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Receptor-mediated Ca2+ signaling in many non-excitable cells initially induces Ca2+ release from intracellular Ca2+ stores,
followed by Ca2+ influx across the plasma membrane. Recent findings have suggested that stromal interaction molecules
(STIMs) function as the Ca2+ sensor to detect changes of Ca2+ content in the intracellular Ca2+ stores. Human STIMs and
invertebrate STIM share several functionally important protein domains, but diverge significantly in the C-terminus. To better
understand the evolutionary significance of STIM activity, phylogenetic analysis of the STIM protein family was conducted after
extensive database searching. Results from phylogeny and sequence analysis revealed early adaptation of the C-terminal
divergent domains in Urochordata, before the expansion of STIMs in Vertebrata. STIMs were subsequently subjected to one
round of gene duplication as early as in the Euteleostomi lineage in vertebrates, with a second round of fish-specific gene
duplication. After duplication, STIM-1 and STIM-2 molecules appeared to have undergone purifying selection indicating strong
evolutionary constraints within each group. Furthermore, sequence analysis of the EF-hand Ca2+ binding domain and the SAM
domain, together with functional divergence studies, identified critical regions/residues likely underlying functional changes,
and provided evidence for the hypothesis that STIM-1 and STIM-2 might have developed distinct functional properties after
duplication.
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INTRODUCTION
In response to appropriate stimuli, virtually all types of animal cells

can initiate spatial and temporal changes of cytosolic free Ca2+

concentrations to regulate a wide range of physiological processes

[1]. Accordingly, animal cells employ a repertoire of membrane

transporters such as Ca2+ channels, Ca2+ ATPases, and cation/

Ca2+ exchangers to control cytosolic Ca2+ [2,3]. One important

mode of Ca2+ influx across the plasma membrane involves Ca2+

release from intracellular Ca2+ store through the inositol 1,4,5-

trisphosphate receptors, followed by activation of store-operated

Ca2+ (SOC) channels [4]. SOC currents, for instance, the Ca2+

release activated Ca2+ (CRAC) current (ICRAC), have been well

characterized biophysically and pharmacologically. However, the

molecular identities of SOC entry have remained elusive for

almost two decades [4].

Within the last two years, accumulating evidence suggests that

stromal interaction molecules (STIMs) and Orai proteins might act

as the Ca2+ sensor in the intracellular Ca2+ store and the putative

CRAC channel at the plasma membrane, respectively [5–7] (but

also see reference [8]). Overexpression of both STIMs and Orai

molecules generate currents that recapitulate the properties of

ICRAC [9–11]. STIMs are single-span membrane proteins [12] with

an unpaired N-terminal EF-hand Ca2+ binding domain critical for

the Ca2+ sensor function [13–15]. In addition, STIMs contain an

N-terminal sterile a motif (SAM) domain and a C-terminal

(cytoplasmic) coiled-coil/ERM domain [12]. Following intracel-

lular Ca2+ store depletion, STIM-1 accumulates and redistributes

at distinct membrane regions, and then leads to activation of ICRAC

[15,16]. Mutations of conserved acidic residues in the EF-hand

domain of STIM-1, which presumably reduce its Ca2+ affinity,

mimic the Ca2+ store depletion phenomenon with constitutively

active SOC entry [14,15]. Furthermore, in vitro studies also suggest

that the N-terminal EF-hand and SAM region of human STIM-1

exists as monomers when binding to Ca2+, but readily undergoes

oligomerization in the Ca2+-depleted state [17]. Taken together,

compelling evidence has suggested that STIM-1 functions as the

Ca2+ store sensor in SOC entry. In contrast, the role of the closely

related STIM-2 protein in regulating ICRAC is less defined

[13,15,18]. In response to Ca2+ store depletion, STIM-2 may

behave differently and negatively regulate STIM-1-induced SOC

entry [18].

To further understand the significance of ICRAC in regulating

many cellular functions, it is important to define the molecular and

cellular mechanisms for STIM-mediated activation of CRAC

channels. Evolutionary analysis can provide useful guides for

molecular, biophysical, and biochemical analyses of functional and

regulatory mechanisms of ion channels and transporters [19], as

shown in our previous work on the phylogeny and structural

analysis of the cation/Ca2+ exchangers [2] and the membrane

protein adaptor molecule ankyrin [20]. Our recent report on the

Orai protein family, the putative CRAC channel subunit, has also

provided novel insights into our understanding of the evolution

and structural domains of Orai proteins [3].
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In the present work, I have applied rigorous evolutionary and

bioinformatics analysis to (1) elucidate the evolutionary history and

gene duplication events in the STIM protein family by extensive

database searching and constructions of phylogenetic trees; (2)

identify potential sequence determinants underlying functional

divergence of STIM proteins after gene duplication by mapping

specific residues onto the STIM protein domains and detecting

putative residues subjected to distinct selective evolutionary

constraints with maximum likelihood estimates. Functional

significance of these findings will also be discussed in relation to

applying evolutionary information to structure and function

studies of STIM proteins.

RESULTS AND DISCUSSION

Duplication of the STIM Protein Family During

Chordate Evolution
Identification and characterization of STIM molecules as an

essential component mediating ICRAC in Caenorhabditis elegans

(STIM-1) [21,22], Drosophila melanogaster (STIM-1) and Homo sapiens

(STIM-1 and -2) [13,15] suggest that STIM proteins are

evolutionarily conserved across metazoans. However, a compre-

hensive analysis of the phylogenetic relationship of the STIM

protein family is important to understand results from biological

experiments in terms of evolutionary significance, such as the

evolution of critical protein domains and functional divergence of

duplicated gene products, among others.

Here, by extensive database searching, 40 nonredundant STIM

sequences were identified from 22 species analyzed in this study

(Table S1 in Supplementary Information), including sequences

from Echinodermata Strongylocentrotus purpuratus, Urochordata Ciona

intestinalis, and several nonmammalian Vertebrata species. Phylo-

genetic trees constructed with maximum likelihood (Fig. 1),

maximum parsimony, and neighbor-joining methods as well as

weighted neighbor-joining analysis (data not shown) were

compared to infer the congruent phylogeny. The identical overall

tree topologies generated from these different molecular phyloge-

netic approaches indicated consistent and reliable results for

evolutionary relationships of the STIM protein family. Homo-

logues of STIM-1 and -2 are present as early as in bony fishes

(Takifugu rubripes, Tetraodon nigroviridis, Danio rerio), while C. intestinalis

and S. purpuratus appear to contain only one copy of STIM

molecule in each genome (Figs. 1 and 2, and Table S1). C.

intestinalis has been shown to comprise single copies of many

vertebrate gene families [20,23] likely arising from hypothesized

large-scale genome duplications in vertebrates diverging from

Urochordata and Cephalochordata [24]. Thus, gene duplication

of the STIM family appeared to have occurred as early as in

Euteleostomi lineage to give rise to the two major STIM branches

in vertebrates. Orai molecules also underwent a round of gene

duplication at the early stage of vertebrates [3]. Duplication of

STIM and Orai proteins, and possibly, other subunits, might have

evolved to fit the adaptation of SOC entry into more advanced

vertebrate physiology.

In fish genomes, STIM underwent a second round of

duplications that resulted in, as far as can be ascertained in the

current database, four copies of STIM molecules in each fish

genome (Fig. 1 and Table S1). The fish-specific genome

duplication is speculated to have occurred approximately 350

million years ago, after splitting from other vertebrates [25]. While

possibly due to functional redundancy, most fish-specific duplicat-

ed genes were subsequently lost, the remaining duplicated genes

might have evolved new functions. Indeed, sequence analysis of

these duplicated fish STIMs reveals substantial sequence di-

vergence even in the conserved protein domains (Figs. 3 and 4).

The Orai protein family also exhibits fish-specific duplications in

the Orai-1 group [3]. It remains intriguing if duplicated Orai and

STIM molecules specific in the fish genomes cooperate to perform

as yet uncharacterized, novel functions.

Invertebrate STIMs, human STIM-1 and STIM-2 share several

highly conserved protein domains including the EF-hand Ca2+-

binding domain, the SAM domain, and the coiled-coil/ERM

domain, but diverge remarkably C-terminal to the coiled-coil/

ERM domain [12]. Human STIM molecules contain a proline-

rich domain and a lysine-rich tail domain at the C-terminus

(Fig. 2). The C-terminal lysine-rich region of human STIM-1, but

not the proline-rich domain, has been demonstrated to be involved

in activating CRAC channels in mammalian cells [26]. It has been

hypothesized that the lysine-rich-domain-mediated regulation of

CRAC channels is a vertebrate-specific adaptation [26]. Analysis

conducted in this study, however, reveals the presence of the

proline-rich domain and the lysine-rich domain in C. intestinalis,

suggesting early adaptation of these two domains in Urochordata

before the expansion of STIMs in vertebrates (Fig. 2). Fig. 3 shows

Figure 1. Maximum likelihood tree of the STIM protein family. The
phylogenetic tree constructed with the program PROML [45] shows the
evolutionary relationship of the STIM protein family. The two vertebrate
branches, STIM-1 and STIM-2, are indicated with black arrows. Fish-
specific duplications in vertebrate STIM branches are indicated with
black bars. Sequences that failed in the 5% chi-square test of Tree
Puzzle [44] were removed for further phylogenetic analysis (Table S1).
The unit of branch length is the expected fraction of amino acids
substitution. Aae, A. aegypti; Aga, A. gambiae; Ame, A. mellifera; Bta, B.
Taurus; Cel, C. elegans; Cfa, C. familiaris; Dme, D. melanogaster; Dre, D.
rerio; Fru, F. rubripes; Gga, G. gallus; Hsa, H. sapiens; Mmu, M. mulatta;
Mus, M. musculus; Ptr, P. troglodytes; Rno, R. norvegicus; Spu, S.
purpuratus; Tca, T. castaneum; Tni, T. nigroviridis; Xla, X. laevis; Xtr, X.
tropicalis.
doi:10.1371/journal.pone.0000609.g001
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the sequence alignment of the C-terminal lysine-rich regions from

representative species. The lysine-rich domain is absent in STIM

of Nematoda, Arthropoda and Echinodermata. Therefore, the

primordial form of vertebrate STIMs with all the conserved

protein domain structures seemed to have evolved in C. intestinalis

during early Chordata evolution. We also made similar observa-

tions on the evolution of the Orai protein family [3]. The single

copy of Orai protein in C. intestinalis also contains similar domain

structures of vertebrate Orai molecules. Thus, STIM and Orai in

Urochordata might have evolved to establish the primordial

functional properties of vertebrate-type ICRAC. ICRAC detected in

mammals, presumably representing the vertebrate-type ICRAC,

displays similar biophysical properties with ICRAC observed in D.

melanogaster S2 cells, but differs in their inactivation properties [27].

Their different inactivation properties have been proposed to

correlate with the adaptation of the lysine-rich domain in

Chordata, and possibly involve interaction between the lysine-

rich domain of STIMs and a stretch of basic residues immediately

preceding the first transmembrane segment of Orai proteins [28].

In addition, SOC currents measured in the C. elegans intestinal cells

and HEK cells overexpressing C. elegans STIM and Orai

homologues also exhibit some distinct properties despite many

similarities with mammalian ICRAC [29]. It remains to be

determined whether the functional properties of SOC currents

in C. intestinalis would be more similar to mammalian ICRAC than

those of SOC currents observed in Protostomes.

The Ka/Ks ratios are often used to detect positive selective

pressures over the coding sequence of a gene [30]. The ratios

calculated between members of STIM-1 or between members of

STIM-2 are much less than 1, such as 0.1775 for HsaSTIM-1

(human) vs. XtrSTIM-1 (frog) and 0.0510 for HsaSTIM-1

(human) vs. MusSTIM-1 (mouse), suggesting strong purifying

selections (evolutionary constraints) within each vertebrate STIM

group. Therefore, although STIM-1 and -2 diverged after

duplication, their individual functional properties might have

been highly conserved across vertebrate species.

Evolution of the EF-hand and SAM domains with

Structural Correlations
To gain novel insights into the evolutionary perspective on the

structure and function relationships of STIMs, I unitized two

complementary approaches: (1) mapping potentially critical

residues by sequence alignments of STIM structural domains

across representative species; (2) detecting phylogeny-based site-

specific evolutionary rate changes with the program DIVERGE

[31]. Duplication of STIM molecules only occurred in vertebrates.

Figure 2. Evolution of the protein domains in the STIM protein family. Schematic representations of protein domains of representative STIM
molecules based on phylogeny of bilaterian animals [51]. The proline-rich domain and the lysine-rich domain of STIM molecules, which are absent in
worms, insects and sea urchin, first appeared in Urochordata, as shown in C. intestinalis. Duplication of STIM molecules speculated to have occurred
after Cephalochordata/Urochordata divergence is indicated with ‘‘?’’. Fish-specific duplication of STIMs (Fig. 1) is not illustrated here. C, C-terminus; K-
rich, lysine-rich domain; N, N-terminus; P-rich, proline-rich domain; TMS, transmembrane segment.
doi:10.1371/journal.pone.0000609.g002

Figure 3. Sequence alignment of the lysine-rich domain from
representative species. Shown is the sequence alignment of the
lysine-rich domain of STIM molecules, which are numbered according
to human STIM-1 and STIM-2.
doi:10.1371/journal.pone.0000609.g003
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Thus, I will focus subsequent evolution and divergence analysis on

vertebrate STIM molecules.

The EF-hand and SAM domains at the N-terminus of STIMs

are highly conserved across metazoans (Figs. 4A and 4B) [12]. EF-

hand domain is believed to function as the Ca2+ sensor in the

intracellular Ca2+ stores [14,15] while SAM domain is thought to

mediate protein-protein interactions of STIM proteins [17].

STIMs contain an unpaired EF-hand domain. Although EF-hand

domains usually occur as pairs in proteins, this problem could be

resolved by oligomerization of STIM molecules [12,17]. The

consensus EF-hand sequence contains about 6 to 7 Ca2+ ligands

coordinated in a 12-residue Ca2+ binding loop, which usually

starts with an Asp and ends with a Glu [32]. The main-chain

carbonyl oxygen atom of the central residue (-Y position) in the

Ca2+ binding loop contributes as one Ca2+ ligand, followed

immediately by a hydrophobic amino acid (usually, Ile, Val or

Leu) and another residue at the –X position. These three residues

(i.e. Tyr-Ile-Asp in PDB entry 1CTA, Fig. 4A) [33] form a short b-

sheet structure linking the Ca2+-binding loops with the side chain

of the hydrophobic residue positioned in the center of the

hydrophobic core of the EF-hand domain. The b-sheet structure is

proposed to orchestrate the conformational changes of the N-

terminal and the C-terminal parts of the Ca2+-binding loop upon

Ca2+ binding, and induce coordinated movements of the two

a helices surrounding the Ca2+-binding loop and the resultant

overall conformational changes of the EF-hand domain [32].

The chicken troponin C site III structure (PDB entry 1CTA,

chain A) [33] emerged as a significant hit to the EF-hand domain

sequences of human STIM-1 and -2 during similarity searches of

the SWISS-Model server [34] or the PDB database [35].

Alignment of the EF-hand domain of representative STIM

molecules reveals the highly conserved residues required for

Ca2+ ligand binding, compared with the troponin C site III

(Fig. 4A) and other EF-hand domain-containing sequences (data

not shown). STIM molecules possess the conserved EF-hand

domain structure composed of the 12-residue Ca2+-binding loop

Figure 4. Structural analysis of the EF-hand domain and the SAM domain of STIMs. A. Sequence alignment of the EF-hand domain of
representative STIM proteins and the chicken troponin C site III sequence (PDB entry 1CTA). The structural characteristics of 1CTA including two a-
helices and the central Ca2+-binding loop are indicated above the sequence alignment. The positions of Ca2+ binding ligands are indicated with dark
circle symbols below the alignment. The three residues of the b-sheet structure are marked with asterisk symbols. B. Sequence alignment of the SAM
domain of representative STIM proteins and PDB entry 1V85. The two hydrophobic residues (Leu216 and Leu218 in IV85) at the oligomeric interface
of SAM domains are indicated with asterisk symbols. One acidic residue (Glu185 in IV85) possibly affecting the aggregation state of SAM domains [39]
is also indicated.
doi:10.1371/journal.pone.0000609.g004
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and the two surrounding a-helices. Consistent with the role as the

Ca2+ sensor, mutation of Ca2+ ligand residues in Drosophila STIM-

1 and human STIM-1 causes constitutive activation of CRAC

channels by mimicking Ca2+ store depletion [14,15]. However,

similar mutations in the human STIM-2 EF-hand domain do not

appear to interfere with the observed inhibitory function of human

STIM-2 [18], suggesting that the EF-hand domain in STIM-2

might not be important for STIM-2 inhibitory activity. It should

be noted that such mutations might alter some unknown, yet

uncharacterized, functional properties of STIM-2.

One noteworthy difference between human STIM-1 and -2,

and other EF-hand domain sequences is the proposed b-sheet

sequence (Fig. 4A) [32,33]. The first residue (-Y position) of the b-

sheet, whose main-chain carbonyl oxygen serves as a Ca2+ ligand,

is most often Tyr/Phe/Thr in consensus EF-hand sequences. In all

identified invertebrate STIMs and vertebrate STIM-1 molecules,

the corresponding residue at the –Y position are Asn/Asp/Ser,

compared with predominantly Gly in identified vertebrate STIM-

2 proteins (except Ala in DreSTIM-2a). Gly is known to be an

intrinsically destabilizing residue in b sheets [36,37]. Whether this

change to Gly in STIM-2 molecules plays a role in Ca2+-binding

by affecting the coordinated conformational changes resulting

from Ca2+ binding [32], as described above, remains to be

established. In addition, the third residue (-X position) is Asp in

most invertebrate STIMs and all vertebrate STIM-1, consistent

with the consensus EF-hand domain sequence. In contrast, the

corresponding residue in vertebrate STIM-2 is Glu, occurring less

often at –X position.

Nevertheless, the overall EF-domain sequences of STIM

molecules, especially the Ca2+ ligands, appear to be similar to

the consensus EF-domain Ca2+-binding sequence. Interestingly,

functional divergence analysis did not identify any significant hit in

the EF-hand domain region of vertebrate STIM branches.

Instead, half (five out of ten) residues detected as high probability

for functional divergence are located at the linker region between

the EF and the SAM domain, or at the beginning of the SAM

domain (see below, Fig. 5). Thus, an alternative explanation for

the apparent failure of EF-hand mutations to affect the STIM-2

inhibitory action [18] may be less efficient transmission of Ca2+-

binding induced conformational changes to the SAM domain

and/or the cytoplasmic protein domains in STIM-2. Ca2+ binding

causes structural changes of the Ca2+-binding loop and the

coordinated movements of two a-helices [32], with the C-terminal

helix connecting to the linker region. Indeed, in human STIM-1,

Ca2+-binding or dissociation results in drastic global conforma-

tional changes in the recombinant EF-SAM region, not just

limited to the EF-hand domain [17].

Next, the SAM domain sequences of representative STIM

molecules were aligned and analyzed (Fig. 4B). The SAM domain

is a ,70-residue domain believed to mediate protein interactions

in a wide range of signaling molecules [38]. In vitro biophysical

characterization revealed Ca2+-dependent conformational changes

and associated oligomerization in the human STIM-1 EF-SAM

domain [17]. STIM molecules possess helix bundle arrangements

similar to other SAM domains (data not shown). Two critical

hydrophobic residues (aligned positions at L216 and L218 in PDB

entry 1V85, marked in Fig. 4B) are believed to be thermodynam-

ically important for SAM domain interactions to form the

oligomeric state [39]. These two residues are located at the

oligomeric interface of the SAM domain in many other proteins,

and may reflect evolution from a common ancestor structure.

Mutations of these two residues to Ala could significantly affect

SAM domain interactions. These two residues are conserved as

Leu and Val in STIM-1, and Ile and Val in most STIM-2

molecules, while not in fish STIM-2 proteins (Fig. 4B). The SAM

domain of fish STIM-2a/b molecules might have evolved

differently or land vertebrates regained the conserved module by

convergent evolution after diverging from fish species.

Phylogeny-based Functional Divergence Analysis of

Vertebrate STIMs
Gene duplications provide a means to evolve novel biological

functions, and changes in protein functions may then yield

different evolutionary constraints on duplicated genes [40]. To

gain evolutionary statistics on the functional divergence of the

duplicated vertebrate STIMs, the two vertebrate STIM branches

were analyzed with the program DIVERGE [31] to detect shifts in

the evolutionary rates and identify amino acid residues likely

responsible for functional divergence. This phylogeny-based

method is expected to complement our approaches based on

sequence alignments and structural analysis.

Estimation of the coefficient of functional divergence [31]

(h = 0.151) between vertebrate STIM-1 and -2 provides evidence

for the hypothesis that these two vertebrate STIM branches (Fig.

S1) underwent distinct evolutionary constraints and structural

diversification. Interestingly, if the invertebrate STIMs were

clustered as an independent group in the divergence analysis

(with the exclusion of the C-terminal divergent domain sequences),

there was no significant difference between STIM-1 and the

invertebrate cluster (h = 0.001). The functional divergence estima-

tion between STIM-2 and the invertebrate cluster remained

Figure 5. Sites with altered evolutionary rates identified by posterior
probability of functional divergence. A. The posterior probability of
functional divergence between vertebrate STIM-1 and STIM-2 branches
were calculated with the program DIVERGE [31]. 11 of the aligned sites
showed posterior probabilities .0.33. The 9th site fell in a less defined
region and was excluded for further analysis. The neighbor-joining tree
used for DIVERGE (Fig. S1) is available in Supplementary Information. B.
The localization of the residues with significant posterior probabilities
was mapped onto the structural model of vertebrate STIM molecules,
indicated with black arrows. The highly conserved double cysteine-pair
region is shown as a double ‘‘C’’ before the EF-hand domain in the N-
terminus. C, C terminus; N, N terminus.
doi:10.1371/journal.pone.0000609.g005
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substantial (h = 0.224). In line with evidence from our structural

analysis above, the divergence analysis has again implicated that

STIM-1 [5–7] might have maintained the basic functional

properties of Protostomia STIMs [27,29] in mediating SOC entry

although acquirement of the C-terminal divergent domains might

add some new regulatory properties [27] in response to new

evolutionary pressure. In contrast, STIM-2 likely diverged to

evolve new functional properties in vertebrates [18]. Knockdown

of STIM-2 does not affect SOC entry and ICRAC in mammalian

cells [13] and co-expression of STIM-2 and Orai-1 generates

phenotypes similar to those of HEK cells expressing Orai-1 alone

[11].

Posterior probability analysis of the program also identified

residues likely contributing to the functional divergence (Fig. 5), 10

of which are calculated with significant posterior probabilities

more than 0.33 in well-defined regions. The first two residues are

located in the highly conserved cysteine-pair region [12] at the N-

terminus, with each residue two spaces before corresponding

cysteine residues. Three residues are present at the linker region

between the EF-hand domain and the SAM domain with another

two in the SAM domain, possibly involved in conformational

changes at the EF-hand and SAM region in the presence or

absence of Ca2+. One residue localizes to the S/P-rich region, with

a potential Ser phosphorylation site only in human STIM1

(probability 0.50) (Met in human STIM-2). The remaining two

residues are found in the lysine-rich domain. Overall, functional

divergence analysis supports that STIM-1 and -2 diverged after

gene duplication and displayed shifts in the evolutionary rates in

specific residues.

In conclusion, this study has revealed detailed evolutionary

history of the STIM protein family, an essential component of the

Ca2+ release-activated Ca2+ entry. Urochordata appear to possess

all the conserved protein domains of vertebrate STIM molecules,

indicating that modern STIM structure/function is a Chordata

adaptation. Subsequent gene duplication in vertebrates as early as

in Euteleostomi lineage led to two distinct STIM branches.

Evolutionary analysis supports the hypothesis from biophysical

and physiological studies that STIM-1 and -2 might have evolved

different functional properties, with changes in the evolutionary

rates after duplication. This study, together with the recent report

on molecular evolution of Orai proteins [3], present the first

original and comprehensive bioinformatics studies of Ca2+-release

activated Ca2+ entry by demonstrating biochemical and physio-

logical significance of Ca2+-release activated Ca2+ entry in light of

evolutionary origins, and therefore, provides novel evolutionary

aspects of findings obtained from biochemical studies [5–7].

MATERIALS AND METHODS

Preparation of Data Sets, Sequence Alignment and

Phylogenetic Analysis
Sequence data sets of the STIM protein family were obtained by

PSI-Blast and TBlastN searches [41] of the non-redundant protein

databases at the National Center for Biotechnology Information

(NCBI) and UniProt/SwissProt, and genomic databases at NCBI

and Ensembl, respectively, using DmeSTIM (Accession Number

AAK82338). Sequences were then processed essentially as pre-

viously described [2,20]. Amino acid sequences were aligned with

ClustalX (version 1.83) [42] and manually refined with GeneDoc

(version 2.6) [43].

Sequences were subsequently exported as PHYLIP format and

subjected to the 5% chi-square test implemented in the Tree-

Puzzle (version 5.2) [44]. Phylogenetic trees were constructed with

maximum likelihood (PROML), maximum parsimony (PROT-

PARS), and neighbor-joining (PROTDIST and NEIGHBOR)

programs implemented in the PHYLIP program package (version

3.6) [45], essentially as previously described [2,20]. Weighted

neighbor-joining analysis were performed using WEIGHBOR

[46] with distance matrix derived from Tree-Puzzle or PHYLIP

programs.

The EF-hand domain sequence of STIMs was identified by

consensus EF hand sequence searches [12]. The SAM domain

region was predicted by the SMART (a Simple Modular

Architecture Research Tool) server [47]. The resulting domain

sequences of human STIM-1 and -2 were submitted to the

SWISS-Model server [34] or the PDB database [35] to search for

the best fitting structural models. Sequence alignment of STIM

domain sequences from representative species and identified

structural model sequences was performed with ClustalX and

displayed with GeneDoc as described above.

Calculation of the Ratio of Nonsynonymous (Ka) to

Synonymous (Ks) Rate
The Ka/Ks ratios of selected STIM molecules were calculated

with yn00 implemented in PAML (Version 3.15) [48]. mRNA

sequences were retrieved from NCBI database and submitted to

the PAL2NAL web server (http://coot.embl.de/pal2nal/) [49]

along with related multiple protein sequence alignment. The

PAL2NAL server first converts each protein sequence in the

multiple sequence alignment into DNA sequences in a regular

expression pattern, which are then compared with the input

nucleotide sequences to search for the corresponding codon

alignment. The resulting codon alignments in PAML format were

then subjected to Ka/Ks ratio calculation with yn00.

Functional Divergence and Site-specific

Evolutionary Rate Estimates after Duplication
Site-specific changes in evolutionary rate after gene duplication

(type I functional divergence) was estimated to detect functional

divergence of a protein family [31,50]. Maximum likelihood

estimate for theta, the coefficient of functional divergence, was

measured with the program DIVERGE (version 2.0) [31]. A de

novo neighbor-joining tree was constructed with Poisson distance

and re-rooted. Clusters of refined protein sequences were then

selected for likelihood ratio tests and posterior site analysis.

SUPPORTING INFORMATION

Table S1 List of Proteins Used for Analyses

Found at: doi:10.1371/journal.pone.0000609.s001 (0.06 MB

DOC)

Figure S1 Neighbor-joining tree used for the program DI-

VERGE. The tree was constructed with Poisson distance matrix

implemented in DIVERGE, and re-rooted with the invertebrate

STIM sequence AmeSTIM. The two branches for STIM-1 and

STIM-2 were then selected as corresponding clusters for sub-

sequent functional divergence analysis between two branches.

Found at: doi:10.1371/journal.pone.0000609.s002 (1.91 MB TIF)
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