, 

VIP, SST). OPC, oligodendrocyte precursor cells. Whiskers represent 95% confidence 

intervals as determined by fgwas.
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Figure 6. Gene evidence summary.
The top gene at each locus is shown, as well as the next 13 top genes by model score; for 

three loci where a non-coding gene was the top scoring, we also show the top scoring 

protein-coding gene. Score components for each gene are indicated by colored bars, and 

points show the distribution of scores for all genes within 500 kb at the locus. Bold gene 

names are those with evidence of causality based on rare variants from other studies. Scores 

for all genes are listed in Supplementary Table 13.
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Table 1
Top candidate variants

Locus SNP P value Odds 
ratio

Effect 
allele

Allele 
freq

SNP 
prob

SpliceAI DeepSEA Note Refs

ADAMTS4 rs2070902 1.64E-06 0.949 T 0.2580 0.384 0.107 0.140 Intronic in candidate 
gene FCER1G, with 
predicted splicing 
change

ADAMTS4 rs4575098 4.30E-08 1.063 A 0.2350 0.339 0.033 3’ UTR of 
ADAMTS4, open 
chromatin

2

SPRED2 rs268120 2.08E-08 1.063 A 0.2502 0.556 0.033 Strong DNase peak, 
predicted by 
DeepSEA to decrease

NCK2 rs143080277 1.28E-12 0.594 T 0.9957 1.000 0.086 Enhancer (Roadmap)

BIN1 rs6733839 1.10E-54 1.168 T 0.3915 0.998 0.027 Microglia ATAC 
peak. DeepSEA 
predicts decreased 
DNaseHS

14,40

INPP5D rs10933431 1.41E-10 1.080 C 0.7817 0.833 0.022 60

PILRA rs1859788 3.28E-18 0.914 A 0.3206 0.601 0.008 0.041 Known PILRA 
missense G78R

41

ECHDC3 rs7920721 1.08E-11 0.935 A 0.6195 0.641 0.026 DNase peak. 
DeepSEA predicts 
changed binding of 
USF, Max, Myc

61,62

TSPAN14 rs1870137 2.93E-09 0.932 C 0.2056 0.097 0.007 Top DeepSEA 
variant, predicting 
decreased binding of 
HNF4, FOXA1, SP1

TSPAN14 rs1870138 4.51E-09 0.933 A 0.2057 0.068 0.004 Highlighted in text; 
predicted loss of 
TAL1 binding

SORL1 rs11218343 5.59E-14 1.205 T 0.9630 1.000 0.209 63

SORL1 rs2298813 1.52E-04 1.089 A 0.0470 0.451 0.054 0.003 Secondary 
association. 
Missense; also top 
DeepSEA variant

APH1B rs117618017 1.05E-08 1.089 T 0.1395 0.895 0.007 0.019 Highlighted in text; 
missense Thr27Ile

64

PLCG2 rs12444183 5.46E-08 0.948 A 0.3830 0.686 0.220 Near promoter of 
ncRNA AC099524.1, 
with strong microglia 
colocalization

2

PLCG2 rs72824905 6.35E-06 1.310 C 0.9924 0.492 0.018 0.006 Secondary 
association; known 
missense Pro522Arg. 
Top DeepSEA score

9

TSPOAP1 rs2632516 3.12E-07 0.952 C 0.4426 0.412 0.126 Overlaps ncRNA 
containing mir-142, 
important for 
hematopoietic 
development

62,65

TSPOAP1 rs2526377 8.45E-07 1.049 A 0.5579 0.169 0.006 Top DeepSEA variant 
(decreased DNaseHS) 
in microglial ATAC 
peak

66
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Locus SNP P value Odds 
ratio

Effect 
allele

Allele 
freq

SNP 
prob

SpliceAI DeepSEA Note Refs

ACE rs4311 1.21E-08 0.947 T 0.4704 0.490 0.126 0.053 Strong predicted 
splicing change

67,68

ACE rs3730025 2.58E-07 0.819 A 0.9828 0.416 0.002 0.021 Secondary 
association; low-
frequency missense 
Tyr244Cys

ABCA7 rs12151021 2.41E-13 1.080 A 0.3258 0.713 0.013 0.312 Lead ABCA7 variant

ABCA7 rs4147918 7.63E-07 1.128 A 0.9587 0.552 0.071 0.045 Seondary association; 
missense Gln905Arg; 
predicted splicing 
change

69

CD33 rs12459419 2.02E-08 0.944 T 0.3256 0.662 0.001 0.070 Known missense 
Ala14Val; strong 
splicing QTL

7

CASS4 rs6014724 1.07E-10 1.116 A 0.9122 0.548 0.083 Lead CASS4 variant

CASS4 rs17462136 1.01E-09 0.901 C 0.0872 0.067 0.001 5’ UTR of CASS4; 
global top DeepSEA 
variant predicting 
decreased TF binding

ADAMTS1 rs2830489 3.09E-08 0.943 T 0.2749 0.718 0.077 Lead variant near 
ADAMTS1

A selected list of the most likely causal variants across loci, based on a combination SNP fine-mapping probabilities and annotations. Column ‘SNP 
prob’ indicates the mean fine-mapping probability for the SNP; the SpliceAI score is the maximum splicing probability for donor gain/loss or 
acceptor gain/loss, with nonzero values highly enriched for splicing effects; the DeepSEA functional significance score represents the significance 
above expectation for chromatin feature changes, as well as evolutionary conservation, with lower values more significant. References for specific 

SNPs are shown2,7,9,14,42,43,61–70.
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