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Abstract

Motivation: Intratumour heterogeneity poses many challenges to the treatment of cancer.

Unfortunately, the transcriptional and metabolic information retrieved by currently available com-

putational and experimental techniques portrays the average behaviour of intermixed and hetero-

geneous cell subpopulations within a given tumour. Emerging single-cell genomic analyses are

nonetheless unable to characterize the interactions among cancer subpopulations. In this study,

we propose popFBA, an extension to classic Flux Balance Analysis, to explore how metabolic het-

erogeneity and cooperation phenomena affect the overall growth of cancer cell populations.

Results: We show how clones of a metabolic network of human central carbon metabolism, shar-

ing the same stoichiometry and capacity constraints, may follow several different metabolic paths

and cooperate to maximize the growth of the total population. We also introduce a method to ex-

plore the space of possible interactions, given some constraints on plasma supply of nutrients. We

illustrate how alternative nutrients in plasma supply and/or a dishomogeneous distribution of oxy-

gen provision may affect the landscape of heterogeneous phenotypes. We finally provide a tech-

nique to identify the most proliferative cells within the heterogeneous population.

Availability and implementation: the popFBA MATLAB function and the SBML model are available

at https://github.com/BIMIB-DISCo/popFBA.

Contact: chiara.damiani@unimib.it

1 Introduction

Populations of tumour cells display considerable phenotypic diver-

sity both at the intertumour and intratumour level. Along with gen-

etic and epigenetic factors, differential trophic supply and variations

in the tumour microenvironment contribute in particular to intratu-

mour metabolic heterogeneity and to the emergence of a complex

cancer population architecture (Burrell et al., 2013). Intratumour

heterogeneity increases the repertoire of possible cellular responses

to a drug and fosters the adaptive nature of cellular behaviours (Sun

and Yu, 2015), compromising the efficacy of cancer therapies.

Although single cell-based technologies represent a promising ap-

proach for a more in-depth understanding of single cell behaviour

within solid tumours, cancer populations are composed of both tu-

mour and stromal cells that interact with each other by establishing a

network of interactions that cannot be deciphered from the analysis

of each of these individual components alone (Marusyk et al., 2012).

Computational methodologies that allow to identify the possible

cooperations that can be established to enhance the overall growth

of the tumour mass and to investigate the mechanisms underlying

them are therefore desired as they may facilitate the development of

more effective cancer treatments. In particular, modelling efforts to

integrate different sources of data and to determine the metabolic

phenotype of cooperating cells would provide information that can-

not be obtained directly from the genotype, transcriptome, prote-

ome nor the metabolome alone (Holmes et al., 2008).

Constraint-based modelling and especially Flux Balance Analysis

(FBA) represents so far the most applied technique for studying me-

tabolism and has effectively been exploited as a scaffold for ‘omic’

data integration (Cazzaniga et al., 2014). In particular, many

methods have been introduced for the integration of transcriptomic

data into constraint-based models of metabolism (Machado and

Herrgård, 2014). FBA is performed on a single metabolic network
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and provides the (optimal) net flux distribution of possibly different

metabolic populations, hindering the identification of possible meta-

bolic interactions between subpopulations.

In Di Filippo et al. (2017), we preliminarily showed that clones

of a constraint-based toy metabolic network can cooperate to maxi-

mize the ATP production of a total population. In this study, we

propose a method to explore the space of possible interactions be-

tween heterogeneous cell populations within a putative tumour—

given some constraints on plasma supply of nutrients—as well as a

technique to identify the most proliferative sub-phenotypes.

2 Approach

Because the classic FBA approach on a single metabolic model pre-

dicts the optimal net flux distribution of a population (Di Filippo

et al., 2017), the single metabolic model just represents a sort of

black box of the investigated population, and on its own is unable

to inform about the complex interactions occurring inside it.

However, cooperation phenomena within some tumours have been

reported, specifically between stromal and cancer cells (Fiaschi

et al., 2012; Martinez-Outschoorn et al., 2011; Sanit�a et al., 2014;

Whitaker-Menezes et al., 2011), pushing forward the need for com-

putational approaches able to uncover these as well as other possible

kind of interactions between tumour subpopulations. Therefore, we

propose a new methodology aimed at investigating metabolic

phenotypes of different subpopulations belonging to the same tu-

mour mass, especially focusing on the relationships among them.

Assuming that a tumour mass may be composed of different

types of cells (including stromal cells) and that, for reasons of spatial

proximity, the communication with the plasma (in terms of nutri-

ents exchange) of the different components may differ with respect

to the communication with other cells within the populations, we

separately modelled exchanges with plasma and exchanges with the

tumour microenvironment.

In particular, the single metabolic model is used as a building

block for constructing, in an automatic way, the population model

characterized by multiple clones, all having identical stoichiometry

and capacity constraints and sharing the plasma supply of nutrients.

Exploiting linear programming optimization, we can investigate

both the cooperation among different clones that is consistent with

the achievement of the optimal growth rate of the entire tumour

mass, and identify the strategies adopted by the most proliferative

clones.

The proposed approach is schematically described in Figure 1

and formally defined in the following section.

3 Materials and methods

3.1 Metabolic network model
A metabolic network is formalized by specifying a set X ¼ fX1; . . . ;

XMg of metabolites, and the set R ¼ fR1; . . . ; RNg of chemical

transformations taking place among them. Reactions are defined as:

Rj :
XMs

j

i¼1

ajiXi $
XMp

j

i¼1

bjiXi; (1)

where Ms
j and Mp

j are, respectively, the number of reactants and

products of reaction j—relatively to the case in which the reaction

proceeds in the forward direction (from left to right)—and aji;bji

2 N are stoichiometric coefficients associated, respectively, with the

ith substrate and the ith product of the jth reaction.

For the analyses reported in this study we used the model of cen-

tral carbon metabolism, which we refer to as ‘COREHMR’, extracted

from the HMR model (Mardinoglu et al., 2013) and introduced in

Di Filippo et al. (2016), composed of 243 metabolites and 271 reac-

tions. To adapt the model to popFBA analyses, we set the mitochon-

drial isocitrate dehydrogenase-catalyzed reactions as reversible; we

introduced a consumption of ATP within the biomass reaction; we

introduced a cell maintenance reaction (ATP! ADP); and finally

we structurally removed the thermodynamically infeasible loops de-

tected with the algorithm developed in De Martino et al. (2013).

3.2 FBA
The assumption underlying FBA is that metabolic networks will

reach a steady state: the concentration of each metabolite is assumed

constant: d Xi½ �=dt ¼ 0 8Xi 2 X . The stoichiometric constraints lead

to a bounded solution space of all feasible flux distributions, which

can be further restricted by specifying maximum and minimum

fluxes through any particular reaction. These bounds on admissible

fluxes allow to define constraints on the reversibility of reactions, to

impose experimentally measured flux ranges, and to set the extent

of nutrients supply. The exchange of matter with the environment is

Fig. 1. Graphical representation of popFBA methodology
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represented as a set E ¼ fE1; . . . ; ENext
g of Next unbalanced reactions

(exchange reactions), enabling a predefined set of metabolites (includ-

ing the pseudo-metabolite representing biomass) Y ¼ fY1; . . . ;YNext
g

� X to be inserted in or removed from the system, through reactions

as Ej:

Ej : Yj $ 1 (2)

The first step to perform FBA is the derivation of the stoichiometric

matrix S, of size M� N þNextð Þ, whose element sji takes value �aji

if the species Xi is a reactant of reaction Rj, þbji if the species Xi is a

product of reaction Rj and 0 otherwise.

FBA is then applied to determine the rate vi at which

each reaction in R[ E occurs, that is, the flux distribution

~v ¼ v1; v2; . . . ; vNþNext
ð Þ ¼ r1; . . . ; rN ; e1; . . . ; eNext

ð Þ that maximizes

or minimizes the objective function Z ¼
PNþNext

i¼1 wivi, where wi is

the weight that quantifies the contribution of reaction i, while ri and

ei are, respectively, the flux value associated to an “internal” or an

exchange reaction.

In order to simulate tumour growth, in this study we maximize

the flux ebiomass through the biomass exchange reaction, thus

Z ¼ ebiomass The optimization problem is postulated as a general

Linear Programming (LP) formulation:

maximize or minimize Z

subject to S~v ¼~0;
~vL � ~v � ~vB

(3)

~vL and~vB are vectors specifying the lower and upper bound, respect-

ively, for each flux vi of ~v. A negative lower bound indicates that

flux is allowed in the backward reaction.

To solve the above problem we exploited the GLPK solver

within the COBRA Toolbox (Schellenberger et al., 2011). For a

more comprehensive description of FBA, the reader is referred to

Orth et al. (2010).

3.3 popFBA
In order to investigate the role of cooperation within a population

sharing a common environment, in this study we devised popFBA,

an extension to FBA able to cope with the presence of several subpo-

pulations exchanging a defined set of metabolites. Given a metabolic

network A defined as A ¼ X ;R; Eð Þ, popFBA maximizes the total

biomass of Npops clones Ac of A, which can cooperate by exchanging

nutrients in the tumour microenvironment. For each clone Ac, let X c

¼ fXc
i g be the set of its metabolites, Rc ¼ fRc

j g the set of its internal

reactions, with j ¼ 1; . . . ;N and c ¼ 1; . . . ;Npops. To correct for the

fact that in a population model a metabolite is not removed from

the systems, but becomes a metabolite in the tumour microenviron-

ment, each reaction Ej 2 E of A is transformed into a cooperation re-

action Cc
j with the form

Cc
j : Yc

j $ Y 0j (4)

It is also necessary to define the new set of tumour microenviron-

ment metabolites Y0 ¼ fY 0ig with i ¼ 1; . . . ;Next, together with a

new set of Nblood exchange reactions B ¼ fB1; . . . ; BNblood
g to allow

a subset of metabolites K ¼ fK1; . . . ;KNblood
g � Y0 to be exchanged

with the blood supply:

Bj : Kj $ 1 (5)

The population model P is then defined by the union set of the me-

tabolites XP ¼ [c X c [ Y0, of the internal reactions RP ¼ [cRc, of

the cooperation reactions CP ¼ [c Cc and of the population exchange

reactions B.

A stoichiometric matrix SP is then built for all reactions in RP;

CP and B and for all metabolites in XP.

The final size of matrix SP is ðNpops �MþNbloodÞ � Npops�
�

N þNextð Þ þNbloodÞ.
To obtain the matrix SP, we implemented a MATLAB function

that automatically replicates a number of times any (COBRA

Toolbox compliant—Schellenberger et al., 2011) SBML model to

obtain the above defined population model, in a suitable form to

then undergo constraint-based analyses. Linear programming is

then applied as per Equation 3 to determine the flux distribution

~v ¼ ðv1; . . . ; vNpops � NþNextð ÞþNblood
Þ ¼ ðr1

1; . . . ; r1
N ; . . . ; r

Npops

1 ; . . . ; r
Npops

N ; c1
1;

. . . ; c1
Next

; . . . ; c
Npops

1 ; . . . ; c
Npops

Next
; b1; . . . ; bNblood

Þ that maximizes the bio-

mass exchange flux bbiomass, with vi representing any flux i of the

population model, and for each clone c, rc
i representing the ith internal

flux, cc
i representing the ith a cooperation flux and bi a plasma ex-

change flux.

3.4 Sampling in the region of optimal solutions
Linear programming only returns a single optimal solution.

However, many alternative optimal flux distributions may exist.

Flux Variability Analysis (Mahadevan and Schilling, 2003) has been

efficiently exploited to identify the range of values that a flux can

take across the complete set of optimal solutions. Nevertheless, in

order to analyse the correlation between flux values and the prolifer-

ation rates of the model subpopulations, we need punctual solu-

tions. Although methods have been proposed for enumerating

alternative optimal solutions (Reed and Palsson, 2004), an exhaust-

ive enumeration is not practicable for popFBA, due to the inter-

changeability of the flux distributions of the Npops clones.

To cope with this problem, we set the bounds of the biomass ex-

change flux bbiomass to the optimal value obtained with popFBA and

we sampled the admissible solutions. The dominant algorithm of

choice to uniformly sampling inside the region of allowed solutions

is the so-called “Hit-and-Run” (HR) (Schellenberger and Palsson,

2009), according to which an initial valid point is moved repeatedly

inside the space according to probabilistic rules.

In this study, we also exploited a recently proposed alternative

approach (Bordel et al., 2010; Damiani et al., 2014): the simplex

method with a random set of objective functions to be maximized.

The maximization of each of these objective functions gives a corner

in the space of solutions. In Bordel et al. (2010), random objective

functions were generated by selecting random pairs of reactions. To

maximize variability of sampled solutions, we instead let any num-

ber of reactions to take part in the objective function Z as in

Damiani et al. (2014). The fraction s of considered reactions is ran-

domly drawn with uniform probability in (0, 1]. To any selected re-

action is then assigned a random weight wi uniformly tossed from

the interval 0; 1ð �, where wi takes value 0 with probability s and a

random value with uniform probability in 0;1ð � with probability

1� s.
For both methods, we controlled for repetitions in the sampled

points.

3.5 Assessing subpopulations heterogeneity
To assess the heterogeneity of the metabolism of the Npops clones

within a given optimal solution, we compared their flux distribu-

tions both quantitatively and qualitatively. To avoid taking into ac-

count clones that carry no flux, we disregarded the clones that are
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not cooperating for tumour growth, by filtering out clones that do

not have a least one non-zero flux through any of the cooperation

reactions.

To count the number of quantitatively different subpopulations

we considered clones a and b to be different if they differ by at least

the value of one flux (rounded at the fourth digit): if 9 i : va
i 6¼ vb

i .

To count the number of qualitatively different subpopulations,

the counting process is performed, rather than on ~v0 , on a

discretized version ~d0 of vector ~v0 , whose component d0i is obtained

as follows:

d0i ¼

1 vi > 0

�1 vi < 0

0 vi ¼ 0

8>><
>>:

(6)

In this way two clones are considered as different iff they follow at

least one different metabolic path, that is, a different route or a dif-

ferent flux direction.

4 Results

4.1 popFBA reveals the existence of cooperation and

metabolic heterogeneity within cancer population

models
We applied popFBA to 10 clones (Npops ¼ 10) of the COREHMR

model. The value 10 was arbitrarily chosen to allow up to 10 pos-

sibly different subpopulations to be detected. In a first experiment

we simulated a plasma supply of glucose, glutamine and oxygen, the

three nutrients provided with the same order of molar magnitude, in

accordance with the magnitude found when scanning data in litera-

ture. Although the molar concentration of glutamine may be lower

as compared with that of glucose and oxygen, in our system glutam-

ine represents the unique nitrogen source, so it is reasonable to in-

crease its uptake flux to account also for other nitrogen sources that

are generally available in the plasma. As a first approximation, we

assumed equal bounds for the reactions of the 10 clones, thus disre-

garding spatial diffusion phenomena. The 10 clones can cooperate,

via cooperation reactions described in the Section 3, by exchanging

lactate, glutamine, glutamate and ammonia. Although these metab-

olites can be secreted in the microenvironment compartment, they

cannot be disposed (as waste products) in the human plasma. This

experimental setting, which we refer to as the reference condition, is

better detailed in Figure 2A. In this condition, we sampled 2� 104

different optimal solutions (104 points with the HR sampling meth-

ods and 104 with the CB sampling method), that are compatible

with the same optimal tumour biomass.

We assessed the quantitative heterogeneity of the clones in each

of the sampled solutions. Remarkably, in all sampled solutions, we

observed that all 10 clones behave differently. This diversity results

in a different biomass synthesis flux value (the growth rate) for dis-

tinct clones. This heterogeneity may partially be the result of slightly

different phenotypes, following the very same metabolic paths but

at different rates. We wanted therefore to assess the number of

clones that follow different metabolic paths, that is, that differ in the

set of reactions that is active and/or in the direction of the flux

through such set of reactions. The distribution of the number of

qualitatively different subpopulations is reported in Figure 2B and it

shows that, although subpopulations of quantitatively different

clones may overlap from a qualitative point of view, for both sam-

pling methods, the clones typically all follow different metabolic

routes.

Once we established that popFBA is able to highlight the possible

heterogeneity of subpopulations of cells belonging to the same tu-

mour population, we shifted the attention toward a more in-depth

investigation of which types of interactions are compatible with the

achievement of the maximum tumour biomass. The observed het-

erogeneity results indeed form cooperative behaviours among differ-

ent subpopulations. In fact, as it can be observed in the scatter plots

in Figure 2C, a secretion (negative values) or consumption (positive

values) of metabolites in the tumour microenvironment, namely of

lactate, glutamate and ammonia emerged among the different sub-

populations. Among the four allowed cooperations, glutamine is the

only metabolite that is always just consumed and it is not exchanged

with other subpopulations.

4.2 Identification of the most proliferative

subpopulations
To identify the most proliferative phenotypes among the heteroge-

neous subpopulations identified above, we computed the Pearson

Correlation Coefficient (q) between the flux of each of the four co-

operation reactions (exchange of glutamate, glutamine, lactate and

Fig. 2. Reference condition. (A) Experimental setting of the bounds imposed

on the release/consumption of metabolites in/by the plasma, and on the

cooperative reactions. Black or white filled arrows, respectively, indicate

allowed and blocked reactions (bounds set to 0). (B) Histogram relative to the

number of qualitatively different subpopulations obtained with HR (blue bars)

and CB (orange bars) sampling methods. (C) Scatter plots obtained with HR

(blue points) and CB (orange circles) sampling methods relative, in clockwise

order, to the correlation between glutamate exchange and biomass synthe-

sis, between glutamine exchange and biomass synthesis, between NH3 ex-

change and biomass synthesis and between lactate exchange and biomass

synthesis. Abbreviations: Glc, Glucose; O2, Oxygen; Gln, glutamine; NH3, am-

monia; Lac, lactate; Glu, glutamate
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ammonia via the tumour microenvironment) and the biomass pro-

duction rate of the corresponding clones, consistently with the

achievement of the optimal tumour biomass.

We found that the correlation with the biomass synthesis flux, ob-

tained with HR (and CB), is �0.32 (�0.4) for glutamine; þ0.35

(þ0.44) for glutamate; �0.55 (�0.65) for ammonia; and �0.96

(�0.99) for lactate. Notice that a negative q implies a positive correl-

ation between nutrient consumption and biomass, while a positive

q implies a positive correlation between nutrient secretion and biomass.

The q values, along with the corresponding scatter plots (Fig. 2C),

clearly indicate that the most proliferative subpopulations are those

consuming the lactate available in the tumour microenvironment. To

evaluate whether lactate consuming subpopulations are oxidising this

carbon source, we also analysed the correlation between the lactate

exchange and oxygen consumption fluxes, obtaining a q of þ0.98

(þ0.99), confirming that the most proliferative subpopulations are

consuming high levels of oxygen, which is plausibly exploited to oxi-

dize the consumed lactate.

4.3 The set of nutrients exchanged with plasma affects

possible cooperations
The observation that the glutamine supplied with plasma is con-

sumed by all 10 popFBA clones, with no clone producing and

exchanging it with the tumour microenvironment, was expected.

Glutamine represents indeed a unique source of nitrogen supplied by

plasma in the above simulations, and nitrogen is mandatory for the

synthesis of amino acids and thus of biomass. The correlation be-

tween glutamine and biomass is however modest, because the clones

are able to extract the nitrogen from glutamine and to exchange it in

the form of NH3 or glutamate via the tumour microenvironment.

Unexpectedly, the correlation with biomass is indeed negative for

NH3, but it is positive for glutamate.

We observed that, when the cooperation flux for both NH3 and

glutamate is prevented (experimental setting in Fig. 3A and results

in Fig. 3B and C), the correlation between glutamine and biomass

becomes indeed close to �1 (�0.99 for both the HR and the CB

method). In this situation, the negative correlation between lactate

and biomass is preserved (�0.97 for HR and �0.96 for CB).

We also wanted to investigate whether the source of nitrogen in

the plasma supply may affect the possible cooperative behaviours.

We tested the situation in which the nitrogen source provided by the

plasma to the tumour mass is not represented by glutamine, but by

the ammonia (Fig. 4A), which may account for the nitrogen deriving

from other amino acids in real cells. In this situation, as shown in

Figure 4C, the exchange of glutamine among different subpopula-

tions becomes possible. On the contrary, the exchange of NH3 be-

comes not possible, as it is now exclusively consumed by the 10

clones (data not shown). Notably, we still observed a high correl-

ation between lactate consumption and biomass formation:

q ¼�0.89 (�0.98), as per Figure 4C.

Once the effect of an alternative nitrogen source on the internal

transport reactions was investigated, we also analysed the possibility

to have an outflow of either glutamate or ammonia or lactate from

the tumour microenvironment compartment toward the plasma,

maintaining the reference experimental setting. We observed that a

slight increase in the tumour biomass value is caused by both glu-

tamate (2%) and lactate secretion (2%) in the plasma.

Interestingly, we observed that the exit of glutamate from the

tumour microenvironment towards the plasma does not prevent an

exchange of glutamate among different subpopulations. On the con-

trary, as compared with the reference condition in Figure 2, this sit-

uation results in an enhancement of the correlations between

glutamate exchange and biomass synthesis rate—from þ0.35 (0.44)

to þ0.47 (þ0.61); between glutamate exchange and lactate

exchange—from �0.29 (�0.39) to �0.47 (�0.61); and between

Fig. 3. Cooperation reactions variation condition. (A) Experimental setting of

the bounds imposed on the release/consumption of metabolites in/by the

plasma, and on the cooperative reactions. Black or white filled arrows, re-

spectively, indicate allowed and blocked reactions (bounds set to 0).

(B) Histogram relative to the number of qualitatively different subpopulations

obtained with HR (blue bars) and CB (orange bars) sampling methods.

(C) Scatter plots obtained with HR (blue points) and CB (orange circles) sam-

pling methods relative to the correlation between glutamine exchange and

biomass synthesis (on the left), and between lactate exchange and biomass

synthesis (on the right)

Fig. 4. Changing nitrogen source condition. (A) Experimental setting of the

bounds imposed on the release/consumption of metabolites in/by the

plasma, and on the cooperative reactions. Black or white filled arrows, re-

spectively, indicate allowed and blocked reactions (bounds set to 0).

(B) Histogram relative to the number of qualitatively different subpopulations

obtained with HR (blue bars) and CB (orange bars) sampling methods.

(C) Scatter plots obtained with HR (blue points) and CB (orange circles) sam-

pling methods relative to the correlation between glutamine exchange and

biomass synthesis (on the left), and between lactate exchange and biomass

synthesis (on the right)
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glutamate and oxygen—from �0.26 (�0.36) to �0.44 (�0.59).

These results indicate that the subpopulations that are responsible

for a glutamate secretion in the tumour microenvironment are

characterized by a consumption of both lactate and oxygen.

4.4 Comparison of HR and CB sampling methods
In the scatter diagrams in Figures 2C, 3C and 4C it is evident how

the two sampling methods (HR and CB) differ in the way they ex-

plore the space of possible cooperations among metabolic clones.

HR uniformly samples within the space of optimal solutions, return-

ing points that are close to one another inside the space of allowed

solution, whereas, as already pointed out in Bordel et al. (2010), the

CB method returns solutions corresponding to the corners in the re-

gion of allowed flux distributions. This difference in the two meth-

ods does not particularly affect the correlation coefficients between

the release/consumption of metabolites within the tumour micro-

environment and the growth rate of a given sub-population. It

can be indeed observed in Figure 5C that the qs obtained with the

two methods are very similar. However, the HR method may in

some cases underestimate the number of qualitatively different sub-

populations. Although the distribution of the number of qualita-

tively different subpopulations of the two methods is very similar in

the experiments presented in Figures 2B and 4B, it substantially di-

verges in the experiment in Figure 3B. A possible explanation of this

phenomenon is that the experiment reported in Figure 3B refers to a

case in which the clones have less possibilities to cooperate (glutam-

ate and ammonia cooperation is prevented) and thus tend to be

more similar to one another (indeed also the CB method finds more

cases with a lower number of different subpopulations as compared

with experiments in Figs. 2B and 4B), and that the HR method

amplifies this effect.

As expected, the computation time of the two methods grows

linearly with the sample size (Fig. 5D) and it is slightly higher for

HR because of the fixed initial time to create the warm up points. In

both cases, the computed qs stabilize for a sample size greater than

�4� 103. Also the shape of the distribution of the number of differ-

ent subpopulations (Fig. 5A and B for HR and CB, respectively) is

not particularly affected by sample size, although some oscillations

are possible especially for the CB case, while the frequency of any

number of different subpopulations becomes stable for samples

greater than �8� 103. All in all these considerations confirm that

the size of the sample chosen for our analysis (104 þ 104) was

reasonable.

4.5 Simulation of spatial diffusion phenomena with

popFBA
The simulations presented so far assumed equal boundaries for the

reactions of the 10 clones. There could be however cases where dif-

ferent biological conditions impose different uptake/secretion capa-

bilities on the different subpopulations. Our approach could still be

exploited to represent biologically distinct subpopulations, when in-

formation is available to constrain the exchange reactions differ-

ently. To prove the viability of popFBA to take into account spatial

diffusion phenomena, we performed an experiment in which, differ-

ently from the experimental settings presented above, the 10 subnet-

works are not identical in terms of access capability to the plasma

supply.

To mimic a simplified oxygen gradient, we set the bounds of

oxygen uptake of the 10 subnetworks according to a linear decreas-

ing function (as illustrated in Fig. 6A). Assuming that subpopula-

tions are radially stratified, subnetworks with a given availability of

oxygen may represent subpopulations of cells at an equal distance

from the blood vessel.

The scatterplots in Figure 6B clearly show that the subpopula-

tions that consume less oxygen produce more lactate, which is then

consumed by fast growing subpopulations with high oxygen con-

sumption rates.

5 Conclusions

We introduced popFBA, an extension of FBA to take into account

intratumour heterogeneity and interactions among different cell

Fig. 5. (A) Distribution of the number of qualitatively different

subpopulations obtained for seven independent samples of different size S

(S 2 f100; 500; 1000; 2000; 4000; 8000; 10 000g) obtained with the HR method.

Parameter nStepsPerPoint of the sampleCbModel MATLAB function was set to

default value (200); parameter nWarmupPoints was set to 6000; parameters

nFiles and nPointsPerFile were set in a way to maintain the ratio between their de-

fault values. (B) Distribution of the number of qualitatively different subpopula-

tions obtained for seven independent samples of different size

f100; 500; 1000; 2000; 4000; 8000; 10 000g obtained with the CB method. (C)

Values of q between biomass and each of the exchange fluxes with the intratu-

mour microenvironment (Gln, Glu, Lact, O2, NH3), obtained with HR (solid lines)

and CB (dashed lines) as a function of sample size. (D) Computation time as a

function of samples size for HR and CB

Fig. 6. Simulation of oxygen spatial diffusion. (A) Schematic representation of

the performed experiment. The red-to-blue chromatic scale is used to mimic

an oxygen gradient through the tumour population, respectively, from an aer-

obic to a hypoxic environment. The values on the bottom of the figure refer

to maximum uptake flux value of oxygen imposed on each clone. (B) Scatter

plots obtained with HR sampling methods relative to the correlation between

lactate exchange and oxygen uptake (on the left), and between biomass syn-

thesis and oxygen uptake (on the right)

i316 C.Damiani et al.

Deleted Text:  &hx2013; 
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: s
Deleted Text: (
Deleted Text:  
Deleted Text:  
Deleted Text: to 
Deleted Text: s


populations within the same tumour. We applied popFBA to a

model of 10 clones of the metabolic network of human central car-

bon metabolism, simulating a plasma supply of glucose, glutamine

and oxygen, assuming equal bounds for the reactions of the 10

clones and an internal exchange of lactate, glutamine, glutamate

and ammonia. We sampled different optimal solutions, by using

both the HR sampling method and the CB sampling method, that

are compatible with the same optimal tumour biomass. We observed

that popFBA reveals the existence of metabolic heterogeneity and

cooperation within the population model. Indeed, by assessing the

quantitative heterogeneity of the clones in each of the sampled solu-

tions, we observed that all 10 clones behave differently and are

characterized by a different growth rate. Moreover, by assessing the

distribution of the number of qualitatively different subpopulations,

we found that the subpopulations are following different metabolic

routes. This observed heterogeneity is the result of a cooperative be-

haviour among subpopulations: a consumption or secretion of lac-

tate, glutamine, glutamate and ammonia (the four exchanged

metabolites) emerged indeed among the different subpopulations.

Following the observation that popFBA approach is able to point

out, if it is present, a cooperative behaviour among multiple subpo-

pulations of the same population, we investigated which types of

interactions are compatible with the achievement of the optimal tu-

mour biomass.

In order to characterize the metabolism of the most proliferative

subpopulations we assessed the correlation between the exchanges

of metabolites within the tumour microenvironment and the growth

rate of a given subpopulation. In this regard, we showed that,

although the two sampling methods (HR and CB) differ in the

way they explore the space of possible solutions, this difference

has no particular effect on the computed correlation coefficients.

Therefore, the two methods are equally effective when the goal is to

determine the subpopulation with a propensity for growth.

Remarkably, in all of the investigated scenarios, we observed

that the lactate exchange within tumour microenvironment is nega-

tively correlated with respect to the biomass synthesis flux. This

means that the most proliferative subpopulations consume the lac-

tate that is secreted in the tumour microenvironment by less prolif-

erative subpopulations, by using it as energy source. Because a high

positive correlation between the lactate exchange and oxygen con-

sumption fluxes emerged, we deduced that the most proliferative

subpopulations are oxidising the consumed lactate.

A wide array of studies on clonal cancer populations indicated

that cancer cells are characterized by high secretion of lactate in the

medium and that this effect may be functional for growth (Cantor

and Sabatini, 2012; Ward and Thompson, 2012). Conversely, ex-

perimental evidence (Fiaschi et al., 2012; Martinez-Outschoorn

et al., 2011; Sanit�a et al., 2014; Whitaker-Menezes et al., 2011) of

the existence of a stromal-cancer lactate shuttle in human tumours,

a phenomenon named as “reverse Warburg effect” due to the fact

that tumour stromal cells undergo aerobic glycolysis producing lac-

tate that is used as energy source by the adjacent high proliferative

cancer cells has been reported. By simulating scenarios in which this

energy source is not fully released in the environment but must be

taken up by other subpopulations, our approach effectively captured

the side effects of lactate production on the overall growth of a het-

erogeneous tumour mass displaying the reverse Warburg effect.

Under this assumption, our approach well describes the complex

(“symbiotic” but also “parasitic”) metabolic relationship between

cancer and stromal cells in mixed cancer populations.

The agreement of our results with the above-mentioned experi-

mental data supports the reliability of our approach and further

confirms the need for computational and experimental approaches

able to take into account the specificity of the subpopulations within

a tumour rather than observing the average behaviour.

We have shown how popFBA may also be applied to simulate

scenarios in which different biological conditions impose different

uptake/secretion capabilities on the different subpopulations, as well

as to investigate the metabolic plasticity of the tumour mass with

respect to the adaptation of its components (i.e. different subpopula-

tions belonging to the tumour) to changing external but also internal

scenarios.

As it has already been pointed out (Resendis-Antonio et al.,

2015), the Warburg and reverse Warburg effect may represent only

two paradigmatic examples of metabolic interconnection within

cancers. Other scenarios may be simulated with popFBA, by exploit-

ing experimental information to specifically constrain the distinct

subpopulations, with particular regard to the information on single-

cell transcriptome now enabled by single-cell RNA sequencing

(scRNA-seq).

Taking inspiration from the plethora of existing methods to inte-

grate transcriptomic data into classic FBA (Machado and Herrgård,

2014), we plan in the next future to define a method to integrate sin-

gle cells transcriptomic data into our multiscale model, in order to

pave the way to the integration of the increasing availability of

scRNA-seq data into computational models. Single-cell flux distri-

butions will be computed as a function of the transcriptome at the

cell level, while assuring biomass formation at the population level.

Linear programming is computationally inexpensive, making a

single popFBA computation applicable to populations composed of

hundreds of clones and scalable to genome-scale metabolic net-

works. The computation time will increase linearly with the overall

number of reactions. Conversely, the proper size of the set of

sampled solutions should be assessed on a case-by-case basis, as it is

likely to depend on the specific features of the metabolic network

model, as well as on the set of cooperating metabolites. However,

random sampling methods involve independent computations and

may thus easily benefit from distributed implementations.
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