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Abstract
The authors' previous study showed that zirconium oxide nanoparticles (ZrO2 NPs)
induce toxic effects in MC3T3‐E1 cells; however, its toxicological mechanism is still
unclear. Liquid chromatography–mass spectrometry/time‐of‐flight mass spectrometry
was used to reveal the metabolite profile and toxicological mechanism of MC3T3‐E1 cells
in response to ZrO2 NPs. The results demonstrated that MC3T3‐E1 cells treated with
ZrO2 NPs for 24 and 48 h presented different metabolic characteristics. Following ZrO2

NP treatment for 24 h, 96 upregulated and 129 downregulated metabolites in the positive
ion mode, as well as 91 upregulated and 326 downregulated metabolites in the negative
ion mode were identified. Following ZrO2 NP treatment for 48 h, 33 upregulated and 174
downregulated metabolites were identified in the positive ion mode, whereas 37 upre-
gulated and 302 downregulated metabolites were confirmed in the negative ion mode.
Among them, 42 differential metabolites were recognised as potential metabolites
contributing to the induced toxic effects of ZrO2 NPs in MC3T3‐E1 cells. Most of the
differential metabolites were lysophosphatidylcholine and lysophosphatidylethanolamide,
indicating that exposure to ZrO2 NPs may have a profound impact on human cellular
function by impairing the membrane system. The results also provide new clues for the
toxicological mechanism of ZrO2 NP dental materials.
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1 | INTRODUCTION

Zirconium oxide (ZrO2) is one of the most widely used metal
compounds due to its high mechanical strength and low
toxicity [1]. ZrO2 nanoparticles (NPs) have been commercial-
ised for medical applications, mostly medical devices, owing to
their biocompatibility and resistance to biocorrosion [2].
Recently, the toxicity of NPs has been reported, which has led
to reduce its medical use [3]. The underlying mechanisms of
metal NP toxicity include oxidative stress, inflammation,
immunotoxicity, and genotoxicity [4]. Successful ZrO2 dental
implants rely on three main components: bone, connective
tissue, and epithelium. Hard tissue plays an important role in
the implant, occupying one‐third of the height of the implant,
while bone tissue contacts the surface of the implant with an
appropriate biological width to form complete osseointegra-
tion. Our previous studies have revealed that MC3T3‐E1 cells
treated with 100 μg/ml ZrO2 NPs decreased in size and lost
their normal morphology, thereby indicating that NPs damaged

the cytoskeleton system. Thus, MC3T3‐E1 cells function as a
model for toxicity analysis of ZrO2 NPs (Ye and Shi, 2018).
NPs induce autophagy by activating mitogen‐activated protein
kinase ERK1/2 (p44/p42) [5]. Previous studies have suggested
that multivesicular bodies that intake ZrO2 NPs experience
increased levels of mitochondrial reactive oxygen species
(ROS) levels, which further activate inflammasomes; thus,
providing a crucial link between oxidative stress and inflam-
mation in ZrO2 NP toxicity [6–8]. However, biomarkers for
the accurate diagnosis of ZrO2 NP toxicity are still lacking.

Metabolomics, as a quantitative assessment of endogenous
small molecule metabolites within a biological system, has been
used successfully to discover biomarkers for a variety of dis-
eases, including NP‐induced toxicity [9, 10]. Metabolomic
studies have shown that gold NPs induce metabolic alterations
in human hepatocellular carcinoma (HepG2) cells, and citrate‐
modified silver NPs cause abnormality in purine metabolism,
amino acid metabolism, and glycine metabolism [11, 12].
Considered together, the metabolomic studies indicate that
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NPs stimulate metabolic machineries to produce different
metabolites and provide an experimental basis for exploring
the toxicity mechanism of NPs. Nanoparticles may directly
interact with proteins, lipids, and DNA, which result in protein
degradation, membrane damage, and mutagenesis. Therefore,
metabolomics may provide new insights into the mechanisms
underlying NP toxicity [6]. Studying the alteration of metabolic
profiles following exposure to ZrO2 NPs can identify meta-
bolic alterations, which is critical for detecting the toxic effects
of ZrO2 NPs. Understanding the toxicological mechanism of
ZrO2 NPs can provide new evidence that will lead to new
methods for improving ZrO2 NP dental materials.

Our previous studies have revealed the characteristics of
ZrO2 NPs (size: 31.9 ± 1.9 nm; particle dispersion index:
0.328; charge: 42.4 ± 7.4 mV; morphology: small rod‐shaped
spheres) and toxicity of ZrO2 NPs against MC3T3‐E1 cells
(IC50 100 μg/ml), and also found that ZrO2 NPs damages
MC3T3‐E1 cells through oxidative stress, inflammation, and
altered immunity [13]. To further explore the toxicological
mechanism, we performed a non‐targetted metabolomic
analysis to profile metabolite changes when MC3T3‐E1 cells
have been exposed to ZrO2 NPs, which provided new clues for
the toxicological mechanism and further study.

2 | MATERIALS AND METHODS

2.1 | Construction of a ZrO2 NPs‐induced
MC3T3‐E1 cell injury model

MC3T3‐E1 cells were purchased from the Cell Bank of the
Chinese Academy of Sciences and were cultured in an alpha
minimum essential medium with ribonucleosides, deoxy-
ribonucleosides, 2 mM L‐glutamine, and 1 mM sodium pyru-
vate, without ascorbic acid (Catalogue No. A1049001, GIBCO)
and supplemented with 10% foetal bovine serum (GIBCO) at
37°C, and 5% CO2. The cells were incubated with ZrO2 NPs to
induce cellular injury. As previously described, the stock solu-
tion of ZrO2 NPs was prepared as follows: ZrO2 NPs (CAS
544760, Sigma) were dissolved in a phosphate buffer solution
(CAS P1022, Solarbio) and shaken with an ultrasonic crushing
system for 30 min on ice to prepare a 500 μg/ml stock solution.
This stock solution was diluted to 100 μg/ml with a complete
medium for further experiments [13]. The MC3T3‐E1 cells
treated with 100 μg/ml ZrO2 NPs were divided into four
groups: MC3T3‐E1 cells with the mock treatment for 24 h as
Group A; MC3T3‐E1 cells with ZrO2 NPs for 24 h as Group
B; MC3T3‐E1 cells with the mock treatment for 48 h as Group
C; and MC3T3‐E1 with ZrO2 NPs for 48 h as Group D. The
experiments in each group were performed in 12 replicates.

2.2 | Cell extraction for metabolite profiling

The cells were collected, resuspended in 50% methanol buffer
(CASM116115, Aladdin), vortexed for 1min, incubated at room
temperature for 10 min, and then incubated overnight at −20°C.
Supernatants of the cell extracts were transferred to a 96‐well

plate after centrifugation at 4000 g for 20 min. The samples
were stored at −80°C until liquid chromatography–mass spec-
trometry/time‐of‐flight (LC‐MS/Q‐TOF) mass spectrometry
(MS) analysis. Quality control (QC) samples were prepared by
combining 10 μl of each extraction [14].

2.3 | LC‐MS/Q‐TOF experiments

An ACQUITY UPLC T3 column (100 mm � 2.1 mm, 1.8 μm,
Waters) was used for reversed‐phase separation on an
ExionLC system (SCIEX). The mobile phase consisted of
Solvent A (0.1% formic acid in H2O) and Solvent B (0.1%
formic acid in acetonitrile). The flow rate was 0.4 ml/min; the
oven temperature was set to 35°C; and the injection volume
was 4 μl. The elution conditions were as follows: 0–0.5 min,
5% B; 0.5–7 min, 5%–100% B; 7–8 min, 100% B; 8–8.1 min,
100% to 5% B; and 8.1–10 min, 5% B.

A high‐resolution tandem mass spectrometer Triple-
TOF5600plus (SCIEX) was used to detect metabolites in both
positive and negative ion modes. The curtain gas was set to 30
pounds per square inch (PSI); ion source gas1 was set to 60
PSI; ion source gas2 was set to 60 PSI; and an interface heater
temperature was set to 650°C. The ion spray voltage floating
was set to 5000 and −4500 V for positive and negative ion
modes, respectively. We obtained the mass spectra data in in-
formation dependent acquisition mode, with a TOF mass
ranging from 60 to 1200 Da. The total cycle time was fixed to
0.56 s. The mass accuracy was calibrated every 20 samples, and
a QC sample was acquired after every 10 samples.

2.4 | Bioinformatics analysis of the
untargetted metabolomic dataset

The acquired MS data pretreatments, including peak picking,
peak grouping, retention time (RT) correction, second peak
grouping, and annotation of isotopes and adducts, were per-
formed using the XCMS software. Liquid chromatography–
mass spectrometry raw data files were converted into
mzXML format and then processed by XCMS, CAMERA, and
metaX [15] toolboxes implemented with the R software. Each
ion was identified by combining the RT and m/z data. The
intensities of each peak were recorded, and a three‐dimensional
matrix containing arbitrarily assigned peak indices (RT‐m/z
pairs), sample names (observations), and ion intensity infor-
mation (variables) was generated.

The online Kyoto Encyclopedia of Genes and Genomes
(KEGG) database and the Human Metabolome Database
(HMDB) were used to annotate the metabolites by matching
the exact molecular mass data (m/z) of samples with those
from the database. If a mass difference between the observed
and database values was less than 10 ppm, the metabolite
would be annotated, and the molecular formula for metab-
olites would be identified and validated by the isotopic dis-
tribution measurements. We also used an in‐house fragment
spectrum library of metabolites to validate the metabolite
identification.
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The intensity of the peak data was further preprocessed by
metaX [15] Those features that were detected in less than 50%of
theQC samples or 80%of biological samples were removed, and
the remaining peakswithmissing valueswere imputedwith the k‐
nearest neighbour algorithm to further improve the data quality.
A principal component analysis (PCA)was performed for outlier
detection and evaluation of the batch effects was performed
using a preprocessed dataset. QC‐based robust LOcally
WEighted Scatter‐plot Smoother signal correction was fitted to
the QC data considering the order of injection to minimise the
signal intensitydrift over time. Furthermore, the relative standard
deviations of themetabolic featureswere calculated across allQC
samples, and those >30% were removed.

2.5 | Statistical analysis

Student's t‐test was conducted to detect differences in the
metabolite concentrations between the two groups. The
p‐value was adjusted for multiple tests using the false discovery

rate method (Benjamini–Hochberg). Supervised partial least
squares‐discriminant analysis partial least squares discriminant
analysis (PLS‐DA) was conducted through metaX to discrim-
inate the different variables between groups. The variable
importance for projection (VIP) score was calculated. A VIP
cut‐off score of 1.0 was used to select important features.

3 | RESULTS

3.1 | Overview of metabolic profiling

To investigate the metabolic profiling of ZrO2 NPs on MC3T3‐
E1 cells, four groups were used: Group A is MC3T3‐E1 cells
with mock treatment for 24 h; Group B is MC3T3‐E1 cells with
ZrO2 NPs for 24 h; Group C is MC3T3‐E1 cells with mock
treatment for 48 h; and Group D is MC3T3‐E1 cells with ZrO2

NPs for 48 h. The total ion chromatograms of samples in the
positive and negative ion modes were used to assess the quality
of metabolomic data (Figure 1a). A good overlap of the

F I GURE 1 Quality control (QC) of metabolomic analysis using the liquid chromatography–mass spectrometry/time‐of‐flight mass spectrometry system.
(a) Total ion chromatograms in the positive and negative ion modes. The peak retention time and peak area of the QC samples overlap well; (b) Unsupervised
principal component analysis results in the positive and negative ion modes. QC samples are tightly packed together, indicating that the quality of the samples is high
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chromatograms for all samples in the positive or negative ion
mode confirmed the RT, reproducibility, and stability of the
instrument (Figure 1a). Moreover, we observed differences in
the peak intensities between the metabolic profiles of MC3T3‐
E1 cells treated by ZrO2 NPs for 24 and 48 h and those of the
QC samples. Quality control samples in the principle compo-
nent analysis were tightly packed, which indicated that the
quality of the QC samples was high (Figure 1b).

3.2 | Normalisation and multivariate
statistical analysis

First, we analysed the difference in the global metabolite be-
tween the ZrO2 NPs‐treated and control groups. PCA models
were then used to analyse the metabolic changes; the PCA
score plots showed that the samples from the ZrO2 NPs‐
treated and control groups indicated consistent classification
and significant separation in the negative ion mode, with
43.14% of the total variance in the data represented by the first
two principal components (Figure 2). There were different
metabolic characteristics in the positive ion mode; those plots
revealed that the cellular metabolite of the ZrO2 NPs‐treated
group changed significantly in the negative ion mode.

3.3 | Identification of differential
metabolites

MetaX was used to identify metabolites. The results indicated
that among the total of 7603 metabolites detected in the

positive ion mode, 5142 were high‐quality metabolites; among
the total of 7194 metabolites detected in the negative ion
mode, 4964 were high‐quality metabolites. Those high‐quality
features were collected for subsequent statistical analysis. A
cluster analysis showed that these high‐quality metabolites are
primarily molecules related to lipid metabolism and organic
acids and their derivatives. Notably, the number of unidenti-
fiable metabolites in the negative ion mode was higher than
that in the positive ion mode (Figure 3a).

The metabolic differences between the ZrO2 NPs‐treated
and control groups were profiled. First, the variables with
VIP value >1 had a good correlation with separation, which
applies to the candidate list. Those metabolites were further
subjected to a fold change (FC) analysis and Student's t‐test
with Benjamini–Hochberg correction to identify the differ-
ential metabolites. As shown in Table 1, 96 upregulated and
129 downregulated metabolites were identified in the positive
ion mode at 24 h following ZrO2 NP treatment; 91 upre-
gulated and 326 downregulated metabolites were identified in
the negative ion mode at 24 h following ZrO2 NP treat-
ment; 33 upregulated and 174 downregulated metabolites
were identified in the positive ion mode at 48 h following
ZrO2 NP treatment; and 37 upregulated and 302 down-
regulated metabolites were identified in the negative ion
mode at 48 h following ZrO2 NP treatment. A hierarchical
clustering analysis was performed to demonstrate the global
overview of all differential metabolites that were visualised
(Figure 3b,c). The results show that the abundance of me-
tabolites was significantly different between the ZrO2 NP
and control groups at 24 and 48 h, in positive and negative
ion modes.

F I GURE 2 Metabolomic profiles of the zirconium oxide nanoparticles‐treated and control groups. The outline view of all samples shows the principal
component analysis scores for both the positive and negative ion modes
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F I GURE 3 Overview of the characteristics of differential metabolites. (a) Molecules related to lipid metabolism and organic acids and their derivatives. The
number of unidentifiable metabolites in the negative ion mode is higher than that in the positive ion mode. Different colours represent different metabolite
classifications; (b) Heatmaps showing the differential metabolites between the zirconium oxide nanoparticle (ZrO2 NP) and control groups at 24 h in the positive
and negative ion modes; (c) Heatmaps of differential metabolites between the ZrO2 NP and control groups at 48 h in the positive and negative ion modes. Each
line represents a differential metabolite; each box denotes a cell sample; and different colours signify different abundance
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3.4 | Functional analysis of differential
metabolites

A pathway analysis is a useful tool for understanding complex
relationships among genes and proteins. First, we used an
HMDB analysis (http://www.hmdb.ca/) to study the differ-
ential metabolites functions. Considering there was a good
separation between the ZrO2 NPs‐treated and control groups
in the negative ion mode, we focussed on the negative ion
mode. The findings indicated that the differential metabolites
were mainly lipids and lipid‐like molecules at 48 h following
ZrO2 NP treatment in the negative ion mode (Figure 4a,b).

To further analyse the metabolic pathways associated with
ZrO2 NP toxicity, we conducted a KEGG pathway analysis.
The results revealed that the differential metabolites following
ZrO2 NP treatment for 24 h in the negative ion mode were
enriched in metabolic pathways and glycerophospholipid
metabolism (Figure 4c). The differential metabolites following
ZrO2 NP treatment for 48 h in the negative ion mode were
enriched in metabolic pathways and glycerophospholipid
metabolism (Figure 4d). They had a good consistency, which
indicates that ZrO2 NP exposure to MC3T3‐E1 cells has an
important influence on the cell membrane system.

3.5 | Identification of potential metabolite
biomarkers

Multivariate statistical analysis of VIP values obtained from
PLS‐DA was performed to identify the metabolites with the
greatest contribution to cell classification at 24 and 48 h
following ZrO2 NP treatment. The criteria for selecting
candidate metabolites as biomarkers were (1) ratio ≥ 2 or ra-
tio ≤ 1/2; (2) p‐value ≤ 0.05; (3) VIP ≥ 1. The PLS‐DA plot
showed a separation of metabolites, with the greatest contri-
bution to cell classification occurring between Group A and
Group B (Figure 5a) and Group C and Group D (Figure 5b).
Then, combined with univariate statistical analysis including t‐
test and FC, all metabolites with a significant contribution of
p ≤ 0.05 or FC ≥ 2/≤0.5 were considered to be potential
biomarkers. A total of 66 endogenous differential metabolites
were identified in the Group B when compared with Group A,

and a total of 67 endogenous differential metabolites were
identified in the Group D when compared with Group C. A
Venn diagram revealed that 42 endogenous differential me-
tabolites were common in both the 24 and 48 h collections
(Figure 5c), most of which were lysoPCs and lysoPEs (Ta-
ble 2). These differential metabolites may be responsive to
ZrO2 NP exposure and may function as possible biomarkers
for ZrO2 NP‐induced MC3T3‐E1 injury.

4 | DISCUSSION

The LC‐MS metabolome analysis demonstrated that MC3T3‐
E1 cells treated with ZrO2 NPs for 24 and 48 h showed
different metabolic characteristics from those of the control
group. Most of the differential metabolites formed following
ZrO2 NP treatment were lipids and lipid‐like molecules, which
were enriched in metabolic pathways and glycerophospholipid
metabolism. Forty‐two differential metabolites were identified
as potential biomarkers, and most of them were classified as
lysoPCs or lysoPEs. Therefore, we conclude that the metab-
olites lysoPCs and lysoPEs can be used as potential biomarkers
for ZrO2 NP toxicity and can provide new insight on how to
improve ZrO2 NP dental materials.

Phosphatidylcholine (PC) and phosphatidylethanolamide
(PE) both belong to phospholipids, which are the key com-
ponents of cell membranes. Phosphatidylcholine and phos-
phatidylethanolamide are desaturated into lysoPCs (products
of PC by phospholipase A1) and lysoPEs, which are
important for the synthesis of plasmalogens. Plasmalogens
are antioxidants that play a critical role in preventing damage
caused by oxidation imbalance. Therefore, reduced levels of
lysoPCs and lysoPEs lead to increased oxidative stress [16,
17]. When used in a cell culture medium, lysoPCs induce cell
proliferation, transduce intracellular signals, and inhibit
apoptosis [18, 19]. LysoPCs also reduce infiltration of im-
mune cells into the lungs and play an anti‐inflammatory role
by activating the peroxisome proliferator‐activated receptor
[20, 21]. It has been reported that reduced lysoPCs contribute
to a variety of diseases, such as diabetes, vascular diseases,
cancers, and depression [22–26]. A quantitative analysis of
lysoPCs under pathological conditions is important for un-
derstanding their downstream signalling pathways and path-
ological mechanisms [22–26]. Furthermore, lysoPEs inhibit
inflammation by blocking TGF‐β1/Smad2/3 signalling and
modulating mitochondria‐mediated oxidative stress and
apoptosis [27, 28]. These studies indicate that lysoPCs and
lysoPEs can be used as biomarkers for the early diagnosis
and prediction of disease outcome. Indeed, lysoPCs have
already been considered as potential biomarkers for diag-
nosing diabetes in its early stage [29, 30]. Lysophosphati-
dylcholines have also shown potential in cancer diagnosis.
Several lysoPCs were found to be decreased in lung cancer
patients [31].

In this study, we established that the levels of lysoPCs
(including LysoPC 20:3, LysoPC 22:6, LysoPC 20:2, LysoPC
18:1, LysoPC 16:0, LysoPC 16:1, LysoPC 18:2) and lysoPEs

TABLE 1 Differential metabolites response to ZrO2 NPs exposure

Mode Comparison All Up Down

Pos B/A 5142 96 129

Neg B/A 4964 91 326

Pos D/C 5142 33 174

Neg D/C 4964 37 302

Note: All, all high‐quality features; up, upregulated; down, downregulated; mode, the
mode in which the mass spectrometer detects the substance, including positive ion
mode (Pos) and negative ion mode (Neg). A: Group A, MC3T3‐E1 cells with mock
treatment for 24 h. B: Group B, MC3T3‐E1 with 100 μg/ml ZrO2 NPs for 24 h. C:
Group C, MC3T3‐E1 cells with mock treatment for 48 h. D: Group D MC3T3‐E1 with
100 μg/ml ZrO2 NPs for 48 h as group D.
Abbreviation: ZrO2 NPs, zirconium oxide nanoparticles.
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F I GURE 4 Secondary identification and functional analysis of differential metabolites. (a) Secondary identification of differential metabolites following a
24 h zirconium oxide nanoparticle (ZrO2 NP) treatment; (b) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differential metabolites
following a 24 h ZrO2 NP treatment; (c) Secondary identification of differential metabolites following a 48 h ZrO2 NP treatment; (d) KEGG pathway analysis of
differential metabolites following a 48 h ZrO2 NP treatment
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F I GURE 5 Identification of candidate metabolites as potential markers. (a) partial least squares‐discriminant analysis partial least squares discriminant
analysis (PLS‐DA) plot presenting separation of metabolites, with the greatest contribution to cell classification occurring between the zirconium oxide
nanoparticles (ZrO2 NPs)‐treated and control groups at 24 h; (b) PLS‐DA plot showing separation of metabolites, with the greatest contribution to cell
classification occurring between the ZrO2 NPs‐treated and control groups at 48 h; (c) Venn diagram illustrating the endogenous differential metabolites common
to groups treated with ZrO2 NPs for 24 and 48 h
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TABLE 2 Metabolites derived from the pairwise PLS‐DA models

ID Metabolite VIP p value Regulated Superclass

M319T310 18‐Hydroxyeicosatetraenoic acid 4.144667 8.28 � 10−9 Down Lipids and lipid‐like molecules

M474T209 LysoPE 18:3 2.801086 1.85 � 10−5 Down Lipids and lipid‐like molecules

M137T56 1‐Methylnicotinamide 2.783056 0.000413966 Down Organoheterocyclic compounds

M611T95 L‐Glutathione (oxidised form) 2.762714 8.19 � 10−7 Down Organic acids and derivatives

M504T267 LysoPE 20:2 2.70355 8.40 � 10−5 Down Lipids and lipid‐like molecules

M167T237 Phthalic acid 2.702434 1.33 � 10−7 Down Benzenoids

M498T205 LysoPE 20:5 2.682045 4.89 � 10−7 Down Lipids and lipid‐like molecules

M611T62_3 Glutathione, oxidised 2.603731 2.21 � 10−6 Down Organic acids and derivatives

M590T247 LysoPC 20:3 2.554472 2.75 � 10−6 Down Lipids and lipid‐like molecules

M450T211 LysoPE 16:1 2.553959 7.84 � 10−6 Down Lipids and lipid‐like molecules

M544T245 LysoPS 20:4; LysoPS 20:4 2.53665 6.93 � 10−5 Down Lipids and lipid‐like molecules

M612T222 LysoPC 22:6 2.528219 9.56 � 10−7 Down Lipids and lipid‐like molecules

M506T257 Plasmenyl‐PE 20:0; PE(P‐16:0/4:0) 2.499394 1.73 � 10−5 Down Lipids and lipid‐like molecules

M592T272 LysoPC 20:2 2.482021 1.90 � 10−6 Down Lipids and lipid‐like molecules

M566T257 LysoPC 18:1 2.458142 9.56 � 10−7 Down Lipids and lipid‐like molecules

M436T257 PE(P‐16:0e/0:0) 2.443241 1.02 � 10−5 Down Lipids and lipid‐like molecules

M277T238 Mono‐2‐ethylhexyl phthalate 2.408902 5.42 � 10−6 Down Benzenoids

M538T217 LysoPC 16:1 2.356646 1.94 � 10−6 Down Lipids and lipid‐like molecules

M586T206 LysoPC 20:5 2.346388 4.31 � 10−7 Down Lipids and lipid‐like molecules

M552T246 LysoPC 17:1 2.303782 0.000118428 Down Lipids and lipid‐like molecules

M522T285 LysoPS 18:1; LysoPS 18:1 2.298806 4.81 � 10−6 Down Lipids and lipid‐like molecules

M502T245 LysoPE 20:3 2.277507 8.72 � 10−5 Down Lipids and lipid‐like molecules

M536T204 LysoPC 16:2 2.19811 2.07 � 10−7 Down Lipids and lipid‐like molecules

M594T308 LysoPC 20:1 2.18754 5.21 � 10−6 Down Lipids and lipid‐like molecules

M540T245 LysoPC 16:0 2.178957 3.83 � 10−5 Down Lipids and lipid‐like molecules

M588T222 LysoPC 20:4 2.144495 6.36 � 10−6 Down Lipids and lipid‐like molecules

M506T303 LysoPE 20:1 2.059453 9.73 � 10−5 Down Lipids and lipid‐like molecules

M618T286 LysoPC 22:3 2.047479 0.000143077 Down Lipids and lipid‐like molecules

M564T228 LysoPC 18:2 2.027778 5.58 � 10−5 Down Lipids and lipid‐like molecules

M452T235 LysoPE 16:0 2.00022 0.000215468 Down Lipids and lipid‐like molecules

M512T206 LysoPC 14:0 1.968704 3.49 � 10−5 Down Lipids and lipid‐like molecules

M580T281 LysoPC 19:1 1.94714 5.78 � 10−6 Down Lipids and lipid‐like molecules

M448T202 LysoPE 16:2 1.921952 0.001360486 Down Lipids and lipid‐like molecules

M299T298 2‐Hydroxystearate 1.919112 8.60 � 10−6 Down Lipids and lipid‐like molecules

M524T259 Glycocholic acid 1.884938 3.25 � 10−5 Down Lipids and lipid‐like molecules

M524T220 LysoPE 22:6 1.82143 0.000107996 Down Lipids and lipid‐like molecules

M500T221 LysoPE 20:4 1.805229 6.21 � 10−5 Down Lipids and lipid‐like molecules

M496T267 LysoPS 16:0; LysoPS 16:0 1.78735 0.000107288 Down Lipids and lipid‐like molecules

M614T230 LysoPC 22:5 1.784389 0.000165904 Down Lipids and lipid‐like molecules

(Continues)
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(including LysoPE 20:3 and LysoPE 20:1), were significantly
reduced in MC3T3‐E1 cells treated with ZrO2 NPs, which
indicates that lysoPCs and lysoPEs could be potential bio-
markers for ZrO2 NP toxicity. Particularly, evidence has shown
that there is an association between the levels of lysoPCs and
lysoPEs [32]. Therefore, we should consider a combined
detection of lysoPCs and lysoPEs to improve the diagnostic
accuracy.

Previous studies have revealed that the treatment of
MC3T3‐E1 cells with ZrO2 NPs for 48 h caused more severe
changes in the cell morphology and stronger inhibition of cell
differentiation than the treatment for 24 h [13]. In this study,
66 and 67 endogenous differential metabolites were identified
in the group treated with ZrO2 NPs for 24 and 48 h,
respectively. Our results indicate that ZrO2 NPs have more
severe cytotoxic effects after long‐term exposure compared
to that of short‐term exposure. However, exposure to ZrO2

NPs for 24 and 48 h both resulted in changes in the levels of
lysoPCs and lysoPEs, which suggests that lysoPCs and
lysoPEs are effective biomarkers for both short‐ and long‐
term exposure to ZrO2 NPs.

The limitation of our study is that a metabolomic analysis is
only the first step. A detailed assessment of combined lysoPCs
and lysoPEs as biomarkers in the diagnosis of ZrO2 NP
toxicity is still lacking. Therefore, further analysis on the clinical
application of combined lysoPCs and lysoPEs is necessary.
Nevertheless, the results in the present study will provide new
sights into diagnostic approaches for ZrO2 NP toxicity and
how to improve ZrO2 NP dental materials to reduce the risk of
injury to the cell membrane system.

In conclusion, we have identified different metabolic
characteristics in MC3T3‐E1 cells treated with ZrO2 NPs for
24 and 48 h. Our study provides new evidence supporting
lysoPCs and lysoPEs as potential biomarkers for the diagnosis
of cytotoxicity of ZrO2 NPs and offers insight on how ZrO2

NP dental materials can be improved to reduce the risk of cell
membrane system injury.
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