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A B S T R A C T   

High-resolution magnetic resonance images can provide fine-grained anatomical information, but acquiring such 
data requires a long scanning time. In this paper, a framework called the Fused Attentive Generative Adversarial 
Networks(FA-GAN) is proposed to generate the super- resolution MR image from low-resolution magnetic 
resonance images, which can reduce the scanning time effectively but with high resolution MR images. In the 
framework of the FA-GAN, the local fusion feature block, consisting of different three-pass networks by using 
different convolution kernels, is proposed to extract image features at different scales. And the global feature 
fusion module, including the channel attention module, the self-attention module, and the fusion operation, is 
designed to enhance the important features of the MR image. Moreover, the spectral normalization process is 
introduced to make the discriminator network stable. 40 sets of 3D magnetic resonance images (each set of 
images contains 256 slices) are used to train the network, and 10 sets of images are used to test the proposed 
method. The experimental results show that the PSNR and SSIM values of the super-resolution magnetic reso
nance image generated by the proposed FA-GAN method are higher than the state-of-the-art reconstruction 
methods.   

1. Introduction 

Image super-resolution refers to the reconstruction of high- 
resolution images from low-resolution images (Dong et al., 2016). 
High resolution means that the pixels in the image are denser and can 
display more flexible details (Li et al., 2019; Gholipour et al., 2010). 
These details are very useful in practical applications, such as satellite 
imaging, medical imaging, etc, which can better identify targets and find 
important features in high-resolution images (Zeng et al., 2019; Wang 
et al., 2020, 2019). 

High-resolution (HR) MRI images can provide fine anatomical in
formation, which is helpful for clinical diagnosis and accurate decision- 
making (Wang et al., 2018; Manjon et al., 2010). However, it not only 
requires expensive equipment but also requires a long scanning time, 
which brings challenges to image data acquisition. Therefore, further 

applications are limited by slow data acquiring and imaging speed 
(Jafari-Khouzani, 2014; Rueda et al., 2013). 

The super-resolution (SR) is a technique to generate a high- 
resolution (HR) image from a single or a group of low-resolution (LR) 
images, which can improve the visibility of image details or restore 
image details (Tourbier et al., 2015; Dong et al., 2016; Shi et al., 2018a). 
Without changing hardware or scanning components, SR methods can 
significantly improve the spatial resolution of MRI (Mahmoudzadeh and 
Kashou, 2014; Luo et al., 2017). Generally, there are three methods to 
implement image SR in MRI: interpolation-based, construction-based, 
and machine learning-based (Shi et al., 2018b; Jog et al., 2014). 

The interpolation-based SR techniques assume that the area in the LR 
image can be extended to the corresponding area by using a polynomial 
or an interpolation function with a priori smoothness (Shi et al., 2016; 
Seeliger et al., 2018). The advantages of the interpolation-based 
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super-resolution reconstruction algorithm are simplicity and high 
real-time performance; the disadvantage is that it is too simple to make 
full use of the prior information of MR images. In particular, the 
super-resolution reconstruction algorithm based on a single MR image 
has obvious shortcomings, which in a blurred version of the corre
sponding HR reference image Huang et al. (2017); Armanious et al. 
(2019). 

The reconstruction-based SR methods are introduced to solve an 
optimization problem incorporating two terms: the fidelity term, which 
penalizes the difference between a degraded SR image and an observed 
LR image, and the regularization term, which promotes sparsity and 
inherent characteristics of recovering the SR signal (Goodfellow et al., 
2014; Luo et al., 2017). The performance of these techniques becomes 
suboptimal especially in the high-frequency region when the input data 
becomes too sparse or the model becomes even slightly inaccurate 
(Quan et al., 2018; Ledig et al., 2017a; Huang et al., 2017).These 
shortcomings reduce the effect of reconstruction-based SR methods to 
large magnifications, which may work well for small magnifications less 
than 4. 

Machine learning techniques, particularly deep learning (DL)-based 
SR approaches, have recently attracted considerable attention because 
of their state-of-the-art performance in SR for natural images. Most 
recent algorithms rely on data-driven deep learning models to recon
struct the required details for accurate super-resolution (Liu et al., 2018; 
Latif et al., 2018). Deep learning-based methods aim to automatically 
learn the relationship between input and output directly from the 
training samples (Dong et al., 2014a; Zhang et al., 2018). At the same 
time, deep learning has also played a vital role in CT/PET image 
reconstruction, such as PET Image Reconstruction from Sinogram 
Domain (Liu et al., 2019; Hu et al., 2020; Häggström et al., 2019). 

With the development of deep learning, the Generative Adversarial 
Network (GAN) proposed by Goodfellow et al, has recently been 
demonstrated that it has good performance in image transformation and 
super-resolution imaging. Sanchez et al. proposed the standard super- 
resolution GAN (SRGAN) framework for generating brain super- 
resolution images (Ramachandran et al., 2017). Most GAN-based 
image generation models are constructed using convolutional layers. 
Convolutions process information in local neighborhoods, however, 
using only convolutional layers is inefficient in establishing remote de
pendencies in images (Miyato et al., 2018; Iandola et al., 2016). 

It is difficult to learn the dependencies between images using a small 
convolution kernel. However, the size of the convolution kernel is too 
large, which will reduce the model’s performance. Besides, increasing 
the size of the convolution kernel can also expand the receptive field, but 
it inevitably increases the complexity of the model (Quan et al., 2018; 
Ledig et al., 2017b). Zhang et al. propose the Self-Attention Generative 
Adversarial Network (SAGAN) with attention-driven, long-range de
pendency modeling for image generation tasks (Liu et al., 2018). 

In the previous work on reconstruction problems, deep learning 
based methods have two major issues (Latif et al., 2018). Firstly, they 
treat each channel-wise feature equally, but contributions to the 
reconstruction task vary from different feature maps. Secondly, the 
receptive field in a convolutional layer may cause to lose contextual 
information from original images, especially those high-frequency 

components that contain valuable detailed information such as edges 
and texture. Therefore, the Channel-Attention module is designed to 
filter the useless features and to enhance the informative ones. There
fore, model parameters in shallower layers are to be updated mostly that 
are relevant to a given task. To the best of our knowledge, this is the first 
work to employ channel-wise attention to the MRI reconstruction 
problem (Dong et al., 2014b; Ting and Xiao, 2019). Combining the idea 
of MR reconstruction and image super-resolution, some researchers 
work on recovering HR images from low-resolution under-sampled 
K-space data directly (Shi et al., 2018c; Xu et al., 2018; Huang et al., 
2021; Hu et al., 2021). 

In this paper, a fused attentive generative adversarial network (FA- 
GAN) is proposed for generating super-resolution MR images from low- 
resolution MR ones. The novelty of this work can be concluded as 
following: 1)The local fusion feature block, consisting of different three- 
pass networks by using different convolution kernels, was proposed to 
extract image features at different scales, so as to improve the recon
struction performances of SR images; 2) The global feature fusion 
module, including the channel attention module, the self-attention 
module, and the fusion operation, was designed to enhance the impor
tant features of the MRI image, so that the super-resolution image is 
more realistic and closer to the original image; 3)The spectral normal
ization (SN) is introduced to the discriminator network, which can not 
only smooth and accelerate the training process of the deep neural 
network but also improve the model generalization performance. 

2. Methodology 

The proposed neural network model is designed to learn the image 
firstly, and then inversely map the LR image to the reference HR image 
Zhu et al. (2019); Bello et al. (2019). This model only takes LR images as 
input to generate SR images. The operation can be defined as 

ILR = f (IHR) (1)  

IHR = g(ILR) = f − 1(ILR) + R (2)  

where ILR, IHR ∈ℝm×n are respectively LR and HR MRI images of size 
m× n and f: IHR ∈ℝm× n → ILR ∈ℝm× n denotes the down-sampling 
process that creates a LR counterpart from an HR image. 

2.1. SR network with GAN 

The network output is passed through a series of upsampling stages, 
where each stage doubles the input image size. The output is passed 
through a convolution stage to get the resolved image. Depending upon 
the desired scaling, the number of upsampling stages can be changed. 
The adversarial min-max problem is defined by 

min
G

max
D

EIHR∼Ptrain(IHR)[logD(IHR)] + EILR∼PG(ILR)[log(1 − D(G(ILR)))] (3) 

The framework of the proposed FA-GAN network is shown in Fig. 1. 
The whole model takes the down-sampled low-resolution magnetic 
resonance image as input, extracts the features through the LFFB mod
ule, and generates the enlarged image through convolution and up- 

Fig. 1. The framework of the proposed FA-GAN network. LFFB denotes local feature fusion block and GFFB denotes global feature fusion block.  
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sampling. Finally, the GFFB module fuses the detailed features to 
generate a super-resolution magnetic resonance image. During the 
training process, HR references will be used to guide the optimization of 
model parameters. Moreover, the spectral normalization (SN) is intro
duced to the discriminator network to stabilize the training of GAN. 

2.2. Local fusion feature block (LFFB) 

Different from those previous experiments (Fu et al., 2019), the local 
fusion feature block consists of different three-pass networks by using 
different convolution kernels, as shown in Fig. 2. In this way, the in
formation flows between those bypasses can be shared with each other, 
which allow our network to extract image features at different scales. 
The operation can be defined as 

Ft,1 = [C3×3(Ft− 1),Ft,1] (4)  

Ft,2 = [C5×5(Ft− 1),Ft,2] (5)  

Ft,3 = [C7×7(Ft− 1),Ft,3] (6)  

Fd = Fd,3 + Fd− 1 (7)  

where Cs×s means the S scale feature extractor. Ours proposed S scale 
feature extractor consist of three convolution layers with s×s kernel size 
and one ReLU intermediate activation layer. The operation of F [∙] 
means the concatenation and 1 × 1 convolution, which is mainly 
designed to quickly fuse features and reduce the computational burden. 

2.3. Global feature fusion block (GFFB) 

The global feature fusion module includes three parts, namely the 
channel attention module, the self-attention module, and the fusion 
operation. Through these modules, the important features of the MRI 
image can be enhanced, so that the super-resolution image is more 
realistic and closer to the original image (Fig. 3).  

(1) Channel-Attention Module 

In this paper, a lightweight channel attention mechanism is intro
duced, which allows to selectively emphasize informative features and 
restrain less useful ones via a one-dimensional vector from global in
formation. As illustrated in Fig. 4, a global average pooling is used to 
extract the global information across spatial dimensions H*W firstly. 
Then, it is followed by a dimension reduction layer with a reduction 
ratio of r, a ReLu activation, a dimension increase layer, and a sigmoid 
activation to generate SR image. The two dimension computable layers 
are implemented by fully connected layers. The final output of the 
recalibration is acquired by rescaling the input features.  

(2) Self-Attention Module 

The role of the self-attention module is to replace the traditional 
convolutional feature map with a self-attention feature map. 

After convolution operation, the convolutional feature maps pass 
three branches f(x), g(x), h(x) of the 1 × 1 convolution structure, and the 
size of the feature map is unchanged. g (x) changes the number of 
channels, and the output of h (x) keeps the number of channels un
changed. H and W represent the length and width of the feature map, 

Fig. 2. Local feature fusion block.  

Fig. 3. Global feature fusion block. GAP denotes the global average pool
ing operation. 
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and C represents the number of channels. After transposing the output of 
f (x), and multiplying the output matrix of g (x), through normalizeing 
by softmax to get an [H*W, H*W] attention map. By multiplying the 
attention map with the output of h (x) to get a [H*W, C] feature map, 

and using a 1 × 1 convolutions to reshape the output to [H, W, C] to get 
the feature map at this time. The structure of the self-attention module is 
shown in Fig. 5. 

sij = f (xi)
T g(xj) (8)  

βj,i =
exp(sij)

∑N
i=1exp(sij)

(9)  

where βj,i indicates the extent to which the model attends to the ith 

location when synthesizing the jth region. Here, C is the number of 
channels and N is the number of feature locations of features from the 
previous hidden layer. 

The output of the attention layer is o and can be expressed as: 

oj = v(
∑N

i=1
βj,ih(xi)), h(xi) = Whxi, v(xi) = Wvxi (10) 

In the above formulation, wg, wf , wh,and wv are the learned weight 
matrices, which are implemented as 1 × 1 convolutions. 

Besides, we further multiply the output of the attention layer by a 
scale parameter and add back the input feature map. Therefore, the final 
output is given by, 

ySA = γoi + xi (11)  

where γ is a learnable scalar and initialized to 0. Introducing learnable γ 
can make the network first rely on the information of the local neigh
borhood, and then gradually learn to assign more weight to non-local 
information.  

(3) Fusion Operation 

A. Direct Connection. 
The direct connection function can be implemented by adding the 

two terms directly as following: 

f (αR0
i , βYi) = αR0

i + βYi (12)  

where i is the index of a feature. R represents the output of Channel 
Attention, and Y represents the output of Self-attention. Both α and β are 
set to 0.5 as the preset value. 

B. Weighted Connection. 
Compared to the direct connection, the weighted connection in

troduces the competition between R and Y. Besides, it can be easily 
extended to a softmax form, which is more robust and less sensitive to 
trivial features.Both α and β are set to 0.5 as the preset value. To avoid 
introducing extra parameters, we calculate weights using R and Y. The 
weighted connection function is represented as 

f (αR0
i , βYi) =

⃒
⃒αR0

i

⃒
⃒2

αR0
i + βYi

+
|βYi|

2

αR0
i + βYi

(13)    

(4) Loss Function 

The loss function is used to estimate the difference between the value 
generated or fitted by the model and the real value, that is, the difference 
between the reconstructed MRI and the original MRI. The smaller the 
loss function, the stronger the model is. In order to improve the quality 
of model reconstruction, we propose to use perceptual loss, pixel loss, 
and adversarial loss as the combined loss function of the generator. 
Perceptual loss mimics human visual differences, and pixel loss is the 
difference between pixels in the image domain. 

lSR = lSR
x + 10− 3lSR

Gen (14) 

In the following we describe possible choices for the content loss lSR
x 

and the adversarial loss lSR
gen. 

Fig. 4. Channel-Attention module. GAP denotes the global average pooling 
operation and Reshape denotes enlarge operation. 
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This paper uses the Euclidean distance between VGG features, which 
is more relevant to human perception, as the content loss, as shown 
below: 

lSR
x =

1
Wi,jHi,j

∑Wi,j

x=1

∑Hi,j

y=1
(ϕi,j(I

HR)x,y − ϕi,j(GθG (I
LR))x,y)

2 (15)  

ϕi,j indicates that the extracted feature is the j-th convolutional layer 
before the i-th largest pooling layer. Wi,j ,Hi,j represents the dimension 
of the feature layer. 

The adversarial loss function is the average discriminator probability 
value of the samples generated by the generator. The formula is as fol
lows: 

Fig. 5. Self-Attention module.  

Fig. 6. The reconstructed super-resolution cardiac MR images by using different GAN based methods(4×). (a) the real high resolution MR image, and the recon
structed super-resolution MRI using (b)SR-GAN(PSNR 32.37,SSIM 0.9948), (c)SA-SR-GAN(PSNR 34.07,SSIM 0.9959), (d)CA-SR-GAN(PSNR 34.12,SSIM 0.9963),(e) 
FA-GAN(PSNR 34.28,SSIM 0.9966). 
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lSR
Gen =

∑N

n=1
− logDθD (GθG (I

LR)) (16)  

DθD (GθG (ILR) represents the probability that the discriminator judges the 
image generated by the generator as the original magnetic resonance 
image. 

3. Experimental results 

3.1. Datasets and metrics 

All the experiment use TeslaV100-SXM2 GPU and four different MRI 
data sets to train and test the model. Randomly select 50 samples with 
3D formats for training, of which 40 samples are used as the training set 
(3200 2D MRI) and 10 samples are used as validation set (960 2D MRI). 
All low-resolution images in the experiment are obtained by bicubic 
interpolation. At the same time, to ensure the fairness of the test, we 
conducted two independent tests to verify the performance of the pro
posed FA-GAN model. The first test experiment was to randomly select 
10 samples for the test set (960 two-dimensional MRI images) to test and 
calculate the average quantitative index, and the second one was to 
select a two-dimensional MRI with obvious features from the testing 
sets. The optimizing procedure is implemented by using Adam optimi
zation algorithm with 0.9. The FA-GAN networks were trained with a 
learning rate of 0.0001.The model training takes 10 h at a time. 

The experiment uses three evaluation criteria to evaluate the 
reconstructed image: peak signal-to-noise ratio (PSNR), structural sim
ilarity index measure (SSIM), and freshet Inception Distance score(FID). 
The definition of PSNR is 

PSNR = 10 × log10(
2552

M × N
∑M

i=1

∑N

j=1
(y(i, j) − x(i, j))2

) (17)  

where x represents the original image, y represents the super-resolution 
reconstructed image, and i, j respectively represent the coordinate po
sition of the pixel, and M, N represent the size of the image. The SSIM 
can be defined by 

SSIM =

(
2μxμy + C1

)(
2σxy + C2

)

(
μ2

x + μ2
y + C1

)(
σ2

x + σ2
y + C2

) (18)  

where μxand μyrepresent the mean of the image x andyrespectively, 
σxand σyrepresent the variance of the image x andy respectively, the σxy 

covariance of the image x andy, C1 and C2 the constant value used to 
maintain stability. The expression of FID is 

FID(xr, g) =

⃒
⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒
⃒
μx − μg

⃒
⃒
⃒
⃒
⃒
⃒
|
2
2 + Tr(

∑
xr +

∑
g − 2(

∑
xr

∑
g)

1
2) (19) 

In the formula, Tr represents the sum of the elements on the diagonal 

Fig. 7. The reconstructed super-resolution knee MR images by using different GAN-based methods(4×). (a) the real high-resolution MR image, and the reconstructed 
super-resolution MRI using (b)SR-GAN(PSNR 28.90 SSIM 0.9905), (c)SA-SR-GAN(PSNR 30.10 SSIM 0.9912), (d)CA-SR-GAN(PSNR 30.05 SSIM 0.9910). (e)FA-GAN 
(PSNR 30.28 SSIM 0.9926). 
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Fig. 8. The reconstructed super-resolution brain MR images by using different GAN-based methods(4×). (a) the real high resolution MR image, and the reconstructed 
super-resolution MRI using (b)SR-GAN(PSNR 39.90 SSIM 0.9957), (c)SA-SR-GAN(PSNR 41.78 SSIM 0.9969), (d)CA-SR-GAN(PSNR 40.68 SSIM 0.9960), (e)FA-GAN 
(PSNR 42.07 SSIM 0.9974). 

Fig. 9. The reconstructed super-resolution MR images by using different GAN based methods on MM-WHS(4×). (a) the real high resolution MR image, and the 
reconstructed super-resolution MRI using (b)SR-GAN(PSNR 34.42 SSIM 0.9937), (c)SA-SR-GAN(PSNR 35.93 SSIM 0.9966), (d)CA-SR-GAN(PSNR 36.59 SSIM 
0.9974), (e)FA-GAN(PSNR 36.77 SSIM 0.9980). 
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of the matrix, μ is the mean, Σ is the covariance, xr represents a real 
image, and g is a generated image. 

3.2. Experimental results 

In the experiment, we set the parameters of the comparison experi
ment with the optimal parameters in order to compare the best recon
struction performance. Figs. 6–8 show the reconstructed two- 
dimensional super resolution MR image by using different GAN-based 
algorithms. Due to the small difference in visual observation, we 
choose a two-dimensional MRI with more prominent features and zoom 
in on a specific area. From Figs. 6–9, when compared with other three 
GAN-based methods, it can be found that the FA-GAN based recon
struction algorithm has a clearer texture structure in detail than the 
other methods. Due to the combination of the self-attention module and 
channel attention module, with a richer high-frequency texture detail 
under a large-scale factor, the proposed FA-GAN method preserves more 
detailed structural information and the fine outline of the MR image. 
The reconstructed image has clear texture details and most of the ali
asing artifacts are effectively suppressed even with 4× super resolution. 

Tables 1–4 show the average values of two quantified indicators of 
PSNR and SSIM of 3200 two-dimensional MRI reconstructed by using 
different algorithms. Table 1 presents cardiac super-resolution MRI 
reconstruction performances by using the differences methods, Table 2 
shows the brain super-resolution MRI reconstruction performances of 
different methods, Table 3 provides the knee super-resolution MRI 
reconstruction results of different methods, and Table 4 shows the MM- 
WHS by using different GAN-based methods. The reconstruction 

performances of these GAN-based methods are listed in terms of the 
PSNR and SSIM values at three magnifications of 2, 4, and 8 times. As 
shown in Tables 1–4, it can be found that the proposed FA-GAN method 
achieve the highest PSNR and SSIM among these four GAN-based 
reconstruction methods, and the following are SA-SR-GAN, CA-SR- 
GAN and SRGAN. From the tables, the FA-GAN method can improve the 
average PSNR of the reconstructed images by about 0.44–4.85 and SSIM 
by about 0.0003− 0.0044, especially in the cardiac MR image with 2×
super-resolution reconstruction. The proposed FA-GAN can improve the 
reconstruction performances obviously in terms of the PSNR and SSIM 
values. 

Table 5 illustrates the super-resolution MRI reconstruction perfor
mances by using different GAN-based methods in terms of FID. As shown 
in Table 5, it can be found that the FA-GAN can effectively reduce the 
FID. A lower FID means that the reconstructed SR MR images are closer 
to the real high resolution MR images, which means that the quality of 
the reconstructed SR MR images is higher. 

Table 1 
Average PSNR, SSIM by using different GAN-based methods (cardiac).  

method SRGAN CA-SR-GAN SA-SR-GAN FA-GAN  

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

X2 33.73 ± 3.75 0.9957 ± 0.0032 34.22 ± 3.48 0.9959 ± 0.0028 35.66 ± 3.23 0.9962 ± 0.0026 38.58 ± 3.15 0.9979 ± 0.0023 
X4 32.30 ± 4.26 0.9946 ± 0.0067 33.75 ± 4.79 0.9953 ± 0.0073 34.09 ± 4.42 0.9959 ± 0.0052 34.26 ± 4.35 0.9965 ± 0.0058 
X8 31.35 ±4.31 0.9951 ± 0.0058 32.89 ± 4.73 0.9952 ± 0.0078 33.45 ± 4.13 0.9956 ± 0.0031 33.70 ± 4.20 0.9960 ± 0.0023  

Table 2 
Average PSNR, SSIM by using different GAN-based methods(brain).  

method SRGAN CA-SR-GAN SA-SR-GAN FA-GAN  

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

×2 43.35 ± 5.46 0.9989 ± 0.0046 43.56 ± 5.28 0.9991 ± 0.0042 43.97 ± 5.79 0.9991 ± 0.0037 44.11 ± 5.11 0.9992 ± 0.0039 
×4 39.88 ± 5.86 0.9955 ± 0.0068 40.56 ± 5.12 0.9963 ± 0.0082 41.76 ± 4.36 0.9970 ± 0.0055 42.11 ± 4.12 0.9974 ± 0.0062 
×8 30.83 ± 5.41 0.8891 ± 0.0071 30.96 ± 5.67 0.8902 ± 0.0093 31.02 ± 5.32 0.8907 ± 0.0084 31.27 ± 5.36 0.8935 ± 0.0059  

Table 3 
Average PSNR, SSIM by using different GAN-based methods (knee).  

method SRGAN CA-SR-GAN SA-SR-GAN FA-GAN  

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

×2 34.21 ± 6.51 0.9963 ± 0.0037 35.28 ± 5.76 0.9964 ± 0.0031 36.28 ± 5.69 0.9966 ± 0.0042 36.58±5.17 0.9969±0.0033 
×4 28.89 ± 5.81 0.9903 ± 0.0057 29.75 ± 5.72 0.9908 ± 0.0066 30.13 ± 5.42 0.9913 ± 0.0072 30.27±5.61 0.9926±0.0056 
×8 26.31 ± 5.29 0.9722 ± 0.0089 27.46 ± 5.10 0.9813 ± 0.0073 28.22 ± 4.52 0.9842 ± 0.0075 28.83±4.36 0.9877±0.0063  

Table 4 
Average PSNR, SSIM by using different GAN-based methods (MM-WHS).  

method SRGAN CA-SR-GAN SA-SR-GAN FA-GAN  

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

×2 36.27 ± 3.27 0.9967 ± 0.0032 38.93 ± 4.16 0.9981 ± 0.0041 39.68 ± 4.09 0.9989 ± 0.0037 39.78 ± 3.89 0.9992 ± 0.0034 
×4 34.39 ± 5.23 0.9933 ± 0.0031 35.94 ± 5.49 0.9968 ± 0.0052 36.63 ± 5.43 0.9973 ± 0.0047 36.81 ± 5.06 0.9981 ± 0.0027 
×8 27.44 ± 4.28 0.9722 ± 0.0046 27.89 ± 4.36 0.9842 ± 0.0039 28.43 ± 4.49 0.9863 ± 0.0053 28.92 ± 4.21 0.9879 ± 0.0042  

Table 5 
Average FID under different methods (4×).  

method SRGAN CA-SR-GAN SA-SR-GAN FA-GAN 
FID 

cardiac 35.78 ± 2.58 26.65 ± 2.49 24.23 ± 2.32 18.97 ± 2.13 
brain 20.38 ± 3.06 17.22 ± 3.19 16.57 ± 2.86 12.43 ± 2.36 
knee 43.87 ± 4.21 39.89 ± 4.34 38.43 ± 3.71 33.59 ± 3.79 
MMWHS 35.32 ± 3.47 34.77 ± 3.59 32.55 ± 2.96 28.15 ± 2.98  
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4. Discussion 

To demonstrate the effect of each component, we carry out seven 
ablation experiments of local feature fusion block (LFFB), channel 

attention (CA), and self-attention (SA). By removing the local features 
fusion block, our model falls back to a network similar to SRGAN but 
with the attention block. The results confirm that making full use of local 
features fusion block will significantly improve performance. One 
possible reason is that fusing hierarchical features improves the infor
mation flow and eases the difficulty of training. We can conclude from 
Table 6 that the proposed FA-GAN model with all components achieves 
the best performance. The integration of local feature fusion block and 
global feature fusion block not only improves 1− 2 dB on PSNR, but also 
gets much better visual effects in image details than the other methods 
with part components, as shown in Figs. 6–9. 

According to the results of the ablation experiment, as shown in 
Table 6, it can be seen that the CA and LFFB modules together plays the 
most important role in the super resolution MR image reconstruction, 
which affect the reconstruction performances obviously. However, the 
affection of the SA module is relative small, and the reconstruction 
quality drops slightly. Table 7 illustrates the reconstruction effect under 
different connection modes. It can be clearly seen that the weighted 
connection has achieved better results.Thus, we use a weighted 
connection in our method. 

For the selection of parameters α and β, we have done the following 
three sets of comparative experiments. As shown in Table 8, the 
experimental results show that the parameters are the optimize values 
when α = 0.5 and β = 0.5. 

In this paper, the spectral normalization (SN) is introduced to the 
discriminator network, so as to stabilize the training of GAN and limit 
the Lipschitz constant of the discriminator. Compared with other 
normalization techniques, spectral normalization does not require 
additional hyper parameter adjustments (set the spectral norm of all 
weight layers to 1). Fig. 10 shows the effect of SN on FA-GAN, which 
makes the loss value steadily drop and makes the whole training process 
more stable. 

Fig. 11 illustrates the loss value of the training process of SR image 
reconstruction by using four different GAN-based methods with ×4 
times. It can be found that the loss value by using FA-GAN method de
creases monotonously with iteration increasing, while the other 
methods decrease in waves, which indicates that the proposed FA-GAN 
method combined with spectral normalization makes the training more 
stable. 

5. Conclusion 

This paper proposed a new method for super-resolution magnetic 
resonance images reconstruction by using fusion attention based 
generative adversarial networks (FA-GAN). Two different attention 
mechanisms are integrated into the SRGAN framework to obtain 

Table 6 
Ablation studies on MICCAI 2013 grand challenge public data set.  

Model  ×2 ×4 ×8 

FA-GAN PSNR 38.58 34.26 33.70 
SSIM 0.9979 0.9965 0.9960 

-SA 
PSNR 37.99 34.29 33.59 
SSIM 0.9972 0.9966 0.9954 

-CA 
PSNR 37.84 34.02 33.42 
SSIM 0.9970 0.9962 0.9951 

-LFFB PSNR 38.04 34.13 33.65 
SSIM 0.9973 0.9959 0.9957 

-SA-CA PSNR 37.45 33.70 33.47 
SSIM 0.9968 0.9957 0.9952 

-SA-LFFB 
PSNR 37.27 33.65 32.89 
SSIM 0.9963 0.9956 0.9943 

-CA-LFFB 
PSNR 37.03 33.44 32.12 
SSIM 0.9960 0.9954 0.9938  

Table 7 
Average PSNR,SSIM under different connections(4×).  

method Direct Connection Weighted Connection  

PSNR SSIM PSNR SSIM 

cardiac 33.98 ±
4.54 

0.9962 ±
0.0074 

34.26 ± 
4.35 

0.9965 ± 
0.0058 

brain 41.70 ±
4.89 

0.9969 ±
0.0059 

42.11 ± 
4.12 

0.9974 ± 
0.0062 

knee 29.89 ±
5.45 

0.9924 ±
0.0063 

30.27 ± 
5.61 

0.9926 ± 
0.0056 

MMWHS 35.67 ±
5.99 

0.9975 ±
0.0032 

36.81 ± 
5.06 

0.9981 ± 
0.0027  

Table 8 
Average PSNR,SSIM under different values of the parameters(4×).   

α = 0.4,β = 0.6 α = 0.5,β = 0.5 α = 0.6,β = 0.4  

PSNR SSIM PSNR SSIM PSNR SSIM 

cardiac 33.92 
± 4.37 

0.9961 ±
0.0088 

34.26 
± 4.35 

0.9965 ± 
0.0058 

33.10 
± 4.91 

0.9961 ±
0.0079 

brain 41.88 
± 4.91 

0.9966 ±
0.0067 

42.11 
± 4.12 

0.9974 ± 
0.0062 

42.02 
± 4.96 

0.9970 ±
0.0082 

knee 29.73 
± 6.25 

0.9922 ±
0.0089 

30.27 
± 5.61 

0.9926 ± 
0.0056 

30.13 
± 5.84 

0.9920 ±
0.0077  

Fig. 10. Comparison of loss value of FA-GAN with or without SN.  
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important features. Compared with the SRGAN framework, the pro
posed FA-GAN method can reconstruct super-resolution images with 
higher PSNR, SSIM and lower FID, and the reconstructed SR images 
preserve much closer image details to the real high-resolution image. In 
the future work, the proposed FA-GAN method can be used to recon
struct the super resolution MR images like 7 T resolution from 3 T MR 
equipment, which can improve the resolution of the MR image without 
change the hardware. 
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