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Abstract 

Background:  Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world, and its 
5-year survival rate is less than 20%, despite various treatments being available. Increasing evidence indicates that 
alternative splicing (AS) plays a nonnegligible role in the formation and development of the tumor microenvironment 
(TME). However, the comprehensive analysis of the impact on prognostic AS events on immune-related perspectives 
in HCC is lacking but urgently needed.

Methods:  The transcriptional data and clinical information of HCC patients were downloaded from TCGA (The 
Cancer Genome Atlas) database for calculating immune and stromal scores by ESTIMATE algorithm. We then divided 
patients into high/low score groups and explored their prognostic significance using Kaplan–Meier curves. Based on 
stromal and immune scores, differentially expressed AS events (DEASs) were screened and evaluated with functional 
enrichment analysis. Additionally, a risk score model was established by applying univariate and multivariate Cox 
regression analyses. Finally, gene set variation analysis (GSVA) was adopted to explore differences in biological behav-
iors between the high- and low-risk subgroups.

Results:  A total of 370 HCC patients with complete and qualified corresponding data were included in the subse-
quent analysis. According to the results of ESTIMATE analysis, we observed that the high immune/stromal score group 
had a longer survival probability, which was significantly correlated with prognosis in HCC patients. In addition, 467 
stromal/immune score-related DEASs were identified, and enrichment analysis revealed that DEASs were significantly 
enriched in pathways related to HCC tumorigenesis and the immune microenvironment. More importantly, the final 
prognostic signature containing 16 DEASs showed powerful predictive ability. Finally, GSVA demonstrated that activa-
tion of carcinogenic pathways and immune-related pathways in the high-risk group may lead to poor prognosis.

Conclusions:  Collectively, these outcomes revealed prognostic AS events related to carcinogenesis and the immune 
microenvironment, which may yield new directions for HCC immunotherapy.
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Background
Hepatocellular carcinoma (HCC) is the fourth most 
common cause of cancer-related deaths, ranking sixth 
in new cancer cases worldwide (Villanueva and Longo 
2019). According to GLOBOCAN statistics for 2018, the 
global number of patients with HCC was 854,000, while 
the number of deaths was 781,000 (Bray et al. 2018). The 
morbidity and mortality are so close that the five-year 
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survival rate is only 18%, making it the second deadli-
est tumor after pancreatic cancer (Jemal et  al. 2017). 
At present, treatment of HCC remains surgery-based 
comprehensive treatment, but most patients are usually 
diagnosed in a late stage due to a lack of typical clinical 
manifestations in early HCC (Heimbach et al. 2018; Bruix 
and Sherman 2011). Even more disappointing is that 
although there are many treatment options for advanced 
HCC, such as radiochemotherapy, interventional therapy, 
ablation therapy, targeted therapy and antiangiogenic 
treatment, they only provide moderate benefits for HCC 
patients (Qin et  al. 2013; Kudo et  al. 2018). Therefore, 
patients with HCC are in urgent need of newer and more 
effective treatments.

The emergence of immunotherapy has revolutionized 
the traditional mode of diagnosis and treatment, bring-
ing hope to advanced HCC patients. Immune check-
point inhibitors based on PD-1/PD-L1 significantly 
extend patient survival, and in particular, PD-1/PD-L1 
inhibitors have an amazing synergistic effect when com-
bined with antiangiogenic drugs (Zhu et  al. 2018; Yau 
et  al. 2020). However, only a small number of patients 
receiving immunotherapy treatment respond to the 
treatment, which is limited by the immunosuppressive 
microenvironment of HCC (Zhang et  al. 2020). HCC is 
a typical inflammation-related malignancy whose micro-
environment contains a large number of macrophages 
and a series of innate and adaptive immune cells, forming 
a complex immune-tolerant microenvironment (Kure-
bayashi et al. 2018; Nishida and Kudo 2017). Understand-
ing the mechanism of the formation and transformation 
of each cell component in the HCC microenvironment is 
essential for identifying new diagnostic, prognostic and 
therapeutic targets.

With the rapid development of next-generation 
sequencing technology, it has become a trend to use big 
data based on tumor genomics to mine and analyze the 
internal factors that affect the formation and develop-
ment of the tumor microenvironment (Nacev et al. et al. 
2019; Francisco Sanchez-Vega et al. 2018; Li et al. 2019). 
Alternative splicing (AS) refers to the process of splicing 
a single RNA precursor in different ways to produce dif-
ferent structural and functional mRNA and protein vari-
ants and may be one of the most widely used mechanisms 
to explain proteome diversity and cellular complex-
ity (Climente-González et  al. 2017). More intriguingly, 
approximately 95% of human genes undergo some level 
of AS in physiological processes according to genome-
wide studies, in which some abnormal AS events may 
be considered potential drivers of tumorigenesis (Cli-
mente-González et al. 2017; Xiong et al. 2014). Increas-
ing evidence shows that AS not only has a significant 
relationship with tumor occurrence and development, 

invasion and metastasis, and treatment resistance but 
also plays an important role in the formation of the 
immune microenvironment (Wan et  al. 2019; Oltean 
and Bates 2013; Yao et al. 2016; Qi et al. 2020). In other 
words, in addition to affecting the infiltration of immune 
cells, changes in AS can also regulate tumor-related 
immunocytolytic activity (Li et  al. 2019). However, to 
the best of our knowledge, although there are also some 
studies based on AS events in HCC (Yang et  al. 2019a; 
Xiong et  al. 2020; Lee et  al. 2020), there is a scarcity of 
studies providing a comprehensive analysis on the impact 
of AS events from immune-related perspectives. There-
fore, it is imperative to identify the potential regulatory 
relationships between AS events and prognosis and the 
immune microenvironment in HCC.

In our study, based on transcriptional data and clinical 
information of HCC patients downloaded from TCGA 
data portal, we utilized the ESTIMATE algorithm to 
calculate the immune and stromal scores of every HCC 
patient included and implemented Kaplan–Meier curves 
to explore prognostic differences between high/low 
immune/stromal score groups. We then identified the 
DEASs in HCC combined with the transcriptional data 
and evaluated them in functional enrichment analysis 
to explore the potential biological functions and signal-
ing pathways of these events. Furthermore, a prognos-
tic model was constructed based on the optimal DEASs 
identified by Cox regression analyses to verify their prog-
nostic value. Finally, GSVA was performed to determine 
the complexity and multidimensional aspects of micro-
environment formation and immune infiltration dis-
tribution in HCC, which may shed light on the current 
bottleneck facing HCC immunotherapy.

Methods
Data collection
Data for this study were derived from public databases. 
Transcriptional data and clinical information of HCC 
(hepatocellular carcinoma, C22.0) patients were down-
loaded from TCGA data portal (https://tcga-data.nci.nih.
gov/tcga/). We employed the ESTIMATE algorithm in R 
software to calculate immune and stromal scores for the 
mRNA expression data (Yoshihara et al. 2013), a method 
that uses gene expression signatures to infer the fraction 
of stromal and immune cells in tumor samples, with the 
purpose of elucidating the promoting effect of the micro-
environment on tumor cells, providing new thinking on 
the context of the evolution of genomic changes. Specifi-
cally, ESTIMATE outputs stromal and immune scores by 
performing ssGSEA. For a given sample, gene expres-
sion values were rank-normalized and rank-ordered. The 
empirical cumulative distribution functions of the genes 
in the signature and the remaining genes were calculated. 
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A statistic was calculated by integrating the difference 
between the empirical cumulative distribution function, 
which is similar to the one used in gene set-enrichment 
analysis but based on absolute expression rather than dif-
ferential expression. In our research, the gene expression 
profile was downloaded from TCGA database and input 
into R software. Then, by implementing the ESTIMATE 
algorithm, the immune score was automatically output. 
Similarly, stromal scores were also obtained by perform-
ing the above method (Yoshihara et al. 2013).

Finally, 370 HCC patients with complete transcrip-
tional data and corresponding clinical information were 
selected for further analyses. In addition, we downloaded 
AS event data from TCGA SpliceSeq database for subse-
quent research. There has been wide consensus that the 
goal of using Percent Spliced In (PSI) (Ryan et al. 2012), 
ranging from 0–1, is to quantify events. Then, a strict 
set of screening conditions (sample percentage with 
PSI value of 75 and average PSI value of 0.05) was set to 
ensure the reliability of AS events included in subsequent 
analyses.

Calculation and prognostic significance of stromal 
and immune scores
Stromal and immune scores were calculated by applying 
the ESTIMATE algorithm, and the R script was down-
loaded from the website (https://​sourc​eforge.​net/​proje​
cts/​estim​atepr​oject/). In addition, the X-tile program, 
a bioinformatics tool, was used to estimate the optimal 
cutoff values of big data analytics (Camp et  al. 2004). 
Based on the results of ESTIMATE analysis, correspond-
ing patients were classified into high/low immune score 
groups and high/low stromal score groups according 
to X-tile software. Then, the prognostic significance for 
each group was examined by applying Kaplan–Meier 
survival curves.

Screening of differentially expressed AS events (DEASs) 
based on stromal and immune scores
To determine the reasons for the difference in progno-
sis between the high and low immune score groups, as 
well as the high and low stromal score groups, differen-
tial expression analyses of the PSI values of AS events 
were conducted. Given that the PSI values of many AS 
events were relatively small, we set a restricted condi-
tion of | logfc |> 0 and FDR/adjusted P < 0.05 to repre-
sent the upregulation and downregulation of relevant 
AS events, respectively, as previously described (Huang 
et al. 2019). Heatmaps and volcano plots were generated 
using the pheatmap package and ggplot2 in R software, 
respectively. As a result, intersecting AS events that were 
upregulated or downregulated in both the high immune 
and stromal score groups were selected as DEASs and 

screened out for further analysis using a Venn plot. 
Moreover, the UpSet plot was generated by the UpsetR 
package in R to visualize the intersections between the 
seven types of differentially expressed AS events in hepa-
tocellular carcinoma (Conway et al. 2017).

Functional enrichment analysis
Based on the DEASs above, functional enrichment anal-
ysis was employed for the Gene Ontology (GO) terms 
and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways to assess the functional role of inter-
secting genes in Metascape (www.​metas​cape.​org). A 
P-value < 0.05 was set as the cutoff to identify significant 
events. The first 20 important terms in the GO analysis 
and the first 16 significant pathways in the KEGG are dis-
played in the bar charts.

Construction of the prognostic model based on DEASs
With the aim of illustrating the prognostic value of 
DEASs in HCC patients, univariate Cox regression anal-
ysis was applied to identify survival-related DEASs. We 
then employed least absolute shrinkage and selection 
operator (LASSO) regression to identify the final elimi-
nation of potential predictors with nonzero coefficients 
(Gao et  al. 2010), which avoids model overfitting to 
obtain the simplest (smallest parameter) model. Further-
more, multivariate Cox regression analysis was adopted 
to comprehensively evaluate the contribution of each 
DEAS to prognosis based on the statistics of negative 
log-likelihood and Akaike Information Criterion (AIC), 
confirming DEASs involved in  the final prognostic sig-
nature. According to the results of the multivariate Cox 
regression analysis and the PSI values, we calculated the 
risk scores of HCC patients. The risk score was obtained 
by the following formula: score ==

∑
n

i=0
PSI× βi , where 

β is the regression coefficient. HCC patients were divided 
into low- and high-risk groups based on their median risk 
score, and Kaplan–Meier survival curves were plotted 
to show the different prognoses. Additionally, receiver 
operating characteristic (ROC) curves of 1, 3, and 5 years 
were generated to display the discrimination of the pre-
dictive signatures.

Independence of the risk score prognostic mode
HCC patients with full clinical parameters, including sex, 
age, TNM stage, American Joint Committee on Cancer 
(AJCC) stage and histologic grade, were subjected to 
analyses to validate the independence of the risk score 
based on survival-associated DEASs. We then conducted 
univariate and multivariate Cox regression analyses.

https://sourceforge.net/projects/estimateproject/
https://sourceforge.net/projects/estimateproject/
http://www.metascape.org
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Gene set variation analysis (GSVA) between high‑ 
and low‑risk groups
GSVA, a gene set enrichment method that estimates 
variation of pathway activity over a sample population 
in a nonparametric and unsupervised manner, showed 
an increased ability to deal with molecular profil-
ing experiments compared to other methods (Sonja 
Hänzelmann and Guinney 2013). Therefore, GSVA 
enrichment analysis is a robust choice to further mine 
differences in the activation status of biological path-
ways between the high- and low-risk groups, which 
was performed using the “GSVA” R package. The gene 
sets of “c2.cp.kegg.v7.1.-symbols” were downloaded 
from the MSigDB database for GSVA. An adjusted 
P-value < 0.05 was considered statistically significant.

Statistical analysis
All statistical analyses were conducted in R software 
3.6.1. All statistical tests with p < 0.05 (two-sided) were 
considered statistically significant.

Results
Association of immune and stromal scores with HCC 
prognosis
The workflow of our study is shown as Fig. 1. A total of 
370 HCC patients with complete clinical data and tran-
scriptome data from TCGA database were included in 
the follow-up study, and their baseline characteristics 
are detailed in Table 1. According to ESTIMATE analy-
sis, immune scores were distributed between −  861.77 
and 3157.28, and stromal scores ranged from − 1622.33 
to 1180.26. HCC patients were subsequently divided into 
high- and low-score groups according to the immune/
stromal score to investigate their prognostic value. The 
cutoff value was determined using the X-Tile software. 
Kaplan–Meier survival curves showed that the high 
immune score group had a longer survival probability 
than the low immune score group (P = 0.0076); addition-
ally, patients with a high stromal score had a longer sur-
vival probability (P = 0.0026) (Fig.  2a, b). These results 
indicate that immune and stromal scores are both signifi-
cantly correlated with the prognosis of HCC patients and 
are worthy of further study.

Fig. 1  The workflow of the study. HCC hepatocellular carcinoma, TCGA​ The Cancer Genome Atlas database, AS alternative splicing
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Identification of DEASs in HCC
Increasing evidence has revealed that AS events play 
an important role in the development of cancer and 
the formation of the tumor microenvironment (Li et al. 
2019; Zhang et al. 2019). In addition, to establish a rea-
sonable relationship between immune/stromal scores 
and transcriptional data in the hope of finding other 
explanations for its influence on the prognosis of HCC 
patients, we downloaded data regarding AS events 
from TCGA SpliceSeq database, of which there are 
seven types (alternate acceptor site, AA; exon skip, ES; 
alternate terminator, AT; mutually exclusive exons, ME; 
retained intron, RI; alternate donor site, AD; and alter-
nate promoter, AP). A schematic diagram illustrating 
the seven types is shown in Fig. 3. Then, we conducted 
differential analysis of AS event expression in the high 
and low groups based on immune and stromal scores, 
as reflected in the heatmaps (Fig.  4a, c). According to 
the analysis of immune scores, 283 upregulated and 298 
downregulated AS events were identified in the high 
immune score group (Fig. 4b). Similarly, 1952 upregu-
lated and 2081 downregulated AS events were com-
pared between the high and low stromal score groups 
(Fig.  4d). Among them, we believed that intersecting 
AS events were most likely to be associated with the 
prognosis of HCC patients. Therefore, 228 commonly 
upregulated AS events and 239 commonly downregu-
lated AS events between the immune and stromal score 
groups were selected as DEASs, as demonstrated in the 
Venn diagrams (Fig. 4e, f. Considering that a gene may 
have more than one type of AS event, we performed 
an upset plot to show the distribution characteristics 
of AS events and their mutual intersections in mul-
tiple dimensions (Fig.  4g). Notably, AP and AT events 
were the highest in number among them. Most of the 
genes had only one type of AS, while a few have two or 
more than four. The different combinations of these AS 
events may provide the most reasonable explanation for 
the enrichment of transcriptome diversity.

Table 1  Patient characteristics at baseline

Characteristic Number (%)

Diagnosis age

 < 60 201 (54.3)

 ≥ 60 169 (45.7)

Median age (range), years 53 (16–90)

Gender

male 250 (67.6)

female 120 (32.4)

Origin (race)

Asia 158 (42.7)

Non-Asia 212 (57.3)

Ethnicity

Hispanic or Latino 132 (35.7)

Not Hispanic or Latino 227 (61.4)

NA 11 (2.9)

ECOG performance status scorea

0 162 (43.8)

1 84 (22.7)

2 26 (7.0)

 > 2 98 (26.5)

Child–Pugh classification gradeb

A 216 (58.4)

B 21 (5.7)

C 1 (0.2)

NA 132 (35.7)

Disease Stage (American Joint Committee on Cancer)

Stage I–II 256 (69.2)

Stage III 85 (23.0)

Stage IV 5 (1.3)

NA 24 (6.5)

AFP

 ≥ 400 ng per milliliter 64 (17.3)

 < 400 ng per milliliter 213 (57.6)

NA 93 (25.1)

Family history of cancer

Yes 112 (30.3)

No 207 (55.9)

NA 51 (13.8)

Histologic gradec

G1 55 (14.9)

G2 177 (47.8)

G3 121 (32.7)

G4 12 (3.3)

NA 5 (1.3)

Adjacent hepatic tissue inflammation extent type

None 117 (31.6)

Mild 99 (26.8)

Severe 17 (4.6)

NA 137 (37.0)

Table 1  (continued)
a  Eastern Cooperative Oncology Group (ECOG) scores range from 0 to 5, with 
higher numbers indicating poorer health
b  The Child–Pugh classification grade is a three-category scale (A, with scores 
of 5 or 6, indicating good hepatic function; B, with scores of 7 to 9, indicating 
moderately impaired hepatic function; or C, with scores of 10 to 15, indicating 
advanced hepatic dysfunction). Classification is determined by scoring 
according to the presence and severity of five clinical measures of liver disease 
(encephalopathy, ascites, bilirubin levels, albumin levels, and prolonged 
prothrombin time)
c  The histologic grade of hepatocellular carcinoma is based on Edmondson’s 
classification, which can be divided into four grades. The higher the grade, the 
worse the differentiation
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Fig. 2  Association of stromal and immune scores with HCC patient prognosis. a Kaplan–Meier survival curves for patients with low and high 
immune scores. b Kaplan–Meier survival curves for patients with low and high stromal scores

Fig. 3  A schematic showing the seven types of alternative splicing examined in this study. a Alternate acceptor site, AA; b exon skip, ES; c alternate 
terminator, AT; d mutually exclusive exons, e ME; retained intron, RI; f alternate donor site, AD; g alternate promoter, AP



Page 7 of 15Yu et al. Mol Med           (2021) 27:36 	

Functional enrichment analysis
To explore the potential biological functions and signal-
ing pathways of DEASs, we conducted GO and KEGG 
pathway analysis. The top 20 results of GO analysis 
included “activation of immune response”, “lympho-
cyte activation”, “negative regulation of immune system 
process”, “interleukin-12-mediated signaling pathway”, 
“regulation of innate immune response”, and “cellular 
response to tumor necrosis factor” (all P < 0.05), in which 
immune-related responses accounted for the majority of 
results (Fig. 5a). Intriguingly, we also observed that genes 
enriched in GO categories, such as “negative regulation 
of intracellular signal transduction”, “regulation of RNA 
splicing”, “carbohydrate derivative catabolic process”, 
“regulation of MAPK cascade”, “small molecule catabolic 
process”, “cell adhesion molecule binding” and “small 
GTPase mediated signal transduction” (all P < 0.05), 
were closely related to HCC development. Consistent 
with these findings, KEGG pathways also revealed that 
some immune-related pathways were enriched, such as 
“natural killer cell mediated cytotoxicity”, “JAK-STAT 
signaling pathway”, and “NOD-like receptor signaling 
pathway” (all P < 0.05) (Fig.  5b). Moreover, other path-
ways associated with HCC tumorigenesis were enriched, 
including “Ras signaling pathway”, “focal adhesion”, “cen-
tral carbon metabolism in cancer”, “phosphatidylinositol 
signaling system” and “Hippo signaling pathway”. Col-
lectively, these outcomes suggest that DEASs may play 
important roles not only in the formation and shape of 
the HCC immune microenvironment but also in HCC 
tumorigenesis.

Exploration of the prognostic value of DEASs
Based on the DEASs, we constructed a signature to mine 
the underlying prognostic value of individual DEASs. 
First, we performed univariate Cox regression analysis. 
The results showed that 69 of the 467 intersecting AS 
events were significantly correlated with survival in HCC 
patients (Additional file 1). Then, LASSO regression was 
adopted to select the optimal survival-related DEASs to 
construct the prediction model to avoid model overfit-
ting (Fig. 6a, b). Eventually, 16 DEASs were identified and 
included in the final prognostic signature by multivari-
ate analysis (Table 2). In addition, the risk scores of each 
HCC patient were calculated according to the formula 

and the results of multivariate analysis, and all patients 
were divided into low- and high-risk groups based on 
the median risk score. As the Kaplan–Meier survival 
analysis shows, there were significant survival differences 
between the low- and high-risk groups (Fig. 7a). In other 
words, the low-risk group had a longer survival probabil-
ity than the high-risk group (Fig. 7a). More importantly, 
the AUCs of the ROC curve at 1, 3, and 5 years ranged 
from 0.804 to 0.829, which verified the powerful predic-
tive ability of the prognostic model (Fig. 7b).

Validation of the risk score as an independent prognostic 
factor
For a clearer understanding of whether the risk score was 
an independent prognostic factor in the stratified HCC 
cohorts, we performed univariate and multivariate Cox 
regression analyses involving risk score, sex, age, TNM 
stage, AJCC stage and histologic grade, which are shown 
in the form of forest plots (Fig. 8). Taken together, these 
results indicate that the risk score was an independent 
prognostic factor for HCC patient survival, irrespective 
of clinical parameters.

Variation in immune‑related pathways and biological 
process activity between high‑ and low‑risk subgroups
Driven by the outcomes of enrichment analysis and the 
prognostic model, we further employed GSVA to evalu-
ate differences in biological behaviors between the high- 
and low-risk subgroups with the hope of obtaining a 
more comprehensive understanding of the prognostic 
differences (Fig.  9). As shown in Fig.  9, we noticed that 
the vast majority of enrichment pathways presented in 
the high-risk group were associated with carcinogenic 
activation pathways and processes, such as “glycolysis”, 
“mTORC1 signaling”, “hypoxia”, “PI3K-AKT-mTOR sign-
aling”, “P53 pathway”, “NOTCH signaling”, “G2 M check-
point”, “apoptosis”, “DNA repair” and “MYC targets V1”, 
or immune-related pathways, including “IL2-STAT5 
signaling”, “inflammatory response” and “TNFa signal-
ing via NF-kB”. These results reflect the complexity of 
the tumor microenvironment and multidimensional fac-
tors of tumor and immune microenvironment formation, 
which may lead to new insights into poor prognosis in 
high-risk groups.

(See figure on next page.)
Fig. 4  Identification of DEASs in HCC based on immune and stromal scores. a, c Heatmaps of AS event expression in the high and low groups 
based on immune and stromal scores. Red indicates that AS events with higher expression levels, and green indicates AS events with lower 
expression in the high-score groups. b, d Volcano plots of AS event expression in the high and low groups based on immune and stromal scores. 
The red and green points in the plots represent upregulated and downregulated AS events, respectively. e, f Venn diagram analysis of aberrantly 
expressed AS events between the immune and stromal score groups. e) Commonly upregulated AS events. f Commonly downregulated AS events. 
g UpSet plot of interactions among the seven types of DEASs
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Discussion
In recent years, tumor immunotherapy, represented by 
immune checkpoint inhibitors, has made major break-
throughs, providing a new choice for the treatment of 
HCC (Kirkwood et  al.  2012). However, current HCC 
immunotherapy still faces challenges, such as uncer-
tainty in efficacy, numerous adverse events, and drug 
resistance even after initial patient benefits (Byun 
et  al. 2017; Sharma et  al. 2017). Previous studies have 
shown that the TME is closely related to the growth 
and development of HCC (Tahmasebi Birgani and Car-
loni 2017; Chen et al. 2020). Thanks to the tremendous 
development of bioinformatics and high-throughput 
technology, cancer genomics research has been greatly 
facilitated. Therefore, it is of cardinal significance to 
study the potential relationship between the TME and 

prognosis of HCC at the molecular level to guide the 
choice of clinical immunotherapy and combination 
therapy.

In the present study, we implemented the ESTIMATE 
algorithm to calculate immune and stromal scores of 
HCC derived from TCGA database through the spe-
cific perspective of the microenvironment. To predict 
the prognosis of HCC, we then adopted Kaplan–Meier 
curves and found that the high immune/stromal score 
group had a longer survival probability. By comparing 
transcriptional expression profiles in 370 HCC patients 
with high versus low stromal/immune scores, we identi-
fied 467 stromal/immune score-related DEASs and fur-
ther selected the 16 optimal DEASs related to survival 
by LASSO Cox regression. Furthermore, the final prog-
nostic signature was established, showing powerful pre-
dictive ability. More specifically, the low-risk group had a 

Fig. 5  Enrichment analyses of the DEASs. a Bar graph of the top 20 results from the GO enrichment analysis. b Bar graph of the top 16 results from 
the KEGG enrichment analysis
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longer survival probability than the high-risk group, with 
AUCs of 1, 3, and 5  years ranging from 0.804 to 0.829. 
Additionally, the risk score can serve as an independent 
factor for predicting HCC patient survival. Collectively, 

this signature has great potential for predicting the sur-
vival of HCC patients.

Some genes in our prognostic signature model have 
been clarified to be involved in the progression of vari-
ous tumors, including FGL1 (fibrinogen-like protein 1), 
TUBB3 (tubulin beta 3), TNIP1 (TNF-α-induced protein 
3-interacting protein 1), CALD1 (caldesmon 1), ARPP19 
(cAMP-regulated phosphoproteins 19), FCGRT​ (Fc 
fragment of IgG receptor and transporter), ANKDD1A 
(ankyrin repeat and death domain containing 1A) and 
SMARCC2 (SWI/SNF related, matrix associated, actin 
dependent regulator of chromatin subfamily C mem-
ber 2) (Wang et al. 2019; Kanojia et al. 2020; Yang et al. 
2019b; Liu et  al. 2018; Ye et  al. 2020; Xue et  al.  2020; 
Feng et al. 2018; Yuan et al. 2018). Among these survival-
related genes, FGL1 and ANKDD1A were intriguingly 
closely associated with the tumor microenvironment 
and immune infiltration. FGL1, a liver-secreted protein, 
is a major LAG-3 (lymphocyte-activation gene 3) func-
tional ligand independent of MHC-II and is regarded as a 
novel immune evasion mechanism (Wang et al. 2019). In 
other words, blocking the FGL1-LAG-3 interaction with 
monoclonal antibodies stimulates tumor immunity and 
promotes a killing effect on tumors (Wang et  al. 2019). 
On the other hand, previous research has demonstrated 
that loss of FGL1 induces EMT (epithelial-mesenchy-
mal transition) and angiogenesis in LKB1 mutant lung 
adenocarcinoma, creating a tumor microenvironment 

Fig. 6  The optimal survival-related DEASs were selected for constructing the prediction model by LASSO regression. a LASSO coefficient profiles of 
the candidate survival-related DEASs. A coefficient profile plot was produced against the log λ sequence. b Dotted vertical lines were drawn at the 
optimal values using the minimum criteria.

Table 2  Identification of specific differentially expressed AS 
events involved in  final prognostic signature by  multivariate 
analysis

AS alternative splicing, coef coefficient, HR hazard ratio

id coef. HR 95% CI P-value

B9D1|39715|RI 1.08 2.95 1.94–4.50 0.00

MYL6|22376|AT 0.42 1.52 0.98–2.36 0.06

FGL1|82824|AP 0.58 1.78 1.21–2.62 0.00

TUBB3|38167|AP 0.55 1.74 1.16–2.61 0.01

NICN1|64872|ES − 0.48 0.62 0.42–0.91 0.01

TNIP1|74126|AP 0.71 2.04 1.37–3.04 0.00

CALD1|81858|AP 0.96 2.61 1.67–4.08 0.00

ARPP19|30674|ES − 0.58 0.56 0.38–0.83 0.00

ARHGEF1|50101|ES − 0.58 0.56 0.37–0.84 0.01

MAP7D3|90197|AT − 0.34 0.71 0.48–1.05 0.09

IMPA1|84296|ES − 0.43 0.65 0.43–0.98 0.04

FCGRT​|50957|AP 0.82 2.26 1.45–3.52 0.00

ANKDD1A|31138|AT − 0.55 0.58 0.40–0.85 0.01

SMARCC2|22392|ES − 0.45 0.64 0.43–0.94 0.02

ZBP1|59940|AT 0.69 1.98 1.33–2.97 0.00

FUS|36247|ES 0.61 1.84 1.25–2.69 0.00
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more suitable for tumor growth and development (Bie 
et  al. 2019). Regarding ANKDD1A, previous reports 
have suggested that it is a functional tumor suppres-
sor gene, especially in the hypoxic microenvironment, 
that can inhibit the growth of glioblastoma multiforme 
(GBM) by inhibiting the transcriptional activity of 

hypoxia-inducible factor 1α (HIF1α), reducing the half-
life of HIF1α, reducing glucose secretion, and inhibiting 
the production of lactic acid (Feng et al. 2018). In general, 
it primarily inhibits tumor growth by improving hypoxia 
in the tumor microenvironment and inhibiting glycoly-
sis. However, ANKDD1A is highly methylated in tumors, 

Fig. 7  Exploration of the predictive ability of the prognostic model in the HCC cohort. a Survival analysis of the prognostic model. The upper panel 
shows the Kaplan–Meier curves for the high- and low-risk groups; the bottom panel shows the number of living patient variations with time in the 
high- and low-risk groups. Red represents the high-risk group, and blue represents the low-risk group. b ROC curves of predictive models at 1, 3, 
and 5 years. Red represents 1 year, green represents 3 years, and blue represents 5 years

Fig. 8  Verification of the independence of the risk score by Cox regression analyses. a Univariate Cox regression analyses incorporating the 
corresponding clinical information with the risk score. b Multivariate Cox regression analyses based on the clinical data and risk score
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indicating that it may be useful as a potential epigenetic 
biomarker and possible therapeutic target (Feng et  al. 
2018; Zhang et al. 2011).

Moreover, functional enrichment, including GO and 
KEGG analyses, suggested that DEASs were primarily 
involved in immune features, such as “lymphocyte acti-
vation”, “regulation of innate immune response”, “negative 
regulation of immune system process”, and “activation of 
immune response”, which not only includes the overall 
mobilization of adaptive immunity and innate immunity 
but also encompasses the positive and negative regula-
tion of immunity, reflecting the complexity and dynamics 
of the tumor immune microenvironment and the diver-
sification of the mechanism of AS events in the tumor 
immune microenvironment. In addition, we observed 
that some pathways associated with HCC tumorigenesis 
were enriched, such as “regulation of MAPK cascade”, 
“Ras signaling pathway”, “central carbon metabolism in 
cancer” and “Hippo signaling pathway”. Previous research 

has demonstrated that the Hippo signaling pathway is 
essentially a growth inhibition pathway mediated by a 
kinase cascade (Dong 2007). In the case of multiple sign-
aling stimuli in the microenvironment, an imbalance in 
the Hippo pathway can lead to uncontrolled cell growth 
and malignant transformation, leading to the formation 
of malignant tumors (Harvey et  al. 2013). In addition, 
studies have also shown that the Hippo signaling pathway 
not only directly regulates immune cells through activi-
ties such as affecting the differentiation of CD4 + helper 
T cells but also plays a regulatory role in the tumor 
microenvironment, such as recruiting additional type II 
macrophages and MDSCs and upregulating expression of 
the PD-L1 protein in tumor cells (Bhandoola 2020; Wang 
2015; Janse van Rensburg 2018).

Additionally, GSVA of the high- and low-risk groups 
also aroused our interest. The tumor microenviron-
ment is primarily composed of tumor-infiltrating lym-
phocytes, myeloid-derived cells, fibroblasts and other 

Fig. 9  Differences in biological behaviors between the high- and low-risk subgroups evaluated by GSVA. The top 23 biological processes with 
significant differences are visualized by a heatmap. Red represents activated pathways, and green represents inhibited pathways
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cellular components, as well as noncellular components, 
such as inflammatory factors and chemokines (Wu 
and Dai 2017). HCC is a typical inflammatory-related 
malignant tumor whose microenvironment contains a 
large number of macrophages and a series of innate and 
adaptive immune cells, forming complex immune tol-
erance microsurroundings (Kurebayashi 2018; Nishida 
and Kudo 2017). Interestingly, we found that the carci-
nogenic activation pathways significantly enriched in 
the high-risk group included many well-known signal-
ing pathways related to metabolism, such as “glycolysis”, 
“mTORC1 signaling”, “hypoxia”, and “PI3K-AKT-mTOR 
signaling”. It is well known that carcinogenic signal trans-
duction and metabolic changes are often interlinked in 
cancer cells, which utilize metabolic reprogramming to 
create a microenvironment suitable for their own growth 
to ensure survival and proliferation in the microenviron-
ment under conditions of nutrient scarcity and hypoxia 
(Pavlova Natalya and Thompson 2016). Take “glycolysis” 
for example. Excessive conversion of sugar to lactic acid 
by tumor glycolysis inevitably leads to increased acidity 
of the tumor microenvironment. Studies have shown that 
the accumulation of lactic acid can induce macrophages 
to develop an inflammatory protumor phenotype, accel-
erating tumor progression and invasion (Paolini 2020). In 
addition, studies have shown that, affected by the higher 
glucose consumption rate of tumor cells, the mTOR 
activity of tumor infiltrating lymphocytes, the activation 
of T cell nuclear factor signals, and the ability of glycoly-
sis are reduced, which leads to impaired antitumor effects 
(Chang 2015; Ho 2015). Collectively, taking into account 
factors such as metabolism, immunity, and tumorigen-
esis, this may provide a more comprehensive explana-
tion for the poor prognosis of patients in the high-risk 
group; more interestingly, some of these results coincide 
with the enrichment analysis of DEASs. However, given 
the complexity and heterogeneity of the tumor immune 
microenvironment, further in-depth research is still 
necessary.

From the perspective of the microenvironment, we suc-
cessfully identified prognostic AS events related to tumo-
rigenesis and the immune microenvironment combined 
with transcriptome data. More importantly, we further 
constructed the final prognostic signature related to the 
stromal/immune score, showing satisfactory predictive 
ability. In addition, we did not identify DEASs through 
differential analysis of normal tissues and tumor tissues; 
rather, we identified target AS events through differential 
analysis of high/low immune-score groups and high/low 
stromal-score groups compared to other data in the lit-
erature. However, there are a few limitations to be con-
sidered in this study. First, all data come from the public 

TCGA database, so the possibility of selection bias can-
not be ruled out. Second, due to the limited data included 
in TCGA at this stage, we were unable to include other 
clinical variables, such as past HBV infection history, 
family history, history of alcohol abuse, history of chronic 
liver disease, and chemoresistance. Therefore, based on 
the currently available data, we preliminarily conclude 
that risk is an independent prognostic factor. Of course, 
further research is needed to confirm these findings. In 
addition, we cannot conduct further independent data-
base verification of the prognostic model due to a lack of 
relevant transcriptome data in other databases. Finally, 
our study is based on pure bioinformatics analysis and 
lacks relevant experimental validation at the basic or clin-
ical level.

In summary, our research established a risk score 
model based on 16 prognostic DEASs to predict survival 
in HCC, which may help advance decision-making for 
personalized precision treatment. Notably, our study also 
elucidated the complexity and diversity of the immune 
microenvironment of HCC from an immunological point 
of view, providing one possible explanation for the lack of 
clinical efficacy observed in HCC patients.

Conclusions
Taken together, the final prognostic signature formed 
with DEASs exhibited powerful prognostic value for pre-
dicting HCC outcomes. Even more thought-provoking is 
that there may be a vicious circle between the microenvi-
ronment characteristics of tumor tissue and tumor pro-
gression and patient survival. These results provide a new 
perspective for the implementation of clinical decision 
making and the development and optimization of immu-
notherapy for HCC patients, which provides a significant 
positive reference.
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