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ABSTRACT
While cochlear implantation (CI) technology has greatly improved over the

past 40 years, one aspect of CI that continues to pose difficulties is the variabil-
ity of outcomes due to numerous factors involved in postimplantation perfor-
mance. The electric acoustic stimulation (EAS) system has expanded
indications for CI to include patients with residual hearing, and is currently
becoming a standard therapy for these patients. Genetic disorders are known to
be the most common cause of congenital/early-onset sensorineural hearing loss,
and are also involved in a considerable proportion of cases of late-onset hearing
loss. There has been a great deal of progress in the identification of deafness
genes over the last two decades. Currently, more than 100 genes have been
reported to be associated with non-syndromic hearing loss. Patients possessing
a variety of deafness gene mutations have achieved satisfactory auditory perfor-
mance after CI/EAS, suggesting that identification of the genetic background
facilitates prediction of post-CI/EAS performance. When the intra-cochlear etiol-
ogy is associated with a specific genetic background, there is a potential for good
CI performance. Thus, it is essential to determine which region of the cochlea is
affected by identifying the responsible genes. This review summarizes the
genetic background of the patients receiving CI/EAS, and introduces detailed
clinical data and CI/EAS outcomes in representative examples. Anat Rec,
303:563–593, 2020. © 2020 The Authors. The Anatomical Record published by
Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
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GENERALRELATIONSHIPBETWEENCI
OUTCOMEANDTHEGENETICBACKGROUNDOF

PATIENTS

Cochlear Implantation and Deafness Genes

Cochlear implantation (CI) is the surgical insertion of a
device to provide electrical stimulation directly to the

auditory nerve (Fig. 1). CI is able to bypass the cochlea in
which the pathogenetic cause lies. CI is currently the
standard therapeutic option for severe-to-profound senso-
rineural hearing loss patients.

Although CI provides a good outcome for the majority
of cases, factors affecting the outcomes of CI vary among
patients. One reason of such variations is thought to be
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the heterogeneous cause of hearing loss. The function of
the cochlea could be affected by various factors, includ-
ing genetic factors, viral infections, and congenital
anomalies. Among them, genetic factors represent the
most common etiology in severe-to-profound hearing
loss, and might be one of the key determinants of out-
comes for CI and electric acoustic stimulation (EAS)
(Miyagawa et al., 2016) (Fig. 2). Genetic testing has suc-
cessfully identified the causative mutations in 60% of

patients with prelingual onset hearing loss and in 36%
of those with postlingual hearing loss (Fig. 2). With
regard to the responsible gene, the most frequent causa-
tive gene was GJB2 (29%), followed by SLC26A4 (9%),
CDH23 (7%), MYO7A (4%), OTOF (5%), MYO15A (3%),
and LOXHD1 (2%), indicating that these deafness genes
are typical deafness genes found in the prelingual
CI/EAS patients. A further 9% of the patients were diag-
nosed with syndromic deafness associated with other
symptoms. For postlingual CI/EAS patients, a genetic
etiology was detectable in ~36% of cases. Although
genetic causes were the most common, a number of dif-
ferent kinds of causative genes, including various rare
genes, were found to be involved in postlingual CI/EAS
patients. The most common causative gene was CDH23
(9%), followed by MYO7A (4%), TMPRSS3 (4%),
MYO15A (2%), DFNB31 (1%), ACTG1 (2%), DFNA5
(1%), MYO6 (1%), and CRYM (1%). In the postlingual
CI/EAS patients, mitochondrial m.3243A>G (1%) and
m.1555A>G mutations (2%) were also found to be
involved. Compared to the prelingual group, many genes
with autosomal dominant inheritance, such as MYO7A,
ACTG1, DFNA5, MYO6, and CRYM, as well as mito-
chondrial genes reported to cause progressive hearing
loss, were found to be involved.

Screening Strategy for Deafness Genes

In the past two decades, there has been considerable
progress in the identification of deafness genes. Cur-
rently, more than 100 genes have been reported for non-
syndromic hearing loss (Fig. 3). Due to the extreme het-
erogeneity of the disorder, precise diagnosis of hereditary
hearing impairment can be difficult. One-by-one conven-
tional screening based on Sanger sequencing is an accu-
rate and reliable method, but it is also time-consuming
and has limited application to comprehensive screening
programs. Toward a more comprehensive diagnosis to
covering more causative genes, we are now applying

Fig. 1. Schematic image of cochlear implantation. The cochlear
implant consists of two parts; an audio processor and implant. The
audio processor contains microphones, digital signal processor chips, a
battery, and an antenna which sends electric stimulation to the implant
device which is surgically implanted. The coil of the implant receives
the electric signal from the audio processor and sends electric
stimulation to the cochlear nerve via the electrode inserted into the
scala tympani of the cochlea.
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Fig. 2. Genetic background of the CI patients. Genetic testing successfully identified causative mutations in deafness genes in A: ~60% of
prelingual hearing loss patients, and B: about 36% of postlingual hearing loss patients (Miyagawa et al., 2016).
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Massively Parallel DNA Sequencing using a next-
generation sequencer. Genetic analysis using this technol-
ogy has allowed the identification of rare mutations in
relatively uncommon causative genes, thereby improving
the diagnostic rate (Nishio and Usami, 2015).

Genetic Epidemiology

Recent comprehensive next-generation sequencing (NGS)
analysis has helped clarify genetic epidemiology; i.e., GJB2 is
the predominant deafness-causing gene, with the other com-
mon genes being CDH23, SLC26A4, MYO15A, COL11A2,

and MYO7A (Miyagawa et al., 2013; Nishio and Usami,
2015) (Fig. 4). The remaining cases of hearing loss arose from
various rare genes/mutations that were not easy to identify
using the conventional one-by-one screening approach. These
epidemiological data indicate that there are significant differ-
ences in the responsible genes between the congenital group
and late-onset group (Miyagawa et al., 2013).

Molecules Encoded by Deafness Genes

The cochlea is composed of various types of cells. The
coordinated action of various molecules is essential for
the normal development and maintenance of auditory
processing in the cochlea. A series of studies have clari-
fied the localization of these molecules in the cochlea
(Nishio et al., 2015 for review).

The key molecules encoded by deafness genes have
been studied from both the morphological and physiologi-
cal viewpoints, and a series of in situ hybridization and
immunohistochemical studies have clarified the precise
localization of these molecules in the cochlea and vestibu-
lar end organs (Fig. 5).

In terms of clinical applications, the most remarkable
aspect of these advances is that ENT clinicians can now
make highly accurate molecular diagnoses through the use
of genetic testing, enabling a clearer understanding of the
mechanisms involved, more appropriate and precise treat-
ment selection, and greatly improved genetic counseling.

Gene Expression Patterns

Gene expression analysis using a laser capture micro-
dissection technique revealed gene expression in
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individual regions. Each portion (spiral ganglion, organ of
Corti, spiral limbus, lateral wall) was separated, and then
total RNA was extracted from each slice and converted to
cDNA. Each gene has a specific expression pattern
(Nishio et al., 2017). In this review, gene expression pat-
terns are shown in the figures to provide a better under-
standing of the relationship between gene expression and
CI outcome. However, some genes are found to have
extremely limited expression; therefore, it is difficult to
discuss their correlation with CI outcomes.

Etiology and CI Outcome

When the cause of deafness is involved in the “intra-
cochlear” etiology (associated with mutations in a number
of deafness genes known to be expressed inside the
cochlea), good CI outcomes may potentially be achieved.
Therefore, efforts for the identification of the region of the
cochlea involved (either inside or outside the cochlea)
should be made by delineating the responsible genes.
Regarding the outcomes of CI, the LittlEARS auditory
questionnaire was used to assess the auditory behavior
development before the operation and at 3, 6, and

12 months after CI. Although scores varied among the
patients, the majority of non-syndromic hearing loss
patients with specific deafness gene mutations showed
good and rapid development of auditory behavior. In con-
trast, syndromic hearing loss patients as well as the
patients with inner ear anomalies showed comparatively
poorer and slower development (Miyagawa et al.,
2016) (Fig. 6).

For children with congenital severe-to-profound hear-
ing loss, simultaneous bilateral CI is becoming popular in
many CI centers. Genetic diagnosis is important for deci-
sion making. If deaf children have genetic mutations in a
gene specifically expressed in the inner ear, simultaneous
bilateral CI is strongly recommended as the intra-
cochlear etiology might be a prognostic factor for favor-
able CI outcomes.

For postlingual patients, evaluation was rather difficult
because the etiology is thought to be more complex, but a
similar tendency was found in our cohort (Miyagawa
et al., 2016). When hearing loss is associated with muta-
tions in genes expressed within the cochlea, word recogni-
tion scores are usually dramatically improved after CI.
Among the multiple factors, in addition to age, we found

Fig. 5. Gene expression profiles of the causative genes and localization of the encoded proteins involved in hereditary hearing loss in the cochlea.
Pie charts indicate the results of gene ontology analysis of the gene expression profiles for each cell type (modified from Nishio et al., 2015).
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differences in etiology; i.e., intra-cochlear etiology was
detected in 40%–43% of the good CI outcome patients
whereas only in 23%–27% of the poorer CI outcome group.

Genes associated with poor CI outcomes have also
been reported. The patients with DFNB59 or PCDH15
variants are associated with poor CI performance
(Wu et al., 2015). This is in line with the gene expression
results of a laser-microdissection-based gene expression
study which showed that DFNB59 and PCDH15 are
highly expressed outside the cochlea (Nishio and Usami,
2017) (Fig. 7).

Progress of CI

There has been a great deal of progress in cochlear
implant science in these past two decades. The indication
for CI was originally for the patients with profound hear-
ing loss in all frequencies, but EAS has expanded indica-
tions for CI to include patients with residual hearing.
EAS, which uses a combination of acoustic stimulation
via the external auditory canal and electric stimulation
via CI, was first introduced in 1999 (Fig. 8, see von Ilberg
et al., 2011 for review) For those patients retaining lower
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frequency residual hearing, EAS is currently becoming a
standard therapy.

Importance of Genetic Testing for EAS Patients

Various genetic etiologies are known to be involved in
patients receiving EAS, with the majority of the patients
showing favorable outcomes (Usami et al., 2012; Miyagawa
et al., 2013). However, selection of the appropriate electrode
and prediction of outcomes can be difficult as progression of
hearing loss varies depending on individual differences,
being sometimes fairly rapid and sometimes relatively sta-
ble. Onset age as well as progression speed of hearing loss
appear to vary according to the etiology; therefore, identifica-
tion of the responsible genes may be helpful in decisions for
EAS/CI surgery and in the selection of the appropriate
device and/or electrode.

In addition, there are considerable numbers of children
with residual hearing; accordingly, the evaluation of

residual hearing and estimation of progression is impor-
tant. However, for very young children, it is difficult to
evaluate residual hearing in the low frequencies. Genetic
testing is advantageous in that we can predict the possible
prognosis for hearing; i.e., whether it is progressive or not,
for individual patients.

We have published a series of papers concerning the
genetic background of patients with CI/EAS. This review
summarizes the responsible genes reported in CI patients
and discusses what we have learned from the progress of
two newly progressing fields of science, CI and the genetic
background of patients. Detailed clinical data and out-
comes of CI are shown in representative examples we per-
sonally evaluated.

CI IN PATIENTS WITH SPECIFIC GENETIC
BACKGROUNDS

GJB2

GJB2, which codes a gap junction protein, connexin
26 (Cx26), was the first gene identified as being involved
with non-syndromic hearing impairment (Kelsell et al.,
1997). Cx26 is distributed in the spiral ligament, basal
cells of the stria vascularis, various supporting cells, and
limbal fibrocytes, and is considered to play a major role in
intracellular communication as well as in the recycling of
potassium ions (Kikuchi et al., 1995) (Fig. 9).

GJB2 is the most prevalent gene known to be responsible
for congenital hearing loss worldwide, and consequently is
the focus of universal newborn hearing screening programs.
Approximately 25% of congenital subjects possess at least
one GJB2 mutation (Tsukada et al., 2010), and our previous
results indicated that GJB2 is also the predominant causa-
tive gene among prelingual CI patients (Miyagawa et al.,
2016). To date, more than 100 GJB2 variants have been
reported (see the Connexin-deafness homepage: http://
davinci.crg.es/deafness/), and there has been a general rule
applied to the relationship between mutations and hearing
loss; that inactivating mutations (deletion mutations and
stop mutations) result in more severe phenotypes compared
to those caused by non-inactivating mutations (missense
mutations) (Tsukada et al., 2010). As well as allowing
highly accurate diagnoses, these genotype–phenotype corre-
lation data can provide prognostic information to help
decide the intervention strategy for patients with hearing

Fig. 8. Schematic image of electric acoustic stimulation. EAS uses a
combination of acoustic stimulation via the external auditory canal for
lower frequency sound and electric stimulation via CI for higher
frequency sound.

Fig. 9. Gene expression profiles for the GJB2 gene. A: Immunohistochemical localization of the connexin 26 protein in the rat cochlea. B: A
scheme of potassium recycling in the cochlea. The pale blue region indicates the cells expressing Gjb2. C: Gjb2 gene expression in the mouse
cochlea and spiral ganglion (modified from Nishio et al., 2017).
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loss; i.e., whether a child should receive CI or hearing aids.
For patients with severe phenotypes who possess GJB2
mutations, genetic information would aid in decision mak-
ing regarding CI, as their hearing loss is of cochlear origin
and they, therefore, would be good candidates for CI. The
present literature review indicates that the majority of
papers showed significant improvement in speech perfor-
mance in GJB2-related deafness patients and the
remaining papers showed equivalent results between
GJB2-related deafness and non-GJB2 deafness (for review;

Abdurehim et al., 2017; Nishio and Usami, 2017). The dif-
ference in these results is probably due to patient selection
bias. It should be noted that no literature has reported
poorer outcomes for CI in patients with GJB2 mutations.

Case: Congenital Hearing Loss Indicative for CI

The patient had homozygous GJB2mutations (c.[235delC];
[235delC]), and the parents were found to be carriers
for the mutation (Fig. 10A). His hearing was screened

A B C

Fig. 12. A: Computed tomography (CT) scan of an enlarged vestibular aqueduct (arrowhead), B: Magnetic resonance (MR) image of an enlarged
endolymphatic duct (arrowhead), C: 3D imaging of an MR image of an enlarged endolymphatic duct and sac (arrow).

Fig. 11. A: Immunocytochemical localization of pendrin in the cochlea. Pendrin is expressed in the spiral prominence of the cochlea and acts as
a transporter for chloride ions and bicarbonate ions. B: Slc26a4 gene expression in the mouse cochlea and spiral ganglion (modified from Nishio
et al., 2017).
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by otoacoustic emission (OAE) during newborn screen-
ing, and he was found to have hearing loss. At the age
of three months, he was evaluated by auditory steady
state response (ASSR) and auditory brainstem response
(ABR), showing profound hearing loss in all frequencies
(Fig. 10C,D). Conditioned orientation reflex (COR) evaluated
at eight months of age showed insufficient amplification to
obtain good language development (Fig. 10E) and he received
a left CI (MED-EL PULSAR CI100/standard electrode) at
10 months (Fig. 10B). Auditory development was observed
after nine months of CI use: Infant-Toddler Meaningful
Auditory Integration Scale (IT-MAIS) 16/40>25/40,
LittlEARS 28>33 (Fig. 10G). Speech perception test results
at age 7 were dramatically improved (monosyllable: rt 80%,
lt 95%; word: 100%; sentence: 96%) (Fig. 10H) and the
patient currently goes to a regular school. As in a series of lit-
erature, this case demonstrated that CI has brought about
tremendous improvements in auditory skills as well as in
speech production development in patients with profound
hearing loss resulting fromGJB2mutations.

SLC26A4

The SLC26A4 gene is known to be expressed abun-
dantly in the inner ear and thyroid (Everett et al., 1997).
The encoded protein, pendrin, is localized in the outer
sulcus cells and participates in regulating volume homeo-
stasis through its ability to function as a chloride-formate
exchanger (Kim and Wangemann, 2010) (Fig. 11). Muta-
tions in the SLC26A4 gene are known to be responsible
for a wide phenotypic spectrum, ranging from Pendred
syndrome (a disorder associated with sensorineural hear-
ing loss and thyroid goiters) to non-syndromic hearing
loss with enlarged vestibular aqueducts (EVA, Fig. 12)
(DFNB4) (Miyagawa et al., 2014). High-frequency
involved, fluctuating, and progressive hearing loss are
characteristic features of patients with EVA (Fig. 13).
Hearing usually remains in the low frequencies; there-
fore, patients can understand spoken language with the
use of hearing aids. However, a considerable number of
patients experience progressive deterioration in the
degree of hearing loss and, therefore, become candidates
for EAS or CI (Fig. 13A). As with GJB2 mutations, CI has
enabled remarkable improvements in auditory skill as

well as in speech perception in those with profound hear-
ing loss associated with SLC26A4. Therefore, genetic
information is important for predicting the outcome of CI
and, therefore, decision making with regard to the mode
of intervention.

Case: Congenital Hearing Loss Indicative for CI

The patient (a 26-month-old girl) had compound hetero-
zygous SLC26A4 mutations (p.[K369E];[H723R]), and the
parents were found to be carriers for the mutation
(Fig. 14A). Her newborn screening tests, using automated
ABR (AABR), found her hearing loss. ABR evaluated at
the age of six months showed severe hearing loss (right:
70 dB, left: 80 dB). ASSR evaluated at 13 months showed
severe hearing loss comparable with the ABR results and
residual hearing at 500 Hz (Fig. 14D). CT scans showed
EVA accompanied by cochlea hypoplasia (Mondini defor-
mity) (Fig. 14B,C). COR evaluated at 18 months showed
insufficient amplification to obtain good language develop-
ment (Fig. 14E) and she received CI (MED-EL CON-
CERTO) at two years of age. Due to cochlear hypoplasia,
cerebrospinal fluid oozing was observed during CI surgery
(Fig. 15), and a medium length electrode (FLEX24 elec-
trode) was used to cover all frequencies in this case
(Fig. 16). CI outcomes for this patient were favorable and
she currently goes to a regular school.

In this case, genetic testing identified compound het-
erozygous mutations in the SLC26A4 gene. Thereby, a cli-
nician knew that she may experience profound hearing
loss, which could potentially worsen. Amplification using
hearing aids was found to be insufficient for good lan-
guage development. Taken together with her etiology of
hearing loss (intra-cochlear etiology), these findings indi-
cated that CI was the recommended intervention. There-
fore, a wait-and-see strategy was identified as not a good
option for this patient. The clinician was also able to pro-
vide information regarding the future possible appear-
ance of other symptoms (vertigo and goiter) in association
with the mutations in this gene.

Stereocilia-Related Genes
CDH23. The gene CDH23, a member of the

cadherin superfamily, encodes calcium-dependent cell–
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Fig. 13. A: Overlapping audiograms of patients with biallelic SLC26A4 mutations, showing high-frequency involved sensorineural hearing loss
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cell adhesion glycoproteins, and is expressed in the
inner and outer hair cells in the cochlea (Fig. 17). The
encoded protein cadherin 23 is thought to interact with
protocadherin 15 to form tip-link filaments (Siemens
et al., 2004; Söllner et al., 2004; Kazmierczak et al.,
2007) (Fig. 17).

CDH23 gene mutations may cause either Usher syn-
drome type 1D (USH1D) or non-syndromic hearing loss
(DFNB12). The phenotype range of DFNB12 is variable
from congenital profound hearing loss to adult-onset
high-frequency involved hearing loss. As shown in our
past studies, CDH23 mutations are often identified in

patients having recessive inheritance, and one phenotypic
feature is the presence of residual hearing (Miyagawa
et al., 2012).

It is well known that there are some genotype–
phenotype correlations; i.e., patients with p.[P240L];
[P240L] have greater hearing loss than do patients with
the other mutations, tending to be congenital and severe.
On the other hand, p.[R2029W];[R2029W] patients have
a milder phenotype with middle age onset (Miyagawa
et al., 2012). Overlapping audiograms of these patients
typically show high-frequency involved sensorineural
hearing loss while retaining hearing at the lower fre-
quencies (Fig. 18) (Miyagawa et al., 2012). Serial audio-
grams from the same patients show the progressive
nature of the hearing loss caused by CDH23 mutations
(Fig. 19).

Regular CI has been applied for patients with insuffi-
cient amplification by hearing aids (Miyagawa et al.,
2012) and, for the patients with residual hearing, EAS
devices are a good therapeutic option (Usami et al.,
2012; Moteki et al., 2017, 2018). A significant portion of
EAS patients possess CDH23 mutations (Moteki et al.,
2017, 2018; Yoshimura et al., submitted). Therefore, it is
extremely important to perform atraumatic CI surgery
to preserve residual hearing for this particular category
of patients. We have shown that hearing preservation
can be achieved even with an electrode traversing the
region of residual hearing (Usami et al., 2011).

For very young children, however, it is quite difficult to
evaluate residual hearing. Residual hearing in the low
frequencies cannot be measured by ABR. ASSR is cur-
rently available for the measurement of hearing levels at
500 or 250 Hz; however, these low-frequency measure-
ments are not reliable or convincing. As an adjunct to

Fig. 15. A: Endoscopic view of the electrode insertion procedure during cochlear implantation. The round window membrane was opened with a
small pick. B, C: A cerebrospinal fluid (CSF) leakage was observed when opening the round window. D, E: The CSF leakage was easily stopped by
the insertion of the electrode and F: shielding with fascia.

Fig. 16. Postoperative X-ray findings showing the full insertion of the
electrode.
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these hearing tests, genetic testing can help predict resid-
ual hearing at low frequencies. We have demonstrated
that EAS can be successfully performed in very young
patients with CDH23 mutations, with the patients show-
ing remarkable auditory performance after receiving EAS
(Usami et al., 2012).

Case: Estimation of Residual Hearing and
Possible Associated Symptoms with Good
Candidacy for EAS

This case was a one-year-old boy with a CDH23 muta-
tion. This patient had compound heterozygous mutations
(p.[D1216A;V1807M];[Q1716P]), and the parents were
determined to have been the mutation carriers (Fig. 20E).
Newborn hearing screening found his hearing loss through
the use of automated ABR. No response was obtained by
ABR. ASSR evaluated at the age of three months showed
some residual hearing at 500 Hz in the right ear (Fig. 20D).
His hearing level wearing hearing aids was not adequately
amplified for normal language development. Based on the
above together with his intra-cochlear etiology, he under-
went CI for his left ear (MEDEL PULSAR CI100/ standard
electrode) at ninemonths of age. The parents also requested
right ear CI. Based on ASSR evaluation, residual hearing
was noted in the right ear. For very young children, it is
very difficult to estimate residual hearing. In addition to
the ASSR evaluation, genetic testing gives us very impor-
tant information. In this child, we found CDH23mutations.
Our series of studies indicated that patients with CDH23
mutations have some residual hearing (Wagatsuma et al.,
2007; Miyagawa et al., 2012). The combination of ASSR and
genetic testing is a powerful tool to estimate audiogram con-
figuration for very young children. Due to possible low-
frequency residual hearing, we used a more atraumatic
electrode (MEDEL PULSAR CI100/FLEXsoft electrode)
(Fig. 20A–C)). Residual hearing measured by COR was well
preserved one year after CI (Fig. 20D). Speech perception
test at Age 10 was dramatically improved (monosyllable: rt
80%, lt 83%; word: rt 100%, lt 92%; sentence: rt 94%, lt 98%)
and the child currently goes to a regular school (Fig. 20G).

The spectrum of diseases caused by CDH23 mutations
include non-syndromic hearing loss (DFNB12) and

Fig. 17. The cadherin 23 protein is an important component of the tip link that maintains the arrangement of stereocilia. A: The CDH23 gene is
expressed in inner and outer hair cells, predominantly. B: Schematic image of the tip-link region of hair cell stereocilia (Nishio et al., 2015).

0

20

40

60

80

100

120

140

125 250 500 1000 2000 4000 8000

Frequency (Hz)

H
e
a
ri
n
g
 L

e
v
e
l 
(d

B
)

Fig. 18. Overlapping audiograms of the patients with biallelic
CDH23 mutations, showing high-frequency involved sensorineural
hearing loss with residual hearing at the lower frequencies (Miyagawa
et al., 2012).
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USH1D (Bork et al., 2001; Astuto et al., 2002; Miyagawa
et al., 2012; Yoshimura et al., 2014). Would it be possible
to obtain any information from genetic testing? The
patient was not indicative for Usher syndrome. He did
not have vision deterioration or problems with vestibu-
lar function, but at that time was also too young for oph-
thalmologic examinations. However, some patients who
are diagnosed with non-syndromic hearing loss may
sometimes have associated symptoms later (Yoshimura
et al., 2013). Genetic testing can estimate such associ-
ated symptoms at a very early stage. A series of studies
indicated that missense mutations (found in this case)
may cause non-syndromic hearing loss, whereas non-
sense or frame shift mutations which produce truncated
proteins may cause the Usher phenotype (Fig. 21). Thus,
the risk of retinitis pigmentosa in this case may be not
so high, but the parents must pay some attention to his
visual symptoms.

Case: Adult-Onset Progressive High-Frequency
Involved Hearing Loss with Good Candidacy
for EAS

The patient noticed hearing loss in his late 30s, which
thereafter gradually progressed. He felt some inconvenience
around age 45, and started wearing hearing aids. He visited
our hospital at age 51, and was found to have homozygous
CDH23 mutations (p.[R1588W];[R1588W]) (Fig. 22A). He
had very good residual hearing at 125 and 250 Hz. Consider-
ing the progressive nature of hearing loss (Fig. 22B,C), we
chose a longer electrode in order to cover the low frequency
region, and he received CI (MEDEL Synchrony/FLEX28
electrode) at the age of 53 for the left ear. His low-frequency
hearing after the implantation was completely preserved
(Fig. 22D). Therefore, he uses the natural residual hearing
combined with ES (electric stimulation) only, and does
not require any acoustic amplification at this moment.
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Fig. 21. Phenotype–genotype correlation in the CDH23 gene. In general, missense mutations of the CDH23 gene are associated with non-
syndromic hearing loss, whereas nonsense or frame shift mutations cause Usher syndrome.
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Fig. 22. Findings for an EAS patient with homozygous CDH23 mutations. A: Pedigree of the patient with CDH23 mutations. B: Preoperative
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Postoperative CT scans indicated that although the tip of
the electrode reached the 250 Hz region, his low tone resid-
ual hearing was well preserved (Fig. 22E). As shown in the
previous literature (Usami et al., 2011), hearing preservation

can be achieved in the presence of an electrode beneath the
basal membrane covering the residual hearing region.
Speech perception test results were dramatically improved
(monosyllable: 50%; word: 88%; sentence: 100%) (Fig. 22F).

Fig. 23. The myosin VIIA and XVA proteins are important components of stereocilia. A: MYO7A and MYO15A are predominantly expressed in
inner and outer hair cells. B: Schematic image of the tip-link region of hair cell stereocilia (Nishio et al., 2015).
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Fig. 24. Findings for an EAS patient with MYO7A mutations. A: Pedigree and mutations. B: Hearing thresholds at four years of age. C: Hearing
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MYO7A and MYO15A. MYO7A and MYO15A
encode myosin VIIA and XVA, members of the uncon-
ventional myosin superfamily of proteins (Krendel and
Mooseker, 2005). Myosin VIIA is localized in stereocilia
and plays the role of an anchor (Hasson et al., 1997;
Wolfrum et al., 1998; Boeda et al., 2002). Myosin XVA
plays an indispensable role in the graded elongation of
stereocilia and actin organization in hair cells of the
cochlea, and therefore the function of these myosin in
the hair cells in the cochlea is crucial for transducing
sound information into the primary afferent neuron
(Belyantseva et al., 2003) (Fig. 23). Myosin genes
are known to be responsible for 10 types of syndromic as
well as non-syndromic hearing loss (MYO7A, DFNA11/
DFNB2/USH1B; MYH9, DFNA17; MYH14, DFNA4;
MYO6, DFNA22/DFNB37, MYO3A, DFNB30; MYO15A,
DFNB3). MYO7A mutations may cause various pheno-
types ranging from non-syndromic hearing loss (DFNA11/
DFNB2) to Usher syndrome (USH1B) (Weil et al., 1995;
Liu et al., 1997). MYO15A mutations are known to be
responsible for DFNB3 (Wang et al., 1998) and further
phenotypic study indicated that there are two types of
hearing impairment phenotypes: (1) prelingual onset and
severe or profound hearing loss or (2) a milder phenotype
with postlingual onset and progressive hearing loss
(Miyagawa et al. 2015a).

There have been several studies describing outcomes of
CI/EAS for patients with MYO7A and MYO15A muta-
tions. As in the three cases being introduced in this
review, all previous reports indicated satisfactory out-
comes after CI/EAS (Miyagawa et al., 2013, 2015a; Chang
et al., 2015, 2018; Jung et al., 2017; Liu et al., 2019).

Case: DFNA11 Caused by a MYO7A Mutation
Late-onset progressive high-frequency involved

hearing loss with good candidacy for EAS. A
10-year-old girl. She passed her newborn hearing screen-
ing. Hearing loss was suspected at age 4, and she visited
our hospital. At the age of 9, hearing deterioration was
observed at 1 kHz. She was not satisfied with hearing
aids, and received EAS (MED-EL Synchrony/FLEX24)
for the left ear at the age of 10. Residual hearing was

completely preserved six months after the surgery. She
uses the natural residual hearing combined with ES,
and does not require any acoustic amplification at low
frequency. Speech perception test results were dramati-
cally improved (monosyllable: 77%; word: 84%, sentence:
100%) (Fig. 24).

Case: DFNB3 Caused by MYO15A Mutations
Congenital progressive hearing loss with good

candidacy for CI. This case is a five-year-old boy.
Newborn hearing screening indicated hearing loss. ASSR
and COR showed progressive hearing loss. The patient
had compound heterozygous MYO15A mutations (c.
[9478C>T];[1179_1185insC]) inherited from the parents
(Fig. 25A). Both mutations were predicted to be patho-
logic. Although hearing aids helped with some language
development, progressive hearing loss remained. As
amplification alone was determined to be inadequate, CI
surgery was performed for the left ear (MEDEL PULSAR
CI100/standard electrode) when he was four years nine
months. Three months after CI use of language was devel-
oped (Scores of IT-MAIS: 16/40.25/40, LittlEARS:28.33).
However, in order to assess the final outcome, long-term
follow up is required.

Case: DFNB3 Caused by MYO15A Mutations
Congenital progressive high-frequency involved

hearing loss with good candidacy for EAS. An
eight-year-old boy. Bilateral hearing loss was detected
through newborn hearing screening. He visited our hos-
pital at three months old. Due to high-frequency hear-
ing loss, he started wearing hearing aids at eight
months old. He felt some inconvenience and received
right EAS at the age of eight. Speech perception test
results were dramatically improved three months after
EAS (monosyllable: 82%; word: 92%, sentence: 96%)
(Fig. 26).

ACTG1

ACTG1 encodes γ-actin, the predominant actin iso-
form in the inner and outer hair cells in the cochlea.
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Fig. 27. A: Immunocytochemical localization of gamma-actin in the cochlea. B: Gamma-actin is expressed in most cochlear cells. In hair cell
stereocilia, gamma-actin is localized in the gap regions of F-actin filaments and may act as an F-actin gap connection (modified from Nishio
et al., 2015).
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Within the hair cells, γ-actin is an important component
of the cuticular plate, adherens junctions, and stereo-
cilia (Khaitlina, 2001; Belyantseva et al., 2009) (Fig. 27).
Since the expression of ACTG1 is located within the
cochlea, comparatively good outcomes for CI/EAS can
be expected. In fact, our studies demonstrated that
EAS was an effective therapeutic intervention for
patients with ACTG1 mutations (Miyagawa et al., 2013,
2015b).

Case: DFNA20/26 Caused by ACTG1 Mutations
Late-onset progressive hearing loss with good

candidacy for EAS. A 39-year-old male. His high-
frequency involved hearing loss was first diagnosed
through a primary school physical examination at the age
of 12 (Miyagawa et al., 2013). He noticed progression of
hearing loss and episodes of tinnitus at around age 20.
He started wearing a hearing aid at age 33 and visited
our hospital at age 34. He had a heterozygous ACTG1
mutation, c.895C>G (p.L299V), and his father, brother,
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Fig. 28. The EAS patient with a ACTG1 mutation. A: Pedigree and mutations. Pedigree is compatible with autosomal dominant hearing loss. B:
Preoperative audiogram. C: Audiogram of brother. D: Postoperative audiogram (six months after EAS). E: Hearing thresholds with EAS. F: Japanese
monosyllable test results showing dramatic improvement with EAS (Miyagawa et al., 2015b).
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Fig. 29. Speech discrimination scores (using the 67S Japanese
monosyllable test, 70 dBSPL) preoperatively (gray) and at 12 months
after the initial EAS (black). The four patients with TMPRSS3 mutations
(pink) showed significant improvement (Miyagawa et al., 2015c).
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and younger son carried the same mutation. Due to pro-
gressive hearing loss and insufficient amplification by
hearing aids, he received EAS at age 39. His brother
showed a similar audiogram configuration from around
15 years old. Residual hearing was preserved and
monosyllable tests showed dramatic improvement.
Speech perception test results were dramatically
improved from 20% to 80% one year after receiving the
EAS (Fig. 28).

TMPRSS3. TMPRSS3 is known to be a member of
the Type II Transmembrane Serine Protease family.
Important for cochlear neurons maintenance and devel-
opment, the processing of proneurotrophins is thought
to be regulated by TMPRSS3 (Guipponi et al., 2002).
Previous studies report TMPRSS3 to cause two differ-
ent hearing loss phenotypes, (1) DFNB10: congenital or
early childhood onset, with severe and prelingual hear-
ing impairment, and (2) DFNB8: a later-onset ski-slope
type audiogram and progressive postlingual hearing
impairment.

In mice with mutations in Tmprss3, hair cells in the
organ of Corti were found to be deteriorated at the start
of the basal turn, and progressing toward the apex
(Fasquelle et al., 2011). This progressive degeneration
pattern observed in the mouse model is consistent with the
human phenotype, which has high-frequency involved pro-
gressive hearing loss.

Based on the reported phenotype, TMPRSS3 should be
considered as a frequent etiology for potential EAS
patients. However, TMPRSS3 CI patient outcomes
remain disputed (Elbracht et al., 2007; Weegerink et al.,
2011; Eppsteiner et al., 2012; Miyagawa et al., 2013,
2015c). A majority of the reported CI cases (13 out of
15 from the literature) had favorable outcomes, but two
cases reported by Eppsteiner et al. (2012) showed poorer
performances.

TMPRSS3 expression is also found in the spiral gan-
glion, and previous literature reported ganglion cell death
in mutants (Fasquelle et al., 2011; Eppsteiner et al.,
2012). Therefore, it is possible that poor performance is

related to afferent neuronal cell loss. However, the major-
ity of cases, including three EAS cases evaluated by our
group, had satisfactory outcomes, promoting the idea that
CI and/or EAS has good potential as a therapeutic option
(Fig. 29). Our recent gene expression study, in which the
Tmprss3 gene was shown to be predominantly expressed
within the cochlea (Nishio et al., 2017), supported our
clinical data (Fig. 30).

CI and/or EAS may be elected for therapy. In particu-
lar, a patient with high-frequency hearing loss is a good
candidate for EAS, as with the previously described
patient. Clinicians should recognize that patients with
mutations in TMPRSS3 may have progressive hearing
loss. Proper intervention should be offered during follow-
up periods for these patients.

Case: DFNB8 Caused by TMPRSS3 Mutations
Late-onset progressive hearing loss with good

candidacy for EAS. A 40-year-old female (Usami
et al., 2011; Miyagawa et al., 2013, 2015c; Moteki et al.
2015). Hearing loss was first reported during grade
school after a general student screening. As her hearing
loss was progressive, she started to wear hearing aids at
the age of 25. However, due to insufficient hearing, EAS
(MED-EL PULSAR/FLEX24) was applied at the ages of
38 and 39 (Fig. 31B). The patient had compound hetero-
zygous TMPRSS3 mutations c.[607C>T];[1159G>A]
(p.[Q203X];[A387T]) (Fig. 31A). Preservation of residual
hearing allowed for acoustic amplification and, with
bilateral EAS, her hearing was measured as 30dBHL
(Fig. 31C–E). An impressive gain was found on the
Japanese monosyllable test (65 dB SPL in quiet), where
after only one year after EAS she improved from 24% to
81% (Fig. 31F). After bilateral EAS, the sound localiza-
tion ability with bilateral EAS improved, and speech
perception in quiet and noisy environments improved
(Fig. 31G,H).

The m.1555A>G mitochondrial mutations. The
m.1555A>G mutation in the mitochondrial 12S

Fig. 30. A: TMPRSS3 is predominantly expressed in inner and outer hair cells, supporting cells, inner and outer sulcus cells, and interdental cells.
B: Tmprss3 gene expression in the mouse cochlea and spiral ganglion (modified from Nishio et al., 2017).
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ribosomal RNA gene is the most common mitochondrial
mutation associated with hearing loss (Usami et al.,
2000a, b; Yano et al., 2014). This form of hearing loss is
usually associated with aminoglycoside exposure, but
some cases without a history of aminoglycoside expo-
sure have been observed (Usami et al., 2000b). Patients
with no history of aminoglycoside exposure usually

experience a milder degree of hearing loss compared to
those with aminoglycoside exposure (Usami et al.,
2000b). This mutation was first identified after studies
of familial aggregation of aminoglycoside-induced hear-
ing loss indicated an exclusively maternally transmitted
constitutional susceptibility to cochlear damage caused
by aminoglycoside antibiotics exists in some families.
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Fig. 31. The EAS patient with TMPRSS3 mutations. A: The patient has compound heterozygous TMPRSS3 mutations, and the parents were
found to be carriers for these mutations. B: X-ray imaging after bilateral EAS. C: Preoperative audiogram. D: Postoperative audiogram (left:
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Genetic analysis revealed that this hereditary suscepti-
bility is due to a m.1555A>G point mutation in the mito-
chondrial 12S ribosomal RNA gene (Prezant et al.,
1993). The m.1555A>G point mutation, which leads to
the structure being more similar to the bacterial ribo-
somal RNA structure, increases the binding properties
of aminoglycoside (Böttger., 2010).

Individuals with the m.1555A>G mitochondrial muta-
tion are susceptible to hearing loss from the use of
aminoglycoside antibiotics. This mutation is commonly
involved in hearing loss among the Japanese popula-
tion, affecting 3% of sensorineural hearing loss patients
(Usami et al., 2000a). Excellent auditory performance
after CI has been reported in patients with this

mutation and should be considered as therapy for this
population (Tono et al., 1998). Recently, we have
reported the application of EAS to the treatment of a
patient with high-frequency involved hearing loss
(Usami et al., 2012).

Case: Non-syndromic Hearing Loss Associated
with m.1555A>G Mitochondrial Mutations

Late-onset progressive hearing loss with good
candidacy for EAS. A 52-year-old male with the
m.1555A>G mitochondrial mutation (Usami et al.,
2012). He did not have any history of aminoglycoside
antibiotics exposure. After age 38, hearing loss was
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Fig. 32. Findings for an EAS patient with the m.1555A>G mitochondrial mutation. A: Endoscopic view of round window insertion. B: Postoperative
X-ray findings. C: Imaging with putative location of electrode and the referential tonotoic map. D: Preoperative and postoperative audiograms. E:
Pedigree and the subjects with the mitochondrial m.1555A>G mutation (Usami et al., 2012). F: Overlapping audiograms of patients with the
m.1555A>G mutation, showing high-frequency involved sensorineural hearing loss with residual hearing at the lower frequencies (Usami et al., 2010).
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noticed. Hearing aids were adopted, but audiograms
indicated progressive hearing loss. The electrode
MEDEL PULSAR CI100/FLEX24 was implanted as to
be less traumatic for lower frequency residual hearing
(Fig. 32A–C). After two months, tests indicated well pre-
served residual hearing (Fig. 32D). Pedigree analysis
indicated autosomal dominant hearing loss, with

parental hearing loss as well (Fig. 32E). The m.1555A>G
mitochondrial mutation was detected in the patient and
his mother. After two months from CI, increased hearing
to 30 dBHL was measured. His speech perception score
was improved four years after EAS (Japanese speech
perception test CI2004: monosyllable; 55%, word; 84%,
sentence; 96%).
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Fig. 34. The CI patient with OTOF mutations. A: The patient has homozygous OTOF mutations. B: Preoperative ASSR findings. C: This patient
showed a clear OAE response. D: Hearing threshold with bilateral CI. E: Japanese Speech perception score after CI showing a favorable outcome.

Fig. 33. A: OTOF is predominantly expressed in inner hair cells. B: Otoferlin plays a crucial role in synaptic exocytosis at ribbon synapses.
Mutations of the OTOF gene cause deficient or absent exocytosis from inner hair cells, but outer hair cell’ function is preserved, and show an
auditory neuropathy phenotype (synaptopathy).
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OTOF. Auditory neuropathy (AN) is hearing loss
derived from the dysfunction of auditory signals down-
stream of and/or including the inner hair cells. It is marked
by loss of ABR signal yet retention of OAE and/or cochlear
microphonics (CM). Now known as “auditory neuropathy
spectrum disorder (ANSD),” AN was renamed in 2008 due
to being a spectrum of associated symptoms (Roush et al.,
2011 for review). Although the exact percentage of non-
syndromic ANSD is unclear, responsible genes continue to
be identified, with mutations in the AUNA1, OTOF, PJVK,
and GJB2 genes as well as in mitochondrial 12S rRNA
reported to cause non-syndromic ANSD (Manchaiah et al.,
2011). The OTOF gene (DFNB9) is predominantly
expressed in the cochlear inner hair cells, and is essential
for synaptic exocytosis at their ribbon synapses (Roux et al.,
2006). Therefore, mutations in the OTOF gene mutation
result in dysfunction in the signal transmission between
the inner hair cells and neurons (Fig. 33).

OTOF mutations are known to cause prelingual hear-
ing loss, and severe-to-profound non-syndromic hearing
loss (Iwasa et al. 2013, 2019). OAEs have generally dis-
appeared by two years of age; therefore, many patients
are diagnosed with non-syndromic sensorineural hear-
ing loss (NSHL). Due to these studies, required screen-
ing for OTOF mutations is suggested for the patients
diagnosed with ANSD and, furthermore, ARNSHL
cases should be included as well. It should be borne in
mind that NHS using OAE failed to detect ANSD, indi-
cating that infants should undergo OAE testing as well
as ABR. In a majority of cases, patients with OTOF
mutations have been shown to have effective treatment
by CI (Rodriguez-Ballesteros et al., 2003; Rouillon
et al., 2006; Wu et al., 2011; 2018; Zhang et al., 2013,
2016; Chen et al., 2018) due to good preservation of the
spiral ganglions and auditory nerves. For this reason, a
favorable result is anticipated for CI when an OTOF

mutation is determined to be causative in a deaf
patient, and this demonstrates the value of identifying
genetic mutations in patients.

Case: DFNB6 Caused by OTOF Mutations
Congenital profound hearing loss with a

positive OAE response. A seven-year-old boy with
OTOF mutations. Newborn screening identified hearing
loss using AABR. No response was obtained by ABR or
ASSR (Fig. 34B,C), but the OAE response was normal.
This patient had OTOF homozygous mutations (p.
[R1172Q];[R1172Q]) (Fig. 34A). Based on the intra-
cochlear etiology, he received bilateral sequential cochlear
implants (MEDEL CONCERTO/FLEXsoft electrode) at
the age of one year three months for the right ear, and
three years three months for the left ear. In this case,
genetic testing gives us very important information as
the etiology is located in the inner hair cells, not in the
spiral ganglion. The combination of OAE and genetic
testing is a powerful tool to estimate etiologies for very
young ANSD children (Fig. 34B,C). Speech perception
test at age 6 was dramatically improved (monosyllable:
rt 80%, lt 80%; word: rt 92%, lt 92%; sentence: rt 91%,
lt 97%) and he currently goes to a regular school
(Fig. 34E).

LOXHD1. LOXHD1, a known cause of DFNB77, is
the gene for the protein Lipoxygenase Homology Domains
1, comprised entirely of 15 PLAT (polycystin-1,
lipoxygenease, alpha-toxin) domains (Müller and Grillet,
2010). Murine Loxhd1 proteins are expressed in hair cells,
and are found in the cell membrane of the stereocilia, which
is important for maintaining normal hair cell function
(Grillet et al., 2009) (Fig. 35). Deterioration of hair cells in
the cochlea, quickly lost after birth, is thought to be the
cause of hearing loss in Loxhd1 mutant mice.

A series of studies have shown that patients with
LOXHD1 mutations show progressive hearing loss, lead-
ing to profound-to-severe non-syndromic hearing loss
(Mori et al., 2015; Maekawa et al., 2019). By examining
a large cohort of hearing loss patients (n = 8,074), we
have recently reported 28 patients with LOXHD1 muta-
tions and clarified the clinical features (Maekawa et al.,
2019). Concerning the audiogram configurations, most of
the patients had high-frequency hearing loss (Fig. 36).
The most notable characteristic is the progressiveness of
hearing loss (Fig. 36). More than half of the individuals
(15/28; 53.6%) were aware of the progression of hearing
loss at the time of their genetic testing and 28.55%
(8/28) of LOXHD1 patients have received CI. All CI
patients, whose clinical data were available, showed a
favorable outcome (Fig. 37) (Maekawa et al., 2019).
Therefore, patients with this gene mutation are good
candidates for CI/EAS.

Case: DFNB77 Caused by LOXHD1 Mutations
Congenital high-frequency involved hearing

loss indicative for EAS. He was diagnosed with hear-
ing loss at age 3 and started wearing hearing aids
(Maekawa et al., 2019). Evaluated by serial audiograms, it
was determined that he had progressive hearing loss. At
age 20, he visited our hospital due to insufficient amplifica-
tion by hearing aids. Genetic testing identified LOXHD1
compound heterozygous mutations (c.[6168delC];[879

Fig. 35. LOXHD1 is predominantly expressed in inner and outer hair
cells (Nishio et al., 2017).
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Fig. 36. Serial audiograms of eight individuals with LOXHD1 variations, indicating that hearing loss is high-frequency involved and progressive.
Darker colored lines: audiograms at younger ages, lighter colored lines: audiograms at older ages (Maekawa et al., 2019).
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+1G>A]) (Fig. 38A). His sister had the same mutations,
and had received CI. Considering residual hearing in the
lower frequencies and possible future deterioration of
hearing as a natural course, EAS using a long electrode
(MEDEL Synchrony/FLEX28 electrode) was chosen for
the right ear. Residual hearing for sufficient acoustic
amplification was preserved (Fig. 38D). His speech dis-
crimination score was improved from 30% to 65%
(Fig. 38F).

COCH. COCH encodes extracellular protein “cochlin”
that consists of a single peptide, a late gestation lung pro-
tein Lgl1 (LCCL) domain, and two von Willebrand factor A
(vWFA) domains (Robertson, 1997). Cochlin is highly
expressed in the cochlea, and while the protein function
has not been well characterized, it is thought to play an
important role in the function of the inner ear (Fig. 39).
COCH mutations are reported to cause autosomal domi-
nant sensorineural hearing loss with vestibular dysfunc-
tion (DFNA9) (Robertson et al., 1998). Histological studies
investigating patients with COCH mutations found acido-
philic deposits in the vestibular endorgans and cochlea,
and cell loss, as well as that of cochlear dendrites
(Khetarpal et al., 1991; Bom et al., 1999).

With regard to the effectiveness of CI, Nagy et al.
reported that CI had no benefit in patients with COCH
mutations (Nagy et al., 2004), while other reports, includ-
ing our own, have described improved results after CI
(Street et al., 2005; Vermeire et al., 2006; Tsukada et al.,
2015). A previous temporal bone study reported that spiral
ganglions were able to survive even though there was
extensive degradation of cochlear dendrites (Khetarpal
et al., 1991), indicating that the remaining spiral ganglion
cells can be stimulated by CI, resulting in an improved
performance after CI in patients with COCH mutations.

Case: DFNA9 Caused by a COCH Mutation
Adult-onset progressive hearing loss with

vestibular dysfunction. The proband was a 70-year-
old man (III-2) (Fig. 40) (Tsukada et al., 2015). In his

Fig. 37. Mean scores of the Japanese monosyllable, word, and
sentence tests pre-CI and six months post-CI. The scores pre-CI are
with hearing aids (Maekawa et al., 2019).
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early 50s he experienced hearing loss for the first time,
which was not accompanied with tinnitus or vertigo. He
first visited our hospital at age 57. High-frequency hear-
ing loss was measured by pure-tone audiograms. Speech
discrimination scores for the right and left ear were 80%
and 90%, respectively. The patient had a rapid progres-
sion in hearing loss starting at age 64. At the age of

65, he was found to have bilateral deafness (Fig. 41A).
Tests revealed a 16% speech discrimination score
(Fig. 41B). At the age of 68, implantation of the right ear
with a MED-EL PULSAR/FLEXSOFT electrode was per-
formed. CI improved his speech perception scores to 76%
and 75%, compared to 43% and 63% preoperatively with
hearing aids, respectively (Fig. 41B).

Fig. 39. A: COCH is abundantly expressed in the cochlea, especially in inner and outer sulcus cells, the spiral ligament, and the spiral limbus. B:
Coch gene expression in the mouse cochlea and spiral ganglion (modified from Nishio et al., 2017).

Fig. 40. A: Pedigree and B: audiograms of the family with p.G88E mutations in the COCH gene (Tsukada et al., 2015).
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CONCLUSION

The above results suggest that the genes presented
may be involved in hearing loss in CI patients. As
patients with these mutations showed relatively good

auditory performance after receiving CI or EAS, genetic
background could be added as one of the factors useful in
predicting performance after implantation. Also genetic
testing is helpful in predicting future hearing levels;
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therefore, genetic diagnosis could facilitate decision mak-
ing for early intervention. Furthermore, genetic testing is
potentially useful for evaluating residual hearing, esti-
mating progression, and successful hearing preservation
making it valuable in the selection of candidates and elec-
trodes for CI or EAS.
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