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Abstract

Diffusion functional MRI (DfMRI) reveals neuronal activation even when neurovascular cou-

pling is abolished, contrary to blood oxygenation level—dependent (BOLD) functional MRI

(fMRI). Here, we show that the water apparent diffusion coefficient (ADC) derived from

DfMRI increased in specific rat brain regions under anesthetic conditions, reflecting the

decreased neuronal activity observed with local field potentials (LFPs), especially in regions

involved in wakefulness. In contrast, BOLD signals showed nonspecific changes, reflecting

systemic effects of the anesthesia on overall brain hemodynamics status. Electrical stimula-

tion of the central medial thalamus nucleus (CM) exhibiting this anesthesia-induced ADC

increase led the animals to transiently wake up. Infusion in the CM of furosemide, a specific

neuronal swelling blocker, led the ADC to increase further locally, although LFP activity

remained unchanged, and increased the current threshold awakening the animals under

CM electrical stimulation. Oppositely, induction of cell swelling in the CM through infusion of

a hypotonic solution (−80 milliosmole [mOsm] artificial cerebrospinal fluid [aCSF]) led to a

local ADC decrease and a lower current threshold to wake up the animals. Strikingly, the

local ADC changes produced by blocking or enhancing cell swelling in the CM were also

mirrored remotely in areas functionally connected to the CM, such as the cingulate and

somatosensory cortex. Together, those results strongly suggest that neuronal swelling is a

significant mechanism underlying DfMRI.

Author summary

It has been reported that neuronal activation results in a decrease of water diffusion in

activated neural tissue. This new approach, known as diffusion functional MRI (DfMRI),

has high potential for functional imaging of the brain, as the currently widespread blood

oxygenation level—dependent (BOLD)-functional MRI (fMRI) method, which is based

on neurovascular coupling, remains an indirect marker of neuronal activation. Here, we

show that the water apparent diffusion coefficient (ADC) derived from DfMRI increased

in specific rat brain regions under anesthetic conditions, reflecting the decreased neuronal

activity, especially in regions involved in wakefulness. Electrical stimulation of the central

medial (CM) thalamic nucleus exhibiting this anesthesia-induced ADC increase led the
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animals to transiently wake up. Infusion of the CM with furosemide—a specific blocker of

neuronal swelling—led the ADC to increase further locally and increased the current

threshold for waking the animals. Conversely, induction of cell swelling in the CM

through infusion of a hypotonic solution led to a local ADC decrease and a lower current

threshold to wake the animals. Strikingly, the local ADC changes produced by blocking or

enhancing cell swelling in the CM were also mirrored remotely in areas functionally con-

nected to the CM, such as the cingulate and somatosensory cortex. Those results strongly

suggest that neuronal swelling is a significant mechanism underlying DfMRI.

Introduction

Diffusion functional MRI (DfMRI) [1,2] has been proposed as an imaging method to investi-

gate brain function noninvasively, an alternative to blood oxygenation level—dependent

(BOLD) functional MRI (fMRI) [3], which has been extensively used to investigate brain activ-

ity [4]. BOLD-fMRI, which relies on the neurovascular coupling hypothesis and does not

directly reflect neuronal activity [5], may fail in some conditions that prevent neurovascular

coupling [6]. Besides, BOLD-fMRI is also sensitive to global or local variations in cerebral

blood flow and metabolism, which are not necessarily related to underlying neuronal activity,

temporally and spatially [7]. Diffusion MRI is thought to be more directly linked to neuronal

activation, as the diffusion MRI signal is exquisitely sensitive to minute changes, such as cell

swelling, occurring in the tissue microstructure upon various physiological or pathological

changes [8]. Indeed, there is a large body of studies reporting that neuronal activation is associ-

ated with cell swelling [9–11]. However, while it has been shown that DfMRI signals are not of

vascular origin [12], the method has been controversial [13,14], and the exact origin of the

DfMRI response remains unclear. To check the hypothesis that the water apparent diffusion

coefficient (ADC) measured with DfMRI provides a direct, quantitative assessment of neural

states of activity or deactivity and to shed light on the DfMRI mechanisms, we have investi-

gated the functional features of rat brain loci undergoing ADC variations using electrophysio-

logical recordings and electrical stimulation, as well as pharmacological challenges interfering

with cell swelling, under various anesthetic or sedative conditions, using several doses of an

anesthetic drug, isoflurane, and a sedative drug, medetomidine—two drugs widely used in pre-

clinical MRI studies.

Results

DfMRI signals (ADCs) quantitatively reveal network of brain loci affected

by anesthesia independently of their vascular status

We first examined the ADC change maps induced by high- and low-dose conditions of both

anesthetic agents (isoflurane: 2.5%/1.5% and medetomidine: 0.3 mg/kg/h/0.1 mg/kg/h, see

Material and methods). While changes in BOLD signals were widespread in grey and white

matter, not specific to any brain location (Fig 1A and 1C1), ADC changes were highly local-

ized (Fig 1B), with a significant increase in ADC value (cluster level corrected p< 0.05) when

increasing anesthetic/sedation agent dosage for both isoflurane and medetomidine (Fig 1B).

The BOLD signal, instead, increased with the dose of isoflurane (Fig 1A1) but decreased with

the increased medetomidine dose (Fig 1A2). There were differences, though, in the networks

exhibiting this ADC increase between both agents. Under isoflurane, the ADC increase

pattern encompassed more regions than with medetomidine, especially the motor cortex,
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the insular cortex, the posterior thalamic area, and the superior colliculus. The common

regions exhibiting the ADC increase under both anesthetic conditions were the cerebral cor-

tex (the somatosensory cortex, the cingulate cortex, the auditory cortex, the visual cortex),

the limbic region (the Caudate-Putamen, the hippocampus, the amygdala, the thalamus, the

Fig 1. Comparison of Blood Oxygenation Level—Dependent (BOLD) and Apparent Diffusion

Coefficient (ADC) maps under both anesthetic conditions. (A, B) T-maps of changes in BOLD signals

(A1; n = 6, A2; n = 7) and ADC (B1; n = 10, B2; n = 8) under isoflurane (iso) and medetomidine (med) dosage

conditions (six out of ten slices are shown. Hot colors mean an increase in BOLD or ADC of high dose

(cluster-level corrected p < 0.05), compared with that of low dose. Cool colors mean the opposite (cluster-level

corrected p < 0.05). (C1) Red regions correspond to regions associated with both a BOLD increase for iso and

a BOLD decrease for med (cluster-level corrected p < 0.05). (C2, C3) Red regions correspond to regions

showing an ADC increase (C2; threshold of cluster-level corrected p < 0.05, C3; threshold of uncorrected

p < 0.001) common to both med and iso. With the stricter statistical threshold (C3), small regions like the

central medial thalamus nucleus (CM) and some hypothalamic nuclei (posterior hypothalamic nucleus [pHT],

ventral medial hypothalamic nucleus [vmHT], ventrolateral preoptic nucleus [vlPO]) are easier to see.

Numbers at the bottom correspond to the distance (mm) from the bregma. Statistical maps for group analysis

and overlay maps of BOLD and ADC can be found in S7 Data.

https://doi.org/10.1371/journal.pbio.2001494.g001
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hypothalamus), and the midbrain (the periaqueductal gray, the dorsal raphe [DR]) (Fig 1C2

and 1C3). Especially, the central medial thalamic nucleus (CM), the posterior hypothalamic

nucleus (pHT), the ventral medial hypothalamic nucleus (vmHT), the ventrolateral preoptic

nucleus (vlPO), the DR, and the periaqueductal gray (PAG) correspond to a network of

regions known to be associated with wakefulness/sleep conditions [15]. As expected, raw

diffusion-weighted images that contain a residual T2 (BOLD) contribution to the genuine

diffusion component [13,16] showed patterns mixing ADC and BOLD responses, with the

diffusion component contributing more to the b1800 maps (S3 Fig). The T2 (BOLD) compo-

nent was factored out in the ADC maps, by principle.

Importantly, the amount of ADC increase was positively correlated with the dose of both

anesthetic agents (Fig 2A and 2B and S1 Table). The dose-dependent increases in ADC were

significant at 12 brain locations for isoflurane and eight locations for medetomidine (S1 Table)

but not at the whole-brain level. On the contrary, the dose-dependent changes of the BOLD

signal were significantly correlated to the agent dosage at the whole-brain level, all regions

exhibiting the same pattern observed at the whole-brain level (Fig 2C and 2D), but positively

for isoflurane and negatively for medetomidine (S1 Table), reflecting (in a reversed way) global

MABP (mean arterial blood pressure) changes (Fig 2I and 2J). In addition, the ADC time

course was stable over time for all anesthetic conditions (no significant correlation with time)

(Fig 2E and 2F), while the average BOLD time-course signal (Fig 2G and 2H) showed a drift,

gradually decreasing both for isoflurane and medetomidine, irrespectively of the sign of the

dose-dependent relationship (positive for isoflurane and negative for medetomidine). This

drift, which is often seen with fMRI experiments and removed by signal detrending, was also

observed for the raw diffusion-weighted signals, except under medetomidine 0.3 mg/kg/h,

especially at b = 1800s/mm2 (S3 Fig), but factored out when calculating the ADC. S2 Table

shows the slope values for the ADC and BOLD signal changes with the dosage for each agent.

For the ADC, the slope values were the highest in the auditory cortex, the caudate-putamen,

and the DR for both agents, indicating that these three regions were more sensitive to those

agents. The ADC slopes for both agents at the whole-brain level were smaller than the average

slope over the 12 brain locations. The slopes of the BOLD signal in the cerebral cortex and the

hippocampus were steeper than that in the limbic regions and the midbrain but with opposite

signs for isoflurane and medetomidine. The BOLD slopes for both agents at the whole-brain

level were similar to the average slope over the 12 brain locations.

Increase in water ADC closely mirrors Local Field Potentials (LFPs)

patterns, reflecting a decrease in neuronal activity induced by

anesthesia

To shed light on the relationship between ADC and underlying neuronal activity, we com-

pared the ADC change patterns with recordings of LFPs under the exact same anesthetic con-

ditions (see Materials and methods) in the CM and the ventral posterolateral (VPL) thalamic

nuclei. Those regions were chosen because they exhibited different fMRI response patterns: In

the CM, the ADC increased with both agent’s dosages, while the BOLD signal increased with

isoflurane dosage and decreased with medetomidine dosage (Fig 3A–3D). In contrast, there

was no ADC change in the VPL with both anesthetic agents, while there was a positive signal

change for BOLD with isoflurane and a negative signal change with medetomidine dosage.

From the view point of neural activity, spontaneous firing rates and LFP power clearly

decreased in the CM with isoflurane and medetomidine dosage (Fig 3E–3G), while no

significant changes in firing rates were observed in the VPL. The decrease in LFP power (see

Materials and methods) with agent dosage was highly significant for both agents in the CM,

Water diffusion, neural activity status, and anesthesia
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Fig 2. Apparent Diffusion Coefficient (ADC) and Blood Oxygenation Level—Dependent (BOLD)

changes and time courses for each dosage of both anesthetic conditions. Averaged ADCs of whole

brains for each dosage of isoflurane (A; n = 10) and medetomidine (B; n = 8). Averaged BOLD signal change

ratios of whole brain for each dosage of isoflurane (C; n = 6) and medetomidine (D; n = 7). Averaged time

courses of ADCs (E, F) and BOLD signal changes ratios (G, H) at whole brains for each dosage of isoflurane

(E, G) and medetomidine (F, H), showing the stability of the ADC change while the BOLD signal exhibits a

significant negative drift with time. Note that the BOLD change levels for each medetomidine dosage are

inverted between E and H. Mean arterial blood pressure (MABP) under each dosage of isoflurane (I; n = 5)

and medetomidine (J; n = 5). Bar plots exhibit mean ± standard error of the mean (SEM). * p < 0.05,

** p < 0.01, *** p < 0.001 (Paired t-test, versus low dose of each anesthesia). Data for whole brains of

individual rats can be found in S1 Data for ADC and S2 Data for BOLD. MABP data of individual rats can be

found in S4 Data.

https://doi.org/10.1371/journal.pbio.2001494.g002
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but there were no significant changes in the VPL, although the BOLD signal increased with

isoflurane dosage and decreased with medetomidine dosage.

Electrical stimulation of thalamus CM exhibiting an anesthesia-induced

ADC increase leads the anesthetized animals to wake up

To further confirm the relevance of our findings, an electrical stimulation of the CM and VPL

was performed (see Materials and methods). The decrease in LFP power with drug dosage in

Fig 3. Comparison of Apparent Diffusion Coefficient (ADC) and Blood Oxygenation Level—

Dependent (BOLD) changes with Local Field Potentials (LFPs) in the Central Medial (CM) and Ventral

Posterolateral (VPL) thalamic nuclei. BOLD changes under each dosage of isoflurane (A) and

medetomidine (B) at the CM and the VPL. Region of interest (ROI) locations for the CM and the VPL are

overlaid on structural images. ADC changes under each dosage of isoflurane (C) and medetomidine (D) at the

CM and the VPL. (E) Representative LFP signals in a single animal at the CM (upper) and the VPL (below),

for each dosage of isoflurane and medetomidine. Total LFP power (frequency range: 1–70 Hz) under each

dosage of isoflurane (F; n = 8 for CM, n = 8 for VPL) and medetomidine (G; n = 8 for CM, n = 8 for VPL). Bar

plots exhibit mean ± the standard error of the mean (SEM). * p < 0.05, ** p < 0.0, *** p < 0.001 (Paired t-test,

versus low dose of each anesthesia). Data for the CM and the VPL of individual rats can be found in S1 Data

for ADC and S2 Data for BOLD. LFP power data for the CM and the VPL of individual rats can be found in S4

Data.

https://doi.org/10.1371/journal.pbio.2001494.g003
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the CM, in which we observed a dose-dependent ADC increase, reflected a neural deactivation

induced by anesthesia or sedation. In contrast, VPL activity seems independent of anesthesia,

as no change in ADC nor LFP power could be observed. Indeed, when an electrical stimulation

was performed at the CM location under the same medetomidine anesthetic conditions used

for the LFP recordings and the MRI experiments the rats exhibited a voluntary movement of

their limbs and body, indicating a wakefulness status (Fig 4A and S1 Movie), although they

were anesthetized. This animal movement during the stimulation matched the electromyogra-

phy (EMG) data (Fig 4B). Additionally, the current threshold required to trigger the animal

awakening during CM stimulation increased with the dosage of medetomidine (Fig 4C; thresh-

old is 0.75 ± 0.03 mA for medetomidine 0.1 mg/kg/h and 0.93 ± 0.04 mA for medetomidine

0.3 mg/kg/h, p< 0.01) and the ADC in the CM (Fig 3D; ADCCM = 5.94 ± 0.03 × 10−4 mm2/s

for medetomidine 0.1 mg/kg/h and ADCCM = 6.09±0.06 ×10−4 mm2/s for medetomidine

0.3 mg/kg/h, p< 0.05) but not the BOLD signal (Fig 3B). Animals returned to an anesthetic

status at the end of the stimulation, showing no reflex motor response 1 min after stimulation.

In contrast, no wakefulness response could be observed when stimulating the VPL (Fig 4B). In

light of the current study, those electrical stimulations and LFP patterns in the CM and the

VPL uniquely demonstrate that the ADC signal, indeed, accurately mirrors neural activity

Fig 4. Effects of electrical stimulation of the Central Medial thalamus nucleus (CM) on anesthetic

status. (A) Percentage of animals exhibiting an awake response during the electrical stimulation at the CM

and VPL under 0.1 mg/kg/h medetomidine condition (n = 6). (B) Representative electromyography (EMG)

signals of the stimulation, with 0.8 mA amplitude at the CM and the VPL under 0.1 mg/kg/h medetomidine. (C)

Percentage of animals exhibiting an awake response during the electrical stimulation at the CM, with an

amplitude of 0.3–1.2 mA under 0.1 and 0.3 mg/kg/h medetomidine (n = 6). (D) Percentage of animals

exhibiting an awake response during the electrical stimulation at the six brain locations under 0.1 mg/kg/h

medetomidine (n = 4). # p < 0.05, ## p < 0.01 (Fisher’s exact test). Data for minimum amplitudes of individual

rats can be found in S5 Data.

https://doi.org/10.1371/journal.pbio.2001494.g004
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changes induced by anesthesia under various anesthetic/sedation conditions, while the BOLD

signal appears completely unrelated. Among the other tested loci, only caudate-putamen

(CPu) showed a response pattern similar to CM (Fig 4D). There was no wakefulness response

in the cingulate cortex (Cg), pHT, vmHT, DR, and PAG, although those regions exhibited an

ADC increase upon anesthesia or sedation (Fig 1C3). Those results are consistent with earlier

results showing the specific roles of the CM and CPu in anesthesia mechanisms [17,18], while

the VPL and the other investigated loci do not seem to play a direct role.

Neuronal swelling inhibition and induction modulate the ADC in the CM

and connected loci while changing current threshold to wake up animals

under CM electrical stimulation

If the DfMRI signal change (and the resulting ADC) is not of vascular origin, the question

that next comes to mind is how changes in neuronal activity might result in changes in tissue

water diffusion. Diffusion MRI is known to be exquisitely sensitive to minute changes in tissue

microstructure [19]. Extra physiological or pathological events resulting in cell swelling are all

associated with a decrease in ADC [20–23], but recent studies have shown that such cell swell-

ing could also result in an ADC decrease in more physiological conditions [24]. Hence, the

ADC decrease observed during neuronal activation has been tentatively ascribed to a physio-

logical transient cell swelling in the neural tissue, so called neuromechanical coupling hypothe-

sis [2,8]. To check the contribution of cell swelling to the DfMRI signal, we first locally infused

in the CM furosemide, an inhibitor of the neuron-specific K+/Cl− cotransporter (KCC2), as

well as Na+/K+/Cl− cotransporter (NKCC1) (see Materials and methods), blocking neuronal

swelling [25,26] while not inhibiting excitability [26]. Indeed, we did not observe any LFP

change in the CM after furosemide or artificial cerebrospinal fluid (aCSF) infusion in CM (Fig

5E and 5F). However, furosemide injection resulted in a significant ADC increase on top of

the ADC increase induced by medetomidine, which persisted after the end of the injection

(Fig 5B) (as expected, since there was no washout after injection, data were collected for only

15 min, and it would take much longer for furosemide to be metabolized). The ADC increase

was more pronounced and significant under the low dose (0.1 mg/kg/h) of medetomidine

(from 5.61 ± 0.11 to 6.09 ± 0.15 × 10−4 mm2/s, p< 0.05), while only a not significant trend was

visible at the high dose (0.3 mg/kg/h) (from 6.16 ± 0.14 to 6.33 ± 0.12 mm2/s, p = 0.082) (Fig

5B–5D and S4A and S4B Fig), indicating that residual amounts of dynamic cell swelling were

still present at the low dose of medetomidine, but not at the high dose. Indeed, while the LFP

power remained unchanged, the possibility of waking up the animals by CM electrical stimula-

tion, which was unchanged under aCSF infusion, required a higher electrical threshold under

furosemide infusion (Fig 5A; threshold preinfusion = 0.77± 0.02 mA; post infusion = 1.00± 0.03

mA, p< 0.001), suggesting that blocking cell swelling reinforced the effects of medetomidine.

In addition, we found that other brain loci (cingulate cortex and somatosensory cortex)

remote from the CM also expressed a further ADC increase during furosemide infusion in the

CM (from 5.88 ± 0.17 to 6.16 ± 0.19 × 10−4 mm2/s in Cg, p< 0.01, and from 5.97 ± 0.13 to

6.20 ± 0.15 × 10−4 mm2/s in the somatosensory cortex [SS], p< 0.01) under the low dose

(0.1 mg/kg/h) of medetomidine (Fig 5B and S5A and S5C Fig), confirming not only that those

areas are functionally connected [18] but also that the residual amount of swelling in the CM

neural network left under a low dose of medetomine still has some functional significance

remotely. Under a high dose of medetomidine, no further ADC increase could be observed in

CM, Cg, and SS (S4 Fig).

Contrary to this, local cell swelling was induced by infusion of a hypotonic solution (−80

milliosmoles [mOsm] aCSF [H-80]) [27,28]. CM infusion with H-80 under a low dose (0.1 mg/

Water diffusion, neural activity status, and anesthesia
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kg/h) of medetomidine resulted in a significant ADC decrease not only in the CM (5.79 ± 0.05

to 5.12 ± 0.12 × 10−4 mm2/s, p< 0.01) but also remotely in Cg (5.85 ± 0.07 to 5.38 ± 0.14 × 10−4

mm2/s, p< 0.01) and SS (5.79 ± 0.07 to 5.25 ± 0.12 × 10−4 mm2/s, p< 0.01) (Fig 6B–6D and

S5B and S5D Fig). Neuronal activity, through LFP response, was found to increase in CM and

Fig 5. Effects of furosemide infusion in the Central Medial thalamus nucleus (CM) on the Apparent

Diffusion Coefficient (ADC), Local Field Potentials (LFPs) and awake response threshold under 0.1

mg/kg/h medetomidine condition. (A) Percentage of animals exhibiting an awake response during CM

electrical stimulation after the CM infusion with furosemide (Furo; n = 6). (B) Average ADC change in the CM

and cingulate cortex (Cg) before and after CM infusion (n = 6 for artificial cerebrospinal fluid [aCSF], n = 6 for

Furosemide). Average time course of ADC change in the CM (C) and Cg (D) with the infusion of aCSF and

furosemide. (E) Representative local field potentials (LFP) signals at the CM and Cg with the CM infusion with

aCSF (upper) or furosemide (below). (F) Total LFP power (frequency range: 1–70 Hz) in the CM and Cg,

before and after CM infusion with furosemide (n = 6) or aCSF (n = 6). Time course and bar plots exhibit

mean ± the standard error of the mean (SEM). ** p < 0.01 (two-sided paired t-test between pre and post), #

p < 0.05 (Fisher’s exact test). Data for minimum amplitudes of individual rats can be found in S5 Data. ADC

data of individual rats found in S3 Data. LFP power data can be found in S4 Data.

https://doi.org/10.1371/journal.pbio.2001494.g005
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Cg after H-80 infusion (Fig 6E). The LFP powers also increased significantly at the CM and the

Cg in the post period of infusion (see Materials and methods) (Fig 6F). The current threshold

to wake up the animals upon CM electrical stimulation decreased after infusion of H-80 from

0.77 ± 0.02 mA, preinfusion to 0.57 ± 0.02 mA, postinfusion (p< 0.001) (Fig 6A).

Fig 6. Effects of H-80 infusion in the Central Medial thalamus nucleus (CM) on the Apparent Diffusion

Coefficient (ADC), Local Field Potentials (LFPs) and awake response threshold. (A) Percentage of

animals exhibiting an awake response during CM electrical stimulation after the CM infusion with −80

milliosmole (mOsm) hypotonic artificial cerebrospinal fluid (aCSF) (H-80; n = 6). (B) Average ADC change in

the CM and cingulate cortex (Cg) before and after H-80 or aCSF infusion in the CM (n = 6 for each condition).

Average time course of ADC change at the CM (C) and Cg (D) with the infusion of aCSF and H-80. (E)

Representative local field potentials (LFP) signals at CM and Cg during CM infusion with aCSF (upper) or H-

80 (low). (F) Total LFP power (frequency range: 1–70 Hz) in CM and Cg before and after CM infusion with H-

80 (n = 6) or aCSF (n = 6). Time course and bar plots exhibit mean ± the standard error of the mean (SEM).

** p < 0.01 (Paired t-test between pre and post), # p < 0.05, ## p < 0.01 (Fisher’s exact test). Data for

minimum amplitudes of individual rats can be found in S5 Data. ADC data of individual rats found in S3 Data.

LFP power data can be found in S4 Data.

https://doi.org/10.1371/journal.pbio.2001494.g006
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Discussion

DfMRI revealed a dose-dependent, quantitative increase in the water ADC (Fig 1B), indepen-

dent of the nature of the anesthetic agent, whether isoflurane or medetomidine, reflecting LFP

activity in the CM (Figs 3F, 3G and 7A). Following earlier reports that the ADC decreases dur-

ing neural evoked responses [1,12,29,30], the current findings of a dose-dependent increase of

Fig 7. Summarized relationship of the Apparent Diffusion Coefficient (ADC) with underlying neural

activity status in the Central Medial thalamic nucleus (CM). Scatter plots between local field potential

(LFP) power and ADC (A) or blood oxygenation level—dependent (BOLD) change ratio (B) in the CM under

all anesthetic conditions (isoflurane: 1.5%, 2.0%, and 2.5%; medetomidine: 0.1 and 0.3 mg/kg/h). Scatter

plots of CM ADC (C) and CM BOLD change ratio (D) with the threshold amplitude to trigger an awake

response during CM electrical stimulation under anesthesia with 0.1 and 0.3 mg/kg/h of medetomidine. (E)

Scatter plots between CM ADC and the threshold amplitude to trigger an awake response under anesthesia

(0.1 mg/kg/h medetomidine) before and after CM infusion of furosemide and H-80. Data with anesthetic

dosages for the CM of individual rats can be found in S1 Data for ADC and S2 Data for BOLD. LFP power data

with anesthetic dosages for CM of individual rats can be found in S4 Data. Data for minimum amplitudes of

individual rats can be found in S5 Data. ADC data for pharmacological diffusion functional MRI (DfMRI) of

individual rats found in S3 Data.

https://doi.org/10.1371/journal.pbio.2001494.g007
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the ADC under both anesthetic drugs indicate a dose-dependent neural deactivation, indepen-

dent of the nature of the agent. A first important point is that only specific regions exhibited

this ADC increase, mainly in the cerebral cortex, the limbic region, and the midbrain, not the

whole brain as observed with BOLD fMRI (Fig 1B, 1C2 and 1C3). The loci exhibiting the ADC

increase with isoflurane were more extended than with medetomidine. This difference is con-

sistent with the known enhancement by isoflurane of gamma-aminobutyric acid (GABA)ergic

inhibitory systems on many brain areas [31], while medetomidine, which is an α2 adrenergic

agonist, enhances neural inhibitory systems [32] through norepinephrine and GABA at selec-

tive brain regions [33]. The thalamic area is involved in the wakefulness—sleep cycle [34], and

a core of those regions (CM, pHT, vmHT, vlPO, DR, and PAG) corresponds to a network

known to be associated with wakefulness—sleep conditions [15,35]. For instance, the preoptic

area in the hypothalamus and the tuberomammillary nucleus are involved in the switching

and maintaining of a wakefulness state [15]. In the midbrain, the central serotoninergic DR

region and the dopaminergic PAG are also responsible for maintaining the arousal condition

and the triggering of the wakefulness condition [15]. Especially, the CM has been shown to be

involved in the regulation and maintenance of a cortical-thalamic network controlling wake-

fulness/sedation states. Optogenetical stimulation at high frequency (100 Hz) at the CM of

anesthetized rats induce an activation of cerebral cortex (cingulate cortex, medial prefrontal

cortex, motor cortex, and somatosensory), striatum, and thalamus, while low frequency (10

Hz) induces a deactivation of the cortex without wakefulness response [18]. Anesthetized rats

also show voluntary movement after stimulation of the CM with an inhibitor of the K+ channel

[17]. A second important point to notice is that the same MRI sequence was used for BOLD

and DfMRI. The mismatch between BOLD and ADC changes also further establishes that

both methods have different mechanisms and that the ADC change is not of vascular origin, as

shown earlier [8]. At very low b values (here we used 10 s/mm2) the MRI signal is not sensi-

tized to diffusion but is simply T2-weighted and, thus, only reflects the hemodynamic effect of

BOLD. At higher b values, this BOLD contribution remains [13, 16] but does not change with

the degree of diffusion weighting (b values). Hence, the ADC calculated from signals acquired

with b = 1,000 and 1,800 s/mm2 are free of residual T2 (and BOLD) effects, solely reflecting

changes in water diffusion in underlying tissues [16].

An advantage of DfMRI is that the derived ADC is an absolute parameter that may directly

reflect an increase or a decrease in neuronal activity. To the contrary, an intrinsic limitation of

the BOLD signal is that it can only be relative to a baseline or control state and does not have

an absolute unit. Although positive responses are common, indirectly associated with neuronal

activation, negative responses potentially reflecting deactivation have been elusive [36]. In any

case, the BOLD signal, while intrinsically enjoying a higher signal:noise ratio than DfMRI, is

more sensitive, by principle, to global or local variations in cerebral blood flow and metabo-

lism, which are not necessarily related to underlying neuronal activity, as exemplified in this

study. Although a significant correlation between BOLD signal changes and agent dosages was

observed (Fig 2C and 2D and S1 Table), this correlation had opposite signs for two different

agents, positive for isoflurane and negative for medetomidine (Fig 7B), at the whole-brain

level, following global changes in MAPB (Fig 2I and 2J). The observed BOLD signal decreases,

hence, it cannot account for a neuronal deactivation but rather reflects widespread effects of

anesthetic agents on the brain vasculature. Indeed, isoflurane is associated with an increase in

cerebral blood flow (CBF) due to an overall blood vessel vasodilation [37–43], while medeto-

midine might induce vasoconstriction [42], perhaps explaining the negative correlation

between the BOLD signal (Fig 1A2) and MAPB (Fig 2J) we observed by increasing agent

dosage.
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In this study, the water ADC was found to increase when neural activity decreases by anes-

thesia conditions, suggesting, by symmetry with DfMRI results obtained upon neuronal stimu-

lation [1], a “shrinking” of cellular elements or, more likely, a return to baseline from an

activation state associated with neural cell swelling. Additionally, manipulation of local cell

swelling status through very different mechanisms, i.e., the local infusion in the CM of a cell

swelling inducer (hypotonic solution, H-80) and a neural swelling blocker (furosemide), estab-

lished that the ADC very closely reflects local variations in cell size. While we cannot exclude

that other mechanisms that variations in cell size might contribute to the DfMRI signal

response, we could not find any compatible with both our furosemide and H-80 infusion find-

ings. Such variations in cell size have, in turn, a profound effect on the activity status of the

underlying neuronal network, as evidenced from the increase (when blocking neuronal

swelling) or decrease (upon cell swelling) of the electrical threshold necessary to wake up the

animals by CM electrical stimulation, although they were under anesthesia (Fig 7E). This

threshold was also found to be correlated with the absolute ADC value in the CM induced by a

different dosage of medetomidine (Fig 7C) but not with the BOLD signal in the CM (Fig 7D).

The amount of cell swelling in neuronal networks, of which DfMRI is a biomarker, thus

appears closely related to neuronal activity, as further evidenced by the observation that varia-

tions of ADCs in the CM were exported remotely in brain regions functionally connected with

the CM, such as Cg and SS (Figs 5B and 6B and S5 Fig). The physical mechanisms underlying

the ADC decrease upon cell swelling is often thought to be an increase of tortuosity for water

diffusion in the reduced extracellular space [44–46]; however, other mechanisms have been

proposed, such as the expansion upon the increase of the cell membrane surface of a slow dif-

fusion water molecular layer bound electrostatically to the membranes [23,47,48].

An interesting question is then to elucidate which cell types or elements in the neuropile

undergo such functional swelling. Although swelling of astrocytes has been reported [49–53],

most studies have shown that swelling is one of the responses associated with neuronal activa-

tion [10,54–59], including normal conditions [11,60]. The blocking effect of furosemide on

cell swelling is neuron-specific [25,26]. Furosemide is also an antagonist of the α6 subunit of

the GABAA receptors [61]. GABAA antagonists (such as bicuculline) usually lead to hyperac-

tivity [26,62] and injection into the CM to wakefulness [63] as well as an ADC decrease [64].

However, this suppression effect of the GABA inhibitory system was not observed in our

setup with the furosemide concentration we used. To the contrary, LFP activity remained

unchanged, while the ADC and electrical threshold for animal awakening increased, pointing

out that LFPs and the ADC are linked to different features of neural tissue function. LFPs are

generated by the electrical potentials in multiple neuronal processes, including excitatory,

inhibitory interneurons, and astrocytes. Although LFPs integrate “broad” electrophysiological

changes, they are not strongly correlated with multi-unit activity (MUA) recordings, which

directly reflect electric spiking of neurons. At this stage, one may only speculate that the ADC

variations might reflect synaptic activity, originating from the integration at the MRI time

scale (much longer than neuronal activity time scale) and spatial resolution of the dynamic

swelling and shrinking of a very large number of dendritic spines continuously occurring

upon their activation/deactivation status [28,60,65,66], as envisioned already by Ramon y

Cajal more than a century ago (“The state of activity would correspond to the swelling and

elongation of the [dendritic] spines, and the resting state (sleep or inactivity) to their retrac-

tion”) [67]. Dendritic spines are present in a very high density in mammal brain cortical tissue

(approximately 1–2 × 109/mm3 in the human brain [68], 7 × 108/mm3 in the mouse cortex

[69]) but not in organotypic slices, which are known to have a drastic reduction in the density

of dendritic spines and functional synapses [70], perhaps explaining why neuronal activity did

not correlate with any observable ADC change in such slices, although it was observed with

Water diffusion, neural activity status, and anesthesia

PLOS Biology | https://doi.org/10.1371/journal.pbio.2001494 April 13, 2017 13 / 24

https://doi.org/10.1371/journal.pbio.2001494


cell swelling in extraphysiological conditions [14]. Obviously, further studies will be required

to investigate which cell elements or portions might undergo this dynamic swelling process.

In summary, DfMRI (and the derived ADC) appears to provide a faithful assessment of

neural activity status, without BOLD confounding hemodynamic effects, the ADC being a

suitable biomarker of brain activity in various physiological states or under pharmacological

challenges. Contrarily, caution is required when using BOLD fMRI as well as methods built on

neurovascular coupling, such as iron-particle based fMRI [71], in conditions in which the

brain vascular status is changed, such as during anesthesia, as the BOLD signal sensitivity to

peripheral effects on the vasculature might erase smaller changes in hemodynamics induced

by a modulation of neuronal activity, a major limitation for preclinical fMRI studies. Overall,

this study strongly suggests that neuronal swelling is, indeed, at least one of the mechanisms

underlying DfMRI.

Materials and methods

Animals

All experiments were performed on 131 male Wister rats (200–300 g, Janvier Labs, Saint

Berthevin, France). The rats were housed two per cage under controlled light (7:00–19:00)

conditions and were given free access to water and food. All animal procedures in the present

study were approved by an Institutional Ethic Committee for Animal Experimentation. The

number of animals assigned to each experiment is mentioned in each figure caption.

Anesthetic time course

The animals were initially anesthetized with 2.5% isoflurane in a gas mixture consisting of air

and 20% oxygen for animal preparation. The head of the animal was fixed with ear bars to pre-

vent head motion. For the isoflurane group, the isoflurane concentration was changed to 1.5%

during MRI scanner preparation (radiofrequency tuning, magnetic field shimming, and image

field-of-view positioning). The first scan initiated after 15 min stabilization time. MR images

were then acquired continuously for 10 min under isoflurane dosages of 1.5%, 2.0%, and 2.5%,

each time following a 5-min stabilization interval (S1A Fig). For the medetomidine group, the

isoflurane anesthesia was discontinued while the animals received a subcutaneous bolus of

0.05 mg/kg medetomidine (Domitor; Pfizer Animal Health, New York, NY, USA) at the end

of the animal preparation. An infusion catheter was inserted in a tail vein, allowing a continu-

ous infusion of medetomidine via a syringe pump (Harvard Apparatus; Holliston, MA, USA).

Isoflurane was switched off at the start of the medetomidine injection. MR images were

acquired continuously for 10 min under medetomidine dosages of 0.1 and 0.3 mg/kg/h, each

time following a 30-min stabilization interval, by reference to a previous report [72].

MRI acquisitions

For all MRI experiments, the animals were intubated and mechanically ventilated (MRI venti-

lator; CWE Inc., Ardmore, PA, USA). The respiration rate (50 bpm), end-tidal CO2 (4%–5%),

and rectal temperature (37˚C) of the animals were monitored and artificially controlled in the

normal range during scanning. The body temperature was maintained at 37˚C using an MR-

compatible, feedback-controlled air heating system (model 1025; SA Instruments, Stony

Brook, NY, USA). MABP was measured from the tail artery outside the magnet. MRI experi-

ments were performed using a horizontal bore, 7T MRI scanner (PharmaScan; Bruker, Ettlin-

gen, Germany) equipped with a gradient system allowing a maximum gradient strength of 760

mT/m. A quadrature volume coil (inner diameter is 38 mm; Bruker, Ettlingen, Germany) was
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used for transmission and reception. First, we determined the position of ten slices of the

brain between +5.0 and −12.0 mm from the bregma, using anatomical images acquired along

three orthogonal directions. We acquired DfMRI images using a diffusion-sensitive double

spin echo (SE) echo planar imaging (EPI) sequence with following parameters; TR = 2,500 ms,

TE = 32 ms, FOV = 2.5 × 2.5 cm2, Matrix = 100 × 100, Slices number = 10, Slice thickness = 1.5

mm, Slice gap = 0.2 mm, Resolution = 0.25 × 0.25 × 1.5 mm3, Acquisition bandwidth = 357

kHz, 1 average and 1 shot, b-values = 1,000 and 1,800 mm2/s along three directions; {X = 1,

Y = 0, Z = 0}, {0, 1, 0}, and {0, 0, 1}. BOLD images were acquired with the same parameters

with TR = 3,000 ms and a b-value of 10 mm2/s along {1, 1, 1}. Scan time for DfMRI and BOLD

images was 10 min. Forty volumes were acquired for DfMRI and 200 for BOLD, resulting in

time resolutions of 15 s and 3 s for DfMRI and BOLD, respectively. After the acquisition of

DfMRI or BOLD images, structural (anatomical) images were obtained using a multislice

Rapid Acquisition with Relaxation Enhancement (RARE) sequence at the same brain locations

with the following parameters; TR = 2,500 ms, effective TE = 60 ms, FOV = 2.5 × 2.5 cm2,

Matrix = 256 × 256, Slices number = 10, Slice thickness = 1.5 mm, slice gap = 0.2 mmm, Reso-

lution = 0.097 × 0.097 × 1.5 mm3, Average = 10.

MRI data analysis

SPM8 software (Welcome Trust Centre for Neuroimaging, London, UK) and in-house soft-

ware written in Matlab [12] were used for data preprocessing and statistical analysis. Image

preprocessing was performed first individually for each animal. Time-series images (DfMRI

images with b1000 and b1800, and BOLD images) for each drug dosage were realigned to cor-

rect for residual head motion and coregistered to the reference structural images. Then, all

images where spatially normalized and coregistered to the Paxinos and Watson rat brain

atlases [73]. Finally, these images were resliced to a resolution of 0.2 × 0.2 × 0.2 mm3 and

smoothed with a full width at half maximum (FWHM) Gaussian kernel of 0.6 mm.

Time-series ADC maps were calculated separately for each animal at each drug dosage as

ADC = ln(Sb1000/Sb1800)/800, in which Sb1000 and Sb1800 are the signal acquired with b = 1000

and 1,800 s/mm2, using the preprocessed time-series DfMRI images to remove any residual

T2/T2� (BOLD) effects [1], and averaged over the three directions to increase signal noise

ratio and remove residual differences in gradient hardware (diffusion anisotropy effects were

ignored in the regions of interest (ROIs) used for analysis at our spatial resolution). ADCs cal-

culated with high b values (also called “synthetic ADC” or “shifted ADC” [sADC]), instead of

typical values of 0 and 1,000 s/mm2, have more emphasis toward nonGaussian diffusion and

water interaction with cell membranes [74]. Time-series BOLD signal maps for each animal at

each drug dosage were normalized by the average value of the BOLD signal at a whole brain

for each low dosage, respectively, as the BOLD signal is relative. Time-series ADC maps,

which correspond to absolute measurements, were not normalized. The time-series maps of

the absolute ADC values and normalized BOLD signals for each animal at each drug dosage

were finally pooled for a group analysis. Then, a two-way repeated ANOVA analysis (cluster

level corrected p< 0.05) was performed over the whole time courses and dosage conditions

for isoflurane and medetomidine, respectively. Statistical ADC and BOLD maps were overlaid

on the brain structural image. Overlay maps were created using MRIcron (http://www.cabiatl.

com/mricro/mricro/mricro.html) to show regions commonly affected by isoflurane and

medetomidine, for DfMRI and BOLD, respectively.

ADC and BOLD time-course data were extracted for each drug dosage and for each animal

from the clusters visible on the ADC overlay maps of Fig 1C3 (uncorrected p< 0.001), using

MarsBar (MRC Cognition and Brain Sciences Unit, Cambridge, UK). Data were first averaged
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at each time point over all voxels of each ROI on an individual animal basis, then averaged for

each ROI over all animals. The ROI number of voxels were 171 for SS, 58 for M, 79 for V, 180

for Au, 24 for Cg, 313 for CPu, 92 for Hip, 738 for Amy, 95 for Tha, 66 for HT, 58 for DR, and

112 for PAG, respectively. Abbreviations of the brain regions that were used in this report are

shown in S3 Table. ROIs corresponding to CM (21 voxels) and VPL (19 voxels) were manually

drawn using MRIcron (Fig 3A). Time-series Sb1800 and Sb1000 signal maps after averaging over

the three directions for each animal at each drug dosage were normalized by the average value

of the Sb1800 and Sb1000 at a whole brain for each low drug dosage, respectively. Then, statistical

Sb1800 and Sb1000 maps were also produced by two-way repeated ANOVA analysis (cluster level

corrected p< 0.05) over the whole time courses and dosage conditions for isoflurane and

medetomidine, respectively. Averaged Sb1800 and Sb1000 of each anesthetic dosage were calcu-

lated in the same way as the BOLD signal using the same ROIs.

To provide some indication of the overall signal level in our image data, signal:noise ratios

(SNRs) were estimated at whole brain for each animal and for each of the first five raw time-

course images (before preprocessing and for each direction separately for the DfMRI data)

under 0.1 mg/kg/h medetomidine. Averaged SNR values (mean ± SEM) were 8.51±0.25 for

b1000 (n = 8), 5.57 ± 0.17 for b1800 (n = 8), and 11.32 ± 0.69 (n = 7) for BOLD.

LFP recording and analysis

LFP recording was performed outside the MRI scanner. The animals were initially anesthe-

tized with 1.5%–2.0% isoflurane to insert a recording electrode under stereotaxic condition.

The tungsten micro wire monopolar electrode (1.0 MO, 3-μm tip and 125-μm shaft diameter;

MicroProbe, MD, USA) was inserted into the CM (−0.4 mm ML, −3.7 mm AP, −6.5 mm DV

from the bregma), the VPL (−3.3 mm ML, −3.0 mm AP, −6.5 mm DV), and the Cg (−0.5 mm

ML, +1.8 mm AP, −3.0 mm DV). The electrode was connected to a differential AC amplifier

Model 1700 (AM systems, Sequim, WA, USA) via a Model 1700 head stage (AM systems,

Sequim, WA, USA). The reference electrode (set to ground) was inserted into the scalp. LFP

data was recorded using a Powerlab 8/35 with LabChart (AD Instruments; Dunedin, New Zea-

land) with a bandpass of 1–500 Hz and digitized at 1.0 kHz. The line power 50 Hz noise was

eliminated from the signal using selective filters. During the LFP recording, the rat’s rectal

temperature was maintained at 37˚C using a heating pad (DC temperature controller; FHC

Inc., Bowdoin, ME, USA). CO2 concertation, respiration rate, and MABP were not monitored

and controlled during LFP recording. The LFP recording scheme of Fig 3E under the various

anesthetic conditions was identical to that used for the MRI acquisitions (Fig 1A); however,

for each 10 min of LFP recordings, the initial 2.5 min and the last 2.5 min were discarded,

keeping only the central 5 min for analysis with an in-house MATLAB program. Total LFP

power (mean square voltage) was calculated within a frequency range of 1–70 Hz, covering

delta to gamma frequency bands.

Pharmacological DfMRI

A local injection of −80 mOsm hypotonic aCSF (H-80) for inducing cell swelling [27,28] and

furosemide (Sigma-Aldrich, St. Louis, MO, USA) for blocking neural swelling [25,26] into the

CM was performed to investigate effects on ADC and neural status. A cannula (8-μm diame-

ter; PlasticsOne, Roanoke, VA, USA) was inserted into the CM under stereotaxic conditions

and anesthesia with 1.8%–2.0% isoflurane. The cannula was fixed with a dental cement (GC

Unifast Trad; GC CO., Tokyo, Japan) and an adhesive (Super-Bond C and B; Sun Medical

CO., LTD., Shiga, Japan). DfMRI experiments were performed 1 day after surgery using the

paradigm described above under 0.1 and 0.3 mg/kg/h medetomidine but using a homemade
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surface RF coil (a single loop diameter is 2.7 cm) for transmission and reception, as the can-

nula set-up was not compatible with the volume coil. Before acquisition of images, the RF exci-

tation power was adjusted to the CM and the Cg. The DfMRI data were acquired with the

same parameters as the resting state DfMRI experiment with several dosages of isoflurane and

medetomidine for 30 min (120 volume) total. The animals were intubated and mechanically

ventilated. The respiration rate (50 bpm), end-tidal CO2 (4%–5%), and rectal temperature

(37˚C) of the animals were monitored and artificially controlled in the normal range during

scanning. But MABP was not monitored. A 10-min infusion with normal osmolality aCSF

(299.95 mOsm; in mM: 140 NaCl, 3.0 KCl, 1.0 MgCl2, 0.3 NaH2PO4, 1.2 Na2HPO4, 3.0 glu-

cose, 1.25 CaCl2, Sigma-Aldrich, St. Louis, MO, USA), H-80 (219.95 mOsm) or 1.5 mM furo-

semide using a 10-μl Hamilton syringe and a syringe pump (Kent Scientific Corporation,

Torrington, CT, USA) was performed 5 min after the start of the DfMRI acquisition (S1B Fig).

After finishing the infusion, additional DfMRI data were acquired for 15 min without washing

out the infused solution. These solutions were infused at a flow rate of 0.1 μl/min for 10 min

(1.0 μl total). RARE images were also acquired at the end of the DfMRI acquisition to verify

the cannula position in the CM (S1D Fig). H-80 was made by adding distilled water on the

normal osmolality aCSF (27). The ADCs at the CM, the Cg, and the SS were calculated by

averaging at 5-min pre- and postperiods (S1B Fig). ADC time courses were calculated in the

same way as the experiment of DfMRI with different pharmacological conditions. ROIs corre-

sponding to the CM (15 voxels), the Cg (49 voxels), and the right SS (68 voxels) were manually

drawn using MRIcron (S1E and S5E Figs).

SNRs of pharmacological DfMRI images (b1000 and b1800) were individually calculated in

the same way as the experiment of DfMRI with different drug dosages, using the first five

images, which were obtained before aCSF infusion under 0.1 mg/kg/h medetomidine condi-

tion. The SNRs (mean ± SEM) are 12.15 ± 0.48 for b1000 (n = 6) and 8.41 ± 0.33 for b1800

(n = 6).

Electrical stimulation

Electrical stimulation experiments were performed outside the MRI scanner. The animals

were initially anesthetized with 1.5%–2.0% isoflurane to insert electrodes (bipolar tungsten

wire electrodes, 200-μm tip and 230-μm shaft diameter; PlasticsOne, Roanoke, VA, USA)

under stereotaxic conditions. For the stimulation, isoflurane was replaced by medetomodine

at a dosage of 0.1 and 0.3 mg/kg/h. This experiment was performed only under the medetomi-

dine condition because the ADC increase for medetomidine was more specific than that for

isoflurane (See Fig 1B). During the experiment, the rat’s rectal temperature was maintained

at 37˚C using the heating pad. Electrical stimulation at 100 Hz was performed with a pulse

width of 0.4 ms, with an intensity of 0.8 mA, for 10 s using an isolated pulse stimulator (Model

2100, AM systems, Sequim, WA, USA). The electrical stimulation paradigm was applied in six

rats in the CM and VPL and further applied on four animals in six other locations, based on

observed fMRI responses: Cg (−0.5 mm ML, +1.8 mm AP, −3.0 mm DV), CPu (−2.4 mm ML,

+0.35 mm AP, −5.0 mm DV), pHT (−0.4 mm ML, −3.7 mm AP, −8.3 mm DV), vmHT (−0.4

mm ML, −2.1 mm AP, −9.4 mm DV), DR (0 mm ML, −7.9 mm AP, −6.2 mm DV), and PAG

(−0.6 mm ML, −7.9 mm AP, −5.8 mm DV) under 0.1 mg/kg/h medetomidine, corresponding

to Fig 4D. A needle electrode was also inserted to the right quadriceps femoris muscle with a

reference electrode inserted into the skin of the right limb to record EMG activity. EMG sig-

nals were recorded using a Powerlab 8/35 with LabChart (AD Instruments, Dunedin, New

Zealand), as well as animal behavior using a video camera. The recording was continuously

made over 1 min, starting 10 s before electrical stimulation after the recording of each
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stimulation. A reflex test of the rat’s limbs was performed to check the animal anesthesia status.

EMG data were analyzed using an in-house MATLAB program.

In the stimulation experiment corresponding to Fig 4C, electrical stimulations at 100 Hz

for each medetomidine dosages were performed at the CM with a pulse width of 0.4 ms, with

an increasing intensity of 0.3–1.2 mA, for 10 s. The interval time between each intensity of

the electrical stimulation was 3 min (S2A Fig). Minimum amplitude (mA) with which the

anesthetized exhibited a wakefulness response during CM stimulation was defined as the

threshold amplitude to wake up. Electrical stimulations corresponding to Figs 5A and 6A were

performed at the CM with the same parameters as S2A Fig before and after a 10 min-infusion

of H-80 and furosemide into the CM under the 0.1 mg/kg/h medetomidine condition (S2B

Fig). Before the stimulation, a bipolar electrode (tungsten wire electrodes, 200-μm tip and 230-

μm shaft diameter) fused with a cannula (8-μm diameter; PlasticsOne, Roanoke, VA, USA)

and a tungsten micro wire monopolar electrode (1.0 MO, 3-μm tip and 125-μm shaft diameter;

MicroProbe, MD, USA) were inserted into the CM, and the tungsten micro wire monopolar

electrode was inserted into the Cg of initially anesthetized animals with 1.5%–2.0% isoflurane.

LFP recording at the CM and the Cg was performed 5 min after the start of the 10-min infu-

sion (S2B Fig). Total LFP power (mean square voltage) at the CM and the Cg were calculated

within a frequency range of 1–70 Hz at 5-min pre- and postperiods (S2B Fig).

Supporting information

S1 Fig. Time courses of DfMRI and pharmacological DfMRI studies. (A) Experimental time

course of anesthetic dosages of isoflurane (iso) and medetomidine (med). (B) Time course cor-

responding to Figs 5B–5D and 6B–6D for DfMRI, and S4 Fig with CM infusion of furosemide,

H-80 or aCSF under 0.1 mg/kg/h medetomidine condition. The insertion the cannula was per-

formed one day before the MRI scan. The 10 min-infusion was performed 5 min after the start

of the DfMRI acquisition. Average ADCs were calculated at the pre- and post-periods of the

infusion. (C) Representative raw images of BOLD and DfMRI (b1000 and b1800) acquired

with the volume RF coil under 0.1 mg/kg/h medetomidine condition. (D) Structural (RARE)

image showing the position of the inserted cannula. (E) Representative raw images of DfMRI

(b1000 and b1800) at CM and Cg slices acquired with the surface RF coil under 0.1 mg/kg/h

medetomidine condition. Red regions show the ROIs of the CM and Cg.

(TIF)

S2 Fig. Time courses of electrical stimulation studies. (A) Time course corresponding to Fig

4C. The insertion of an electrode was conducted under isoflurane. The electrical stimulations

(red arrows) with an amplitude of 0.3–1.2 mA at the CM were performed under 0.1 and 0.3

mg/kg/h medetomidine dosages. Resting time was 3 min for each stimulation and 30 min for

each dosage. For each stimulation period, an EMG and a video recordings were performed

over 1 minute, starting 10 seconds before electrical stimulation. (B) Time course correspond-

ing to Figs 5A and 6A for the CM infusion with furosemide or H-80 and the electrical stimula-

tions under 0.1 mg/kg/h medetomidine condition. Electrical stimulations (red arrows) was

performed before and after the 10 min-infusion. The infusion was performed 5 min after the

start of LFP recording. LFP powers were calculated at the pre- and post-periods of the infu-

sion.

(TIF)

S3 Fig. Sb1800 and Sb1000 changes for each dosage of both anesthetic conditions. T-maps of

changes in Sb1800 signals (A; n = 10 for iso and n = 8 for med) and Sb1000 signals (B; n = 10 for

iso and n = 8 for med) under isoflurane and medetomidine dosage conditions (6 out of 10
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slices are shown). Hot colors mean an increase in Sb1800 and Sb1000 signals of high dose (cluster

level corrected p&lt;0.05), compared with that of low dose of each anesthesia. Cool colors

mean the opposite (cluster level corrected p<0.05). The number of the below shows the dis-

tance (mm) from the bregma. Averaged Sb1800 (C, E) and Sb1000 (D, F) signals change ratios at

whole brains for each dosage of isoflurane (C, D) and medetomidine (E, F). Time course of

Sb1800 (G, I) and Sb1000 (H, J) signals change ratios at whole brains for each dosage of isoflurane

(G, H) and medetomidine (I, J). Bar plots exhibit mean ± s.e.m. Data for Sb1800 and Sb1000 in

whole brains of individual rats can be found in S6 Data. Statistical maps for group analysis of

Sb1800 and Sb1000 can be found in S7 Data.

(TIF)

S4 Fig. Effects of furosemide CM infusion under 0.3 mg/kg/h medetomidine condition. (A)

Average time course of ADC change at CM with the infusions of furosemide and aCSF. Aver-

age ADC changes in the CM (B), the Cg (D), and the SS (E) pre- and post-infusion of furose-

mide (n = 6 for each dosage) or aCSF (n = 6 for med 0.1 and n = 5 med 0.3) under 0.1 and 0.3

mg/kg/h medetomidine dosages. (C) Total LFP power (frequency range: 1–70 Hz) at the CM

pre- and post-CM infusion with furosemide (n = 6 for each dosage) or aCSF (n = 6 for each

dosage) under 0.1 and 0.3 mg/kg/h medetomidine dosages. Time course and bar plots exhibit

mean ± s.e.m. � p<0.05, �� p<0.01 (Paired t-test between pre and post). ADC data of individ-

ual rats found in S3 Data. LFP power data of individual rats can be found in S4 Data.

(TIF)

S5 Fig. Effects of CM infusion with furosemide, H-80, or aCSF in the right somatosensory

cortex. Average time course of ADC change at the SS with CM infusion of aCSF (n = 6), furo-

semide (A; n = 6), or H-80 (B; n = 6) (SS) under 0.1 mg/kg/h medetomidine condition. The

average ADC at the SS pre- and post-CM infusion of aCSF, furosemide (C), or H-80 (D). (E)

ROI location (red region) in SS overlaid on the representative DfMRI image of b1000. Time

course and bar plots exhibit mean ± s.e.m. �� p<0.01 (Paired t-test between pre and post).

ADC data of individual rats found in S3 Data.

(TIF)

S1 Table. Dose-dependent change of ADC and BOLD under both anesthetic drugs. Corre-

lation of absolute ADC value or the ratio of BOLD signal change with anesthetic doses at 12

locations and in the whole brain (r: correlation coefficient, p: p value). � p<0.05, �� p<0.01,
��� p<0.001. Data for 12 brain locations and whole brain of individual rats can be found in S1

Data for ADC and S2 Data for BOLD.

(DOCX)

S2 Table. Slopes of ADC and BOLD changes with agent dosage for each anesthetic drug.

The slope was estimated by dividing the absolute ADC changes or the relative BOLD signal

change with anesthetic agent dose changes. � Regions with a significant correlation (p<0.05)

as per S1 Table. A.U. = arbitrary units. Data for 12 brain locations and whole brain of individ-

ual rats can be found in S1 Data for ADC and S2 Data for BOLD.

(DOCX)

S3 Table. Abbreviations of brain regions.

(DOCX)

S1 Data. ADC data of DfMRI. Time-course data of ADCs at all brain locations and a whole

brain with isoflurane and medetomidine dosages for Figs 2, 3 and 7, S1 and S2 Tables.

(XLSX)
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S2 Data. BOLD data. Time-course data of BOLD signals at all brain locations and a whole

brain with isoflurane and medetomidine dosages for Figs 2, 3 and 7, S1 and S2 Tables.

(XLSX)

S3 Data. ADC data of pharmacological DfMRI. Time-course data of ADCs at CM, Cg, and

SS with infusion of furosemide, H-80, and aCSF for Figs 5 and 6, S4 and S5 Figs.

(XLSX)

S4 Data. MABP and LFP data. MABP data for Fig 2I and 2J. LFP power with isoflurane and

medetomidine dosages for Figs 3 and 7. LFP power before and after infusion of furosemide,

H-80, and aCSF for Figs 5, 6 and 7 and S4 Fig.

(XLSX)

S5 Data. Values of minimum amplitude of an awake response. Minimum amplitudes exhib-

iting an awake response for Figs 4C, 5A, 6A and 7.

(XLSX)

S6 Data. Sb1000 and Sb1800 data of DfMRI. Time-course data of Sb1000 and Sb1800 at a whole

brain with isoflurane and medetomidine dosages for S3 Fig.

(XLSX)

S7 Data. Statistical and overlay maps. SPM statistical maps for group analysis of BOLD for

Fig 1A, ADC for Fig 1B, Sb1800 for S3A Fig, and Sb1000 for S3B Fig. Overlay maps of BOLD and

ADC for Fig 1C, representatively. These maps are in analyze format and can be opened with

freely available image viewers such as MRIcron.

(7Z)

S1 Movie. Typical awake response of an anesthetized rat during CM electrical stimulation.

The rat which was anesthetized with 0.1 mg/kg/h medetimidine received an electrical stimula-

tion with an amplitude of 0.8 mA at the CM for 10s. During the stimulation, the anesthetized

rat exhibited a voluntary movement of limbs and body. Movements disappeared at the end of

the stimulation.

(MOV)
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