
Arab Journal of Urology (2018) 16, 65–76
Arab Journal of Urology
(Official Journal of the Arab Association of Urology)

www.sciencedirect.com
DIAGNOSIS

ORIGINAL ARTICLE
A systematic review on sperm DNA fragmentation

in male factor infertility: Laboratory assessment
* Corresponding author at: Lerner College of Medicine, Andrology Center, and American Center for Reproductive Medicine, Cleveland

Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH 44195, USA.

E-mail address: agarwaa@ccf.org (A. Agarwal).

URL: http://www.ClevelandClinic.Org/ReproductiveResearchCenter (A. Agarwal).

Peer review under responsibility of Arab Association of Urology.

Production and hosting by Elsevier

https://doi.org/10.1016/j.aju.2017.12.001
2090-598X � 2018 Production and hosting by Elsevier B.V. on behalf of Arab Association of Urology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Manesh Kumar Panner Selvam, Ashok Agarwal *
American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
Received 25 October 2017, Received in revised form 26 November 2017, Accepted 2 December 2017

Available online 17 January 2018
KEYWORDS

Sperm DNA fragmen-
tation (SDF);
Terminal deoxynu-
cleotidyl transferased
UTP nick-end labelling
(TUNEL);
DNA damage;
Sperm DNA fragmen-
tation (SDF) assay

ABBREVIATIONS

AO, acridine orange;
ART, assisted repro-
ductive technology;
CMA3, chromomysin
A3;
Abstract Objective: To review sperm DNA fragmentation (SDF) testing as an
important sperm function test in addition to conventional semen analysis. High
SDF is negatively associated with semen quality, the fertilisation process, embryo
quality, and pregnancy outcome. Over recent decades, different SDF assays have
been developed and reviewed extensively to assess their applicability and accuracy
as advanced sperm function tests. Amongst them, the standardisation of the
terminal deoxynucleotidyl transferased UTP nick-end labelling (TUNEL) assay with
a bench top flow cytometer in clinical practice deserves special mention with a
threshold value of 16.8% to differentiate infertile men with DNA damage from
fertile men.

Materials and methods: A systematic literature search was performed through the
PubMed, Medline, and ScienceDirect databases using the keywords ‘sperm DNA
fragmentation’ and ‘laboratory assessment’. Non-English articles were excluded
and studies related to humans were only included.

Results: Of the 618 identified, 87 studies (original research and reviews) and in
addition eight book chapters meeting the selection criteria were included in this
review. In all, 366 articles were rejected in the preliminary screening and a further
165 articles related to non-human subjects were excluded.
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dsDNA, double-
stranded DNA;
dUTP, 20-deoxyuridine
50-triphosphate;
DFI, DNA fragmenta-
tion index;
FITC, Fluorescein iso-
thiocyanate;
ICSI, intracytoplasmic
sperm injection;
IUI, intrauterine inse-
mination;
IVF, in vitro fertilisa-
tion;
PI, propidium iodide;
ROS, reactive oxygen
species;
SDF, sperm DNA
fragmentation;
ssDNA, single-strand
DNA;
TdT, terminal deoxy-
nucleotidyl transferase;
TUNEL, terminal
deoxynucleotidyl
transferased UTP nick-
end labelling;
SCD, sperm chromatin
dispersion;
SCSA, sperm chroma-
tin structure assay
Conclusion: There are pros and cons to all the available SDF assays. TUNEL is a
reliable technique with greater accuracy and as an additional diagnostic test in
Andrology laboratories along with basic semen analysis can predict fertility
outcome, and thus direct the choice of an assisted reproductive technology
procedure for infertile couples. Also, the TUNEL assay can be used as a prognostic
test and results are beneficial in deciding personalised treatment for infertile men.

� 2018 Production and hosting by Elsevier B.V. on behalf of Arab Association of
Urology. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Infertility is prevalent in 9% of couples of reproductive
age and is described as the inability to establish preg-
nancy within 12 consecutive months of unprotected
intercourse. Amongst infertile couples, �20% is con-
tributed by male factors alone [1]. Continuous decline
in male fertility over time, which cannot be attributed
to any specific cause, results in idiopathic infertility [2].
Various factors underlying male infertility include varic-
ocele, oxidative stress, genetic abnormalities, systemic
disease and infections, altered lifestyle, and exposure
to xenobiotics [3,4]. All these factors can influence sperm
DNA fragmentation (SDF), which acts as potential
mediator for establishing an infertility status in men.
Apart from these factors, the reproductive time line in
men is one of the factors affecting semen parameters.
Decline in the semen quality and increase in the SDF
is observed after the ages of 35 and 40 years, respectively
[5–7].

In current practice, male fertility status is evaluated
indirectly based on the individual’s semen parameters.
Conventional semen analysis is the first step in the
assessment of infertile men and it reflects the overall
functioning of all male reproductive organs [8]. In gen-
eral, semen volume, pH, sperm concentration, motility,
vitality, and morphology are determined according to
the WHO 2010 guidelines [9]. Even though basic semen
analysis is considered as the key investigation in all
Andrology laboratories worldwide, it cannot accurately
differentiate fertile from infertile men. Nearly 15% of
infertile men have normal sperm parameters according
to the WHO 2010 [10]. This clearly indicates the pres-
ence of other subcellular and nuclear factors that have
a major contribution towards male infertility that may
not be identified by conventional semen analysis.

The nuclear component of the spermatozoa, espe-
cially sperm DNA integrity, is essential for normal fertil-
isation, implantation, pregnancy, and foetal
development [11,12]. As a consequence of the high inci-
dence of SDF in the men with idiopathic infertility [13],
recent research has focussed more on determining the
clinical value of assessing SDF in male infertility and
using SDF as an advanced sperm function test along
with the conventional tests to evaluate the fertility status
of the individual. The importance of the SDF assay has
also been recognised in the latest AUA and European
Association of Urology guidelines on male infertility [14].

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The present review evaluates the different laboratory
techniques used for assessing SDF and the association
between different SDF assays. The potential clinical
use of the terminal deoxynucleotidyl transferased UTP
nick-end labelling (TUNEL) assay to measure the
SDF is discussed and the future use of SDF assays based
on the assisted reproductive technology (ART) outcome
are also reviewed.

Materials and methods

An extensive literature search of studies published until
October 2017 was performed using the PubMed, Med-
line, and ScienceDirect databases. The search was lim-
ited to full articles in English and studies related to
humans. The following primary keywords were used to
extract the articles: ‘sperm DNA fragmentation’, ‘labo-
ratory assessment’ and ‘male infertility’. Combination
of the following keywords were also used to retrieve arti-
cles: ‘sperm DNA damage’, ‘TUNEL assay’, ‘oxidative
stress’, ‘ART’, ‘laboratory test’, ‘male infertility’ and
‘advanced sperm test’. Search terms such as ‘SCSA test’,
‘SCD assay’ and ‘Comet assay’ were also used. Cross
referencing was also referred to and used in the review
process.

Results

A comprehensive literature review via electronic search
of databases resulted in a total of 618 articles, compris-
ing both review and original research articles. After pre-
liminary screening, 252 articles were selected, which
included different SDF studies from human sperm
(Fig. 1). Subsequently, a further 165 were rejected from
the 252 selected studies, of which 51 were not related to
laboratory assessment of SDF. Finally, 87 full-text arti-
cles (original research and reviews) and eight book chap-
ters met the inclusion criteria and were found to be
eligible for the review.

SDF and damage

Chemical changes and structural changes in the germ
cell DNA take place during the process of spermatoge-
nesis. DNA is the most valuable genetic material and
is highly condensed and compactly packed in spermato-
zoa in order to avoid damage. In general DNA is
wrapped around the histone proteins and are replaced
by highly basic protamines gradually for effective con-
densation of the sperm DNA [15,16], making the sper-
matozoa transcriptionally and translationally inactive
[17]. During this process torsional stress is incurred by
double-stranded DNA (dsDNA). Therefore, nicks and
breaks in the DNA are created and repair takes place
for the proper rearrangement of chromatin [18]. Failure
to repair the nicks and its accumulative effect due to
reduced protamination leads to DNA damage [19].

Another cause of sperm DNA damage is reactive
oxygen species (ROS) generated by immature spermato-
zoa. ROS attack the spermatozoa during epididymal
transit causing damage to sperm DNA, either by acti-
vating the endonuclease or sperm caspases [20]. Sperma-
tozoa with poor chromatin packing or with high
protamination are susceptible to ROS attack. In addi-
tion, SDF also occurs because of the poor disulphide
cross-links in the mature spermatozoa due to alteration
in the chromatin packaging. Epididymal sperms with
lower levels of disulphide cross-linking are prone to
DNA damage [21,22].

Both the intrinsic and extrinsic apoptosis pathways
are activated in the spermatozoa on continuous expo-
sure to high levels of ROS and reactive nitrogen species.
Activation of pro-apoptotic factors by ROS result in
leakage of cytochrome C from the mitochondrial mem-
brane, which in turn activates intrinsic caspase cascade
resulting in sperm DNA damage [22–24]. On the other
hand, extrinsic apoptosis is initiated by the activation
of Fas protein receptors present on the spermatozoa
[25]. These receptors are expressed in 10% of normo-
zoospermic and 50% of oligozoospermic men [26]. Leu-
cocytes expressing ligands FasL bind to Fas receptors
resulting in activation of pro-apoptotic proteins, which
in turn disturb the mitochondrial pathways resulting in
DNA damage. SDF is maximal when both the intrinsic
and extrinsic apoptotic pathways are activated [24,27].

Other aetiological factors include: exposure to envi-
ronmental toxins, caspase and endogenous endonucle-
ases, replication error, ultraviolet rays, and ionised
radiations. Both single-strand DNA (ssDNA) and
dsDNA fragmentation are detrimental and make
DNA unstable; however, dsDNA fragmentation is an
irreversible damage and affects fertilisation and embryo
development. To counteract the DNA damage process,
DNA repair mechanisms such as nucleotide excision
repair, mismatch repair, ssDNA and dsDNA break
repair, helps in maintaining DNA integrity (Fig. 2).
Defects in DNA repair mechanisms leads to abnormal
sperm with a high degree of DNA damage [24].
Different techniques of SDF assays for measuring DNA

damage

A variety of assays have been developed to assess SDF.
These tests either directly or indirectly measure sperm
DNA integrity. All the tests are different from one
another, thus their results are not inter-changeable,
and the most commonly clinically used SDF tests are:
sperm chromatin structure assay (SCSA), TUNEL,
sperm chromatin dispersion (SCD), and the Comet
assays.



Fig. 2 DNA damage and repair mechanisms.

Fig. 1 Flow diagram illustrating the study selection criteria.
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Specimen preparation for SDF assay

A semen sample needs to be fixed immediately. For
microscopic examination, neat semen samples are
spread as thin smears on a glass slide and air dried. Fur-
ther, they are fixed and can be used for staining the sper-
matozoa in assays such as toluidine blue staining and
chromomysin A3 (CMA3) staining. In the case of sam-
ples analysed by flow cytometry the steps involved are:
fixing, washing, permeabilising, staining, and analysis
by flow cytometer. The most important factor affecting
SDF during sample preparation is the prolonged incu-
bation of semen samples, which increases SDF signifi-
cantly after 2 h (8.81%, P = 0.004) and 3 h (10.76%,
P < 0.001) [28].

Toluidine blue staining

This microscopy assay assesses the integrity of the chro-
matin DNA of the spermatozoa. It stains the damaged
chromatin nuclear structure of the spermatozoa and
the degree of damage is visualised by optical
microscopy.

Firstly, a thin smear is prepared with the semen sam-
ple and air dried. The smear is fixed in 96% ethanol-
acetone solution of equal ratio for 30 min at 4 �C. Slides
are treated with 0.1 M HCl for 5 min at 4 �C and stained
with 0.05% toluidine blue stain for 10 min. Heads of the
spermatozoa with high chromatin DNA integrity are
stained blue and damaged DNA are stained purple. It
is a rapid and simple assay [29,30].

CMA3 staining

CMA3 staining determines the damage to the DNA by
measuring its protamination state. CMA3 binds more
to the sperm DNA deficient of protamines, which is
an indicator of poor DNA packing and damage [31].

A semen sample smear is made on a glass slide, air
dried, and fixed in glacial acetic acid–methanol (1:3)
solution for 20 min at 4 �C. The stain containing 0.25
mg/mL of CMA3 with 10 mmol/L of MgCl2 is used
for staining the spermatozoa. Stained slides are incu-
bated overnight at 4 �C and examined for the presence
of DNA damage. Spermatozoa with low protamination
stain light yellow, whereas a bright yellow stain indicates
high DNA damage due to increased protamination [32].
A value of >30% DNA damage for semen samples
determined by CMA3 assay has a significant effect in
lowering fertilisation rates in ICSI [33].

Acridine orange (AO) assay

The AO assay works on the simple principle that as the
sperm DNA is subjected to acid denaturation it binds to
the AO stain. AO bound to intact DNA is visualised as
green and damaged DNA as red. The metachromatic
shift in the fluorescence is analysed either by microscope
or flow cytometer.

For microscopic examination the air-dried semen
sample smears are fixed in Carnoy’s fixative for 2 h
and followed by staining with AO for 5 min. In the case
of flow cytometry analysis, 1 � 106 spermatozoa are
fixed in 70% ethanol for 30 min and permeabilised using
0.1% Triton X-100 for 30 s. Then, spermatozoa stained
with AO excited at 488-nm wavelength and the green
fluorescence from the dsDNA and red fluorescence from
ssDNA is measured [34,35]. The threshold value for this
assay varies from 20% to 50% to differentiate fertile
from infertile men [35–37].
SCSA

SCSA is a 30-year-old technique and the most widely
studied test for sperm DNA damage. It is described as
an indirect assay and the DNA is denatured either by
heat or acidic solution to expose the DNA breaks. This
assay detects the breaks in the ssDNA. Initially the
DNA is denatured either by heat or acid treatment fol-
lowed by staining with AO. AO bound to dsDNA emits
green fluorescence, but when bound to ssDNA it emits
red fluorescence. Stained cells are further evaluated with
flow cytometry. Green-staining sperm have intact DNA,
whilst red-staining sperm have denatured DNA [38]. A
clinical threshold for the DNA fragmentation index
(DFI) of 30% was established based on the amount of
red-staining sperm (DNA damage). This assay can be
performed in both fresh and frozen samples.

It is also considered a simple test, with high repeata-
bility in intra- and inter-laboratory results. Correlation
between two certified laboratories (R2 = 0.98) was high
[39]. The assay is also more precise and has a coefficient
of variation of �1–3% [40]. Threshold levels of 20–30%
for the DFI have been determined by the SCSA, which
is in contrast with the TUNEL assay ranging between a
4% and 36% DFI [39].
SCD test/Halo

Fernández et al. [41,42] developed the SCD assay to
measure SDF. It is an indirect technique in which intact
DNA when loaded in agarose and denatured with acidic
solution produces halos/chromatin dispersion due to the
relaxed DNA, which is visualised by fluorescence micro-
scopy [43]. Such occurrence is not seen in spermatozoa
with fragmented DNA. Sperm with non-dispersed chro-
matin (i.e. small halos) have fragmented DNA. The
amount of sperm with non-dispersed chromatin is
directly proportional to the ssDNA damage.
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This test can be performed on both neat and washed
semen samples. Initially, the sperm concentration is
adjusted to 5–10 � 106/mL. A 20 mL sample of diluted
spermatozoa is mixed with 80 mL 1% low melting agar-
ose at 37 �C. On the pre-coated agarose slides, 50 mL of
the aforementioned suspension is spread and allowed to
solidify for 4 min at 4 �C and then covered with a cover-
slip. The second step is the denaturation of the DNA,
done by immersing the sperm embedded in agarose into
acidic solution (0.08 M HCl) for 7 min in a dark cham-
ber at 22 �C, followed by treatment with neutralising
and lysing solutions for 15 min at room temperature
to arrest the denaturation. Further, it is washed in Tri
s–borate-ethylenediamine tetra-acetic acid (EDTA) buf-
fer for 2 min and rehydrated in ascending grades of
ethanol (70%, 90% and 100%). Finally the spermato-
zoa are stained with nuclear stain DAPI (40,6-diami
dino-2-phenylindole) and observed under a fluorescence
microscope [30,42,44].
Comet assay

In the Comet assay, also known as single-cell gel elec-
trophoresis, the spermatozoa embedded in the agarose
gel are lysed with detergent and migration of the frag-
mented DNA is appreciated as a tail, whilst intact
DNA remains in the head. This technique was first
introduced by Ostling and Johanson [45] in 1984. Dur-
ing electrophoresis, small-stranded DNA moves out of
the head further than large DNA strands. The intensity
of the fluorescent staining and length of the tail is
directly proportional to different degrees of DNA frag-
mentation within individual spermatozoon. This assay
can detect multiple types of DNA fragmentation only
in fresh semen samples and requires only 5000 sperma-
tozoa, hence it can be easily performed even with oligo-
zoospermic samples [46].

Spermatozoa are dispersed individually and sus-
pended in low-melting agarose at 37 �C. This mixture
is placed on a microscopic slide and covered with a glass
coverslip. These slides are placed at 4 �C to undergo
solidification process followed by lysis of spermatozoa
with buffer containing Triton X-100 detergent and pro-
teinase K. Electrophoresis of the micro-slides in neutral
buffer for 20 min at 25 V separates out the fragmented
DNA from intact DNA towards the anode pole [47].
Whereas in the case of the alkaline Comet assay, slides
are placed in denaturing solution containing 0.03 M
NaOH and 1 M NaCl for 2 min 30 s at 4 �C and elec-
trophoresis carried out for 4 min in 0.03 M NaOH buf-
fer at 20 V [48]. After the completion of electrophoresis
the slides are stained with SYBR Green I to visualise
fragmented DNA under a fluorescence microscope.
The results are analysed based on the tail length either
manually or using specialised commercially available
software [30].
TUNEL assay: established clinical technique to measure
SDF

Amongst all the current assays, determination of SDF in
infertile men by TUNEL assay has gained clinical
importance, as it targets the DNA strand breaks in the
sperm DNA. SDF can be determined either by micro-
scope or flow cytometer and can be performed with
neat, washed or cryopreserved samples. However, the
flow cytometry based assay is the most accurate due to
its high sensitivity compared with the microscopic assay
[30]. Our centre, the American Center for Reproductive
Medicine, Cleveland Clinic, Cleveland has standardised
the TUNEL assay using a bench top flow cytometer
(Accuri C6 flow cytometer; BD Biosciences, MI, USA)
with reference values [49].

The TUNEL assay is based on the identification of
DNA breaks by addition of template-independent
DNA polymerase called terminal deoxynucleotidyl
transferase (TdT) to the 30hydroxyl (OH) breaks-ends
of ssDNA and dsDNA. Fluorescein isothiocyanate
(FITC) is conjugated with 20-deoxyuridine 50-
triphosphates (dUTPs), the fluorescent signal measured
by the flow cytometer is directly proportional to the
DNA fragmentation in the analysed spermatozoa. The
counter stain propidium iodide (PI), a red-fluorescent
dye, is specifically used for nucleic acid staining
(Fig. 3) [50].

Procedure

Standardisation of the TUNEL assay for SDF has been
reported recently with a bench top flow cytometer using
the Apo-Direct kit (BD Pharmingen, CA, USA). A min-
imum of 2 � 106 sperms/mL are aliquoted from the liq-
uefied semen sample and fixed in 1 mL
paraformaldehyde (3.7%). Further, the spermatozoa
are separated by centrifugation at 600g for 4 min and
incubated in ice-cold 70% ethanol at �20 �C for 30
min. After incubation centrifuge again at 300g for 7
min to remove the supernatant without disturbing the
sperm pellet. Add 1 mL of wash buffer to the pellet
and vortex to re-suspend the sperm pellet. Centrifuge
the tubes as in the previous steps to remove the wash
buffer. Re-suspend the pellet in the 50 mL of staining
solution. Along with the spermatozoa, FITC-dUTP
staining is also done for the negative (6553LZ) and pos-
itive (6552LZ) control cells provided with the kit. The
unreacted and leftover FITC-dUTP after 60 min incuba-
tion at 37 �C is removed from the solution by centrifuga-
tion (300g for 7 min), followed by rinsing with 1 mL
rinse buffer. Finally, the cell pellet is re-suspended in
0.5 mL PI/RNase staining buffer and incubated at room
temperature for 30 min.

SDF analysis is done on a BD Accuri C6 flow
cytometer. The flow cytometer analyses cells based on



Fig. 3 Staining of sperm DNA and analysis using flow cytometer.
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their physical and fluorescence properties. Spermatozoa
are passed through the flow channel and sorted based on
the fluorescence signals generated by the stained cells.
Each sample is run in duplicate along with the negative
and positive controls. Laser detector FL1 (488 nm) with
a standard 533/30 nm band pass detects green fluores-
cence FITC signals, whereas FL2 with a standard
675/25 nm band pass detects red fluorescence produced
by PI. A minimum of 10 000 events are analysed and
the spermatozoa positive for TUNEL are considered
as DNA fragmented. Pre-installed user-friendly Zoom
tool software is used to identify the percentage of SDF
in the individual semen sample [49].

Standardisation of reference value for TUNEL assay

Several studies have been carried out to establish a ref-
erence value for the TUNEL assay. A study by Sergerie
et al. [51], analysed samples from 66 infertile men and a
reference value of 20%, with a specificity of 89.4% and
sensitivity of 96.9% for the test was established, along
with a high positive predictive value of 92.8%. Similarly,
other studies have also reported threshold values of 12%
[49], 20% [52] and 24.3% [53] to differentiate infertile
men with SDF from fertile men.

Inconsistency and high variability in the reference
values for different types of TUNEL assays to assess
SDF initiated research at the American Center for
Reproductive Medicine to carry out intense studies to
arrive at a threshold value to differentiate infertile men
with DNA damage from controls. Initially, the test
was carried out with 194 infertile men and the assay
had much less inter- and intra-observer variability and
inter-assay variability (<10%). A threshold value of
19.25% was established with a 64.9% sensitivity and
100% specificity for the assay to differentiate healthy
donors from infertile men [54]. As this study lacked clear
established reference values and use of the instrument is
difficult in clinical practice, a recent study with a large
sample size of 261 infertile men defined a reference value
of 16.8% with a high specificity of 91.6% and positive
predictive value of 91.4% [55] using a bench top Accuri
C6 flow cytometer, making it more convenient for clin-
ical laboratory use. A standardised protocol for the
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assessment of SDF using a bench top flow cytometer
was made available for patients in the clinical laboratory
[49]. Further, our group has also attempted to standard-
ise the TUNEL assay with another reference laboratory
at Basel, Switzerland. The TUNEL assay had high cor-
relation between the two centres (r = 0.94) and similarly
the average SDF rates also had a strong positive corre-
lation (r = 0.719) [56]. Currently, experiments to stan-
dardise the TUNEL assay between two bench top
units, the Accuri C6 flow cytometer and Accuri C6 Plus
flow cytometer, has demonstrated the same threshold
values for SDF (unpublished data). Overall, these stan-
dardisation studies allow researchers to compare results
from different laboratories and also to establish refer-
ence ranges and improve the predictive value of the
TUNEL assay.

Correlation amongst different SDF assays

Even though the comparison between direct (TUNEL)
and indirect (SCSA) assays cannot be done, as
TUNEL measures real DNA damage whereas SCSA
detects the DNA damage after denaturation of DNA
treated with acid solution [57], certainly a correlation
exists between the techniques when differentiating
patients with high SDF from a control group based
on the threshold values for each test separately. A
meta-analysis by Cui et al. [58] in 2015, reported that
SDF assays had high diagnostic accuracy for identifi-
cation of infertility with a sensitivity and specificity
of 80% and 83% respectively having an area under
the curve value of 0.92. The SCD and Comet assays
Table 1 Associated factors and effect of high SDF on ART outcom

Factors contributing to increased SDF

Idiopathic or unexplained infertility

� High degree SDF despite having normal semen parameters [13]

Advanced male age

� Positive correlation with age [71]

� %DFI higher in men aged �40 years [72]

Varicocele

� Positive association exists between varicocele and SDF [73]

� High SDF in both fertile and infertile men with varicocele

Chemo/radiotherapy

� Impaired spermatogenesis and fertility [74]

� Radiotherapy increased SDF and chemotherapy lowered SDF [75]

� Radioiodine therapy for thyroid cancer increased DFI [76]

Testicular trauma/severe infection

� Oxidative stress positive correlated with SDF [77]

� High SDF even in low levels of leucocytospermia [78]

Male obesity

� Poor spermatogenesis [79] and associated with high SDF [80]

Occupational exposure

� High SDF in workers exposed to pesticides and ionising radiations

� Bisphenol-A exposure leads to high SDF [81]

Patient life style

� Smoking has negative impact on sperm DNA integrity [82]

� Excessive alcohol consumption increases SDF [83]
had a combined sensitivity of 0.77 and 0.91, with a
specificity of 0.91 and 0.84, but the TUNEL test had
a pooled sensitivity and specificity of 0.77 and 0.91,
respectively. Compared with the SCD and Comet
assays, the TUNEL technique has greater accuracy in
the detection and differentiation of men with SDF
from a control group. Only a few such studies exist
that analyse the correlation between the different types
of SDF assays. Chohan et al. [59] reported that the
SCSA assay had a strong relationship with the
TUNEL and SCD assays (r > 0.866; P < 0.001) in
fertile and infertile patients for SDF. But no relation-
ship with the AO test. Later, Garcı́a-Peiró et al. [60],
reported high correlations amongst TUNEL, SCSA
and SCD assays in determining SDF in patients (n
= 11) and control donors (n = 8). A comprehensive
analysis by Ribas-Maynou et al. [61], using different
SDF assays identified a high correlation between
SCD and SCSA, between SCD and TUNEL, and
between SCSA and TUNEL, whilst, there was a mod-
erate correlation between the alkaline Comet assay and
SCD, between the alkaline Comet assay and SCSA,
and between the alkaline Comet assay and TUNEL.
However, there was no correlation between neutral
Comet assay and the other assays. A study by Simon
et al. [62], identified a positive correlation between
the Comet and TUNEL assays (r2 = 0.126; P <
0.001) in couples undergoing ART. The TUNEL and
SCSA assays exhibited similar results for SDF in infer-
tile patients compared with a control population [63]
and there was a strong correlation for the TUNEL
and SCSA assays [64].
es.

Impact of high SDF on ART outcomes

Natural pregnancy

� Very low conception rates [84]

IUI

� Low pregnancy rate (odds ratio 9.9) [85]

� Pregnancy loss with SDF >12% [86] and DFI >27% [87]

IVF/ICSI

� Negatively correlated with SDF

� Fair to poor predictive value of different SDF assays for predic-

tion of pregnancy [88]

Fertilisation rate and embryo quality

� SDF �22.3% had significantly lower fertilisation rates with

ICSI [89]

� Negative impact on reduced cleavage [90]and blastulation rate

[91] decreased blastocyst development [92]

Live-birth rate

� Negative association with live-birth rate after IVF [93]

� Increased live-birth rate with low SDF [94]

� High miscarriage rates and recurrent spontaneous abortion

after IVF and ICSI [95]
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Inter-observer and laboratory variation for different SDF
assays

Inter-observer and inter-laboratory variation in the
available techniques has deterred the commercialisation
of SDF assays. Each test has its own limitations and
drawbacks. Even though the SCSA test has the least
intra- and inter-laboratory variation, the test is yet to
be commercialised [65]. For other assays such as AO,
CMA3 staining, toluidine blue staining, and SCD assay,
inter-observer variability is the major impediment. In
the case of the TUNEL assay, the variation has been
minimised by standardisation of the assay protocol
and the inter-laboratory variability was low for the
TUNEL assay compared with the SCSA technique [64].

Taking this to next level, 10 laboratories from the
Florence consortium were involved in standardising
the protocol for Comet, SCSA and TUNEL assays by
analysing the same set of samples amongst all the labo-
ratories. This was mainly aimed to determine the extent
of correlation amongst the three tests and the degree of
variation amongst the laboratories [66].

Current status and future directions in SDF assay

In the modern era, about 2–4% of births in developed
countries are the result of ART [67] and sperm DNA
testing has been highly recommended in clinical practice
to select spermatozoa with high DNA integrity to
achieve better fertilisation rates, as poor DNA integrity
use in ART procedures is associated with decreased
implantation and pregnancy rates [68]. Although each
SDF technique has its own limitations, prognostic val-
ues have been assigned for different assays [69]. The
TUNEL assay is considered to be the most simple, sen-
sitive and reliable test for assessing SDF with low inter-
observer variation [70]. As we witness an increasing
trend in fertility research, in the future the performance
and accuracy of the SDF tests in defining the cause for
male infertility may increase tremendously.

Male infertility factors such as advanced age, varico-
cele, idiopathic infertility, obesity, and testicular cancer
have major influences on SDF rates (Table 1). In most
ART procedures, sperm DNA damage determines the
effect on the fertilisation rate and embryo quality. It also
has a negative effect on the pregnancy rate by intrauter-
ine insemination (IUI), IVF and ICSI resulting in low
live-birth rate and increased miscarriages and sponta-
neous pregnancy loss (Table 1). Therefore, the use of
SDF tests can assure an increase in the success rate in
infertile couples undergoing ART procedures.
Conclusion

Even though different tests are available to assess SDF,
still they lack optimisation and clear-cut clinical
reference values, which makes the routine use of the
SDF assays controversial. Amongst the SDF assays,
SCSA is considered as a simple indirect test but certain
limitations still restrict its use and commercialisation.
The TUNEL technique, being a direct assay, assesses
SDF with greater accuracy and the standardisation
and optimisation of the most commonly used TUNEL
assay, with no intra-laboratory variation, will increase
the positive predictive value and precise use of SDF
testing in clinical scenarios to determine molecular
factors underlying male infertility. As this is just the
beginning of the use of SDF assays in clinical practice,
in future more comprehensive studies may increase the
scope of providing SDF testing to infertile couples for
better management.
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[61] Ribas-Maynou J, Garcı́a-Peiró A, Fernández-Encinas A, Abad C,

Amengual MJ, Prada E, et al. Comprehensive analysis of sperm

DNA fragmentation by five different assays: TUNEL assay,

SCSA, SCD test and alkaline and neutral Comet assay. Andrology

2013;1:715–22.

[62] Simon L, Liu L, Murphy K, Ge S, Hotaling J, Aston KI, et al.

Comparative analysis of three sperm DNA damage assays and

sperm nuclear protein content in couples undergoing assisted

reproduction treatment. Hum Reprod 2014;29:904–17.

[63] Wiland E, Fraczek M, Olszewska M, Kurpisz M. Topology of

chromosome centromeres in human sperm nuclei with high levels

of DNA damage. Sci Rep 2016;6:31614. https://doi.org/10.1038/

srep31614.

[64] LeSaint C, Vingataramin L, Alix S, Phillips S, Zini A, Kadoch JI.

Correlation between two sperm DNA fragmentation tests

(TUNEL and SCSA) and evaluation of TUNEL assay inter-lab

variabiality. Fertil Steril 2016;106(Suppl.):e297.

[65] Shamsi MB, Imam SN, Dada R. Sperm DNA integrity assays:

diagnostic and prognostic challenges and implications in man-

agement of infertility. J Assist Reprod Genet 2011;28:1073–85.

[66] Zini A, Albert O, Robaire B. Assessing sperm chromatin and

DNA damage: clinical importance and development of standards.

Andrology 2014;2:322–5.

[67] Paasch U, Grunewald S, Glander H. Sperm selection in assisted

reproductive techniques. Soc Reprod Fertil Suppl 2007;65:515–25.

[68] Sharma RK, Said T, Agarwal A. Sperm DNA damage and its

clinical relevance in assessing reproductive outcome. Asian J

Androl 2004;6:139–48.
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