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Most of the ATP to satisfy the energetic demands of the cell is produced by the
F1Fo-ATP synthase (ATP synthase) which can also function outside the mito-
chondria. Active oxidative phosphorylation (OxPhos) was shown to operate
in the photoreceptor outer segment, myelin sheath, exosomes, microvesicles,
cell plasma membranes and platelets. The mitochondria would possess the
exclusive ability to assemble the OxPhos molecular machinery so to share it
with the endoplasmic reticulum (ER) and eventually export the ability to aero-
bically synthesize ATP in true extra-mitochondrial districts. The ER lipid rafts
expressing OxPhos components is indicative of the close contact of the two
organelles, bearing different evolutionary origins, to maximize the OxPhos
efficiency, exiting in molecular transfer from the mitochondria to the ER.
This implies that its malfunctioning could trigger a generalized oxidative
stress. This is consistent with the most recent interpretations of the evolution-
ary symbiotic process whose necessary prerequisite appears to be the
presence of the internal membrane system inside the eukaryote precursor,
of probable archaeal origin allowing the engulfing of the α-proteobacterial
precursor of mitochondria. The process of OxPhos in myelin is here studied
in depth. A model is provided contemplating the biface arrangement of the
nanomotor ATP synthase in the myelin sheath.
1. Introduction
Continual chemical energy supply in the form of ATP is vital for cellular func-
tion. Several catabolic pathways are involved in ATP production, even though
the enzyme F1Fo-ATP synthase (ATP synthase) remains responsible for most
of its generation during the aerobic catabolism of glucose [1]. ATP synthase is
coupled to the electron transport chain in the oxidative phosphorylation
(OxPhos) pathway [2]. The electrons coming from the reduced coenzymes,
namely NADH and FADH2, are delivered to molecular oxygen by the four
respiratory complexes. The considerable amount of energy gathered from the
electron transport chain (ETC) generates a proton current, which is coupled
to an ATP synthase nanomachine for ATP production.

The OxPhos machinery was originally identified in the mitochondria; how-
ever, in the last years, several authors have reported a functional expression of
the ETC and the ATP synthase in other cellular membranes [3–9]. It is important
to point out that mitochondria are also fundamental for the extra-mitochondrial
OxPhos activity, because, in humans, mitochondrial genome codifies 13 sub-
units of the respiratory complexes, necessary to guarantee an efficient and
complete OxPhos metabolism [10]. We have observed that the extra-mitochon-
drial OxPhos is performed by the same proteins codified by the mitochondrial
DNA [10], which stands in for the OxPhos machinery to be assembled in the
mitochondria before its transfer to other membranes to conduct the extra-mito-
chondrial OxPhos. In the light of these data, it appears that the cellular energy
production, pivotal for any cell, can be sustained by other membranous
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Figure 1. Updated possible mitochondria evolution: the archaea, which dis-
played a development of internal membranes, engulfed the bacterium
expressing the OxPhos machinery, coming in contact with the inner membranes
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structures besides mitochondria, sometimes bearing a higher
ATP synthetic ability than mitochondria, as is the case for the
rod outer segments of photoreceptors [11–13]. In the extra-
mitochondrial sites, the ATP synthase nanomachines can syn-
thesize aerobic ATP without the restraints imposed by the
double membrane system of the mitochondrion. In some
cases, the extra-mitochondrial OxPhos was shown to occur
on a single membrane, such as the plasma membrane of a
cell, suggesting that a closed vesicle or a double membrane
system as in mitochondria is not necessary to handle protons
(H+). Notably, the presence of a close relationship among
mitochodria and the endoplasmic reticulum (ER) evidenced
by imaging data allows us to suppose that the mitochondrial
reticulum and the ER function together in healthy cells, while
when this relationship is lost, the aerobic capacity of the cell is
diminished [14–19]. A series of analytical data evidence that
the ER is the site of the high operability of OxPhos with
associated aerobic ATP synthesis. This process is in line
with the proposed model for the evolution of mitochondria
evolved from bacteria [20–23]. Moreover, many aspects of
aerobic ATP synthesis are still unclear.
of the archaea. There is a reciprocal remodelling (the inner membranes achieve
the OxPhos machinery) and the bacterium acquires from the archaea the mol-
ecular devices (small molecular weight-G-protein in primis) that determine
remodelling and the bacterium forms the cristae, rendering the aerobic ATP
synthesis more efficient. The symbiosis with bacteria generates the nucleus
in the archaea [28].
2. A novel perspective on mitochondria
evolution

The origin of mitochondria has been widely debated and
recent years have witnessed the correction of the original
theory as proposed in the 1970s by Margulis & Bermudes
[24]. It had been assumed that the mitochondria derive
from ancestral α-protobacteria engulfed by archaea cells,
then the bacteria would have evolved into mitochondria
that express the OxPhos machinery, typical of these. The
origin of the eukaryotic host lineage for the mitochondrial
endosymbiont, the so-called three-domains–eocyte may as
well need revising [25]. Recent phylogenetic analyses found
eukaryotic genes within the archaea, and in turn, eukaryo-
tic genomes also comprise archaeal- and bacterial-specific
genes [25]. Although links for the prokaryote-to-eukaryote
transition are still missing, it is believed that eukaryotes
emerged either from a common ancestor with archaea or
from these. Possibly, eukaryotes emerged from within the
archaeal ‘TACK’ superphylum [20]. The pivotal issue is
whether the symbiosis has occurred among bacteria and
archaea already endowed with a developed internal mem-
brane system. The archaeal ancestor of eukaryotes might
have been more complex than the archaeal lineages identified
thus far [20]. The identification of archaeal genes involved in
vesicular trafficking indicates that cellular complexity had
already emerged before the acquisition of the mitochondrial
endosymbiont, as pointed out by Spang et al. [20] with
the article ‘Complex archaea that bridge the gap between
prokaryotes and eukaryotes’. Conceivably, the ancestor of
eukaryotes needed dynamic phagocytic capabilities to allow
the invagination of the mitochondrial progenitor. Membrane
fusion uses the small molecular weight G-protein Rab type
already present in archaea [26]. Notably, Rab is present in
archaea but not in bacteria. In the proto-eukaryote, Rab
would have allowed the incorporation of the OxPhos machin-
ery coming from the engulfed bacteria or have promoted a
close collaboration among the pre-existing ER and the
newly engulfed protobacteria. This is a crucial point: the
engulfed bacteria point to send the OxPhos machinery to
the great surface development of the archaea for the more
efficient operation of the OxPhos process. However, Rab pro-
teins are expressed in the mature mitochondria [27,28] where
they allow considerable increase in the internal surface, i.e.
the formation of the crystae. This appears a true symbiosis,
as the mitochondria gave access to the OxPhos machinery
to the eukaryotic endomembranes and the neo-eukaryote
‘instructed’ the mitochondria to develop the cristae, i.e. to
considerably increase the surface of the inner membrane,
increasing the efficiency of the OxPhos process. The cristae
formation is functional to better functioning of membrane
H+ capacitor for better functionality of ATP synthase [29].
The H+ handling was also analysed and it was found that
bacterial phospholipid esters enable better H+ lateral currents
when in a monolayer over water than the isoprenoid phos-
pholipid ethers of archaea [30]. This is confirmatory of H+

currents on the membrane for energy transfer.
It is possible to note that the process of increased internal

surface development has also occurred in the opposite direc-
tion, i.e. from proto-eukaryote to mitochondria, in fact, the
mitochondrion possesses cristae that the bacteria do not
have. Figure 1 schematically illustrates these possible pro-
cesses. Among other many recent contributions, worth
mentioning are the studies of Pittis & Gabaldón [21] with
the commentary from Ettema [22] where the ‘mito-intermedi-
ate’ hypothesis is considered as the most plausible. In short, it
is proposed that the archaea cell has developed the internal
membrane system before the mitochondrial endosymbiosis.
The theory has been further refined [23], hypothesizing that
the ancestral bacterium found in the advantageous host
cell, the internal membrane development that we now
know as the ER, in turn favouring the constant and possible
fusion with the mitochondrion. The existence of multiple con-
tact sites among the ER and the mitochondria, called
mitochondria-associated membranes (MAMs), has been
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long known [17]. MAMs are the site of exchange of lipids, cal-
cium (Ca2+) andmetabolites between these organelles, with an
important role in cellular bioenergetics and cell fate [31]. The
mitochondria in close proximity to the ER assume a tubular
conformation, different form the almost spherical shape they
display when the supposed mitochondrial reticulum is dis-
rupted [32,33]. Notably, the classical mitochondrial dyes
always stain a network that resembles the ERwhose continuity
is disruptedwhen, for example, fusion proteins are defective or
the cells have severe aerobic metabolism defects [34].

Interestingly, a study in yeast aiming to determine the
origin, either archaeal or bacterial of 25 open reading frame
(ORF) groups, inferred the origin of the functional eukaryotic
categories. It was found that the organization of the cytosol
and the plasma membrane and lipid metabolism were of bac-
terial origin [27]. By contrast, of archaeal origin were
categories related to the nucleus, and ER organization, to
the assembly of protein complexes and others. Obviously,
mitochondria-related ORF originated from the α-proteobac-
terial progenitor of mitochondria. Thus, it seems that the
ultimate novelty to the eukaryote, as the result of the endo-
symbiosis with the α-protobacterium is the close
relationship among two membranes, i.e. those of the pre-
existing ER and that of the mitochondrion, which had not
been there before. It was even supposed that the eukaryotic
nucleus might originate from a symbiosis in which archaea
would become bacterial parasites and, after discarding their
original genes, turn into cell nuclei [27]. This seems plausible,
given that the nuclear membrane is an extension of the ER.
3. Proton movements in the respiring
membrane

H+ cycling is pivotal to chemical energy conversion. The
mode of coupling of the process of the electron transport to
the aerobic ATP synthesis has been investigated in depth
for more than 60 years, having required a huge investigative
effort with hard discussion among scientists. Since the 1960s,
it has been accepted that coupling takes place according to
the chemiosmotic theory [35], but the foundations of this
theory have been questioned and new coupling ways have
been proposed as new metabolic, kinetic and proteomic
experimental data have accumulated [36–40].

Mitchell introduced the concept of H+-motive force
(pmf), typically ranging around 250 mV, which would be
contributed to by the transmembrane electrical potential
difference (Δψ) plus the pH difference between the two aqu-
eous phases (ΔpH). However, it has been observed that the
biological membrane surface is separated from the bulk aqu-
eous phase by ordered water molecules representing an
electrostatic barrier, which for H+ ranges around 120 meV
[41]. Therefore, the value of pmf should be calculated sur-
face-to-surface, rather than bulk-to-bulk pmf. The concept
according to which H+ translocation fuelling the ATP
synthase occurs between aqueous sources and sinks may be
reconsidered [42]. In the aqueous bulk, H+ exists as hydro-
nium ions. The dielectric/desolvation penalty (greater than
500 meV) for transferring these H+ into the hydrophobic
membrane phase should be taken into account. There is no
evident source of energy for the ATP synthase to carry the
H+ over the cited desolvation barrier [41]. We have proposed
that the transfer of H+ occurs along the membrane surface.
H+ would bind the phospholipid head groups [42]. Along
this vision, theoretically, any membrane can be considered
as a ‘proton-sponge’ on the basis of the available pH-buffers
in the form of phospholipids, which with their phosphate
residue can store and dispose of protons at the membrane–
cytosol interface [43,44]. The crucial role of the bacterial
phospholipid ester to allow the H+ current which entails
interesting evolutionary considerations was recently high-
lighted [30]. On the other hand, the existence of H+

conductors [45–47] and of H+ microcircuits in membranes
has been highlighted [48]. H+ would reside inside the respir-
ing membrane always bound to a proteolipid-phase or to the
respiring complex, never being transferred to water [49].
However, the process of ATP synthesis—that is the ADP +
Pi the endergonic reaction that provides ATP +H2O—does
occur in the aqueous phase [42,50,51]. Consistently, the F1
moiety of ATP synthase protrudes about 10 nm in the cytosol
from the inner mitochondrial membrane (IMM) surface.
Such phase separation in turn sets the need for a coupling
of the two processes. A nanomechanical coupling would
operate inside the respiring membranes. The negative
charges of phosphate groups would lie on both sides of the
IMM, whereas the positive ones would reside at the non-
polar centre of the membrane, where the hydrocarbon tails
are compact. The contours for possible membrane H+

microcircuits were recently described in detail [36].
4. Membrane shielding
An intriguing reality emerges: a shielding of the membrane
limits the interaction of ionic species dissolved in the cellular
aqueous medium with the membrane surface, covered by a
layer of water molecules which thickness is estimated
around 1.5 nm [52–55] (figure 2). Furthermore, the dielectric
constant (ε) reaches the normal value of 80 only at a distance
of about 10 nm from the membrane while decreasing to
about 6 in close proximity to it [56,57], notably owing to a
reorientation of water molecule dipoles under the influence
of the negative real charges by phosphates of membrane
phospholipids. This liquid shielding sheath, which is
schematically illustrated in figure 2, has a remarkable
repulsive effect on ionized chemical species such as the
polyanions ATP/ADP and NADH. This obstacle to mem-
brane accessibility would explain why ion pumps such as
sodium/potassium-transporting ATPase and sarcoplasmic/
endoplasmic reticulum calcium ATPase have a molecular
extensive arm with the binding site for ATP/ADP at almost
8 nm from the membrane (figure 2). Interestingly, the respir-
atory complex I presents a striking molecular extended arm
with the binding site for the polyanion NADH at a distance
from the membrane even greater than 10 nm. The existence
of this considerable molecular arm is dictated by the need
by complex I to create a redox interaction site with NADH,
which has little chance of approaching the membrane. The
polyanionic molecules such as Coenzyme A do not pass
membranes, so much so that Acyl-CoA derivatives need the
conversion to acyl-carnitine, and the enzyme that interacts
with the Acyl-CoA is attached to the internal mitochondrial
membrane and interacts with the substrates at a distance of
about 5 nm from the membrane surface [58]. Notably, ATP
is a polyanion itself.
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It emerges that the proteolipid membrane is particularly
isolated from the aqueous phase that lapses both sides and
the reactions of the OxPhos (of considerable complexity)
that occur in the membrane have no contact points with the
aqueous phase (figure 2) excluding the beginning (capture
of reducing equivalents from NADH from respiratory com-
plex I) and the end (ATP synthesis by the ATP synthase).
Consistently, it also emerges that there are two side arms
operating at the beginning and the end of the process,
respectively, the arm of the respiratory complex I and the F1
ATP synthase moiety.
5. A model for the aerobic ATP production
in myelin sheath

The aerobic ATP production by myelin sheath was documen-
ted [59–62] and has been attributed to the expression of the
ETC in its major dense line. Evidence showed that the aerobi-
cally produced ATP would be delivered to the axon through
gap junctions of which the myelin is particularly rich [63],
thus supporting the nerve conduction energetically [64].
Moreover, the F1 subunits would be present in significant
amounts in myelin, as inferred from the titration with oligo-
mycin which induces a quenching of the dye fluorescence
RH-123 [59], and the considerable presence of lipid rafts con-
taining mitochondrial components in myelin is noteworthy
[5,65]. This suggests the existence of a route delivering the
mitochondrial proteins to the sheath.

Interestingly, several studies performed with the freeze-
fracture technique on the myelin highlighted numerous
intramembranous particles on both sides of the major
dense line [66–69], which decrease in rats with chronic
streptozotocin-induced diabetes [67].

Moreover, in 1986, Gabriel et al. [66] observed that the
myelin sheath surface of the peripheral nerve is covered by
several particles, whose dimensions, 8.6 nm, coincide exactly
with those of the dehydrated ‘spheres’ F1, suggesting that
ATP synthase could be arranged with bi-faced orientation
in the major dense line of the myelin sheath. Furthermore,
the bi-faced orientation would conflict with the widely
accepted hypothesis that it is the membrane potential that
drives the synthesis of ATP in the major dense line of
the myelin sheath. Particularly significant is the fact that the
development of these intramembranous particles after
the birth of the rat optic nerve [70] appears analogous to
that described for ATP synthase in myelin [61]. However,
this view implies an apparent biophysical discrepancy
because the widely accepted model, which proposes that
the membrane potential provides the driving force for ATP
synthesis in mitochondria, does not apply to this bi-face
arrangement. In fact, following Mitchell’s theory, if a poten-
tial is active for the endergonic synthesis of ATP on one
membrane side, the ATP synthase on the other side should
perform the inverse reaction, hydrolysing ATP and establish-
ing a futile cycle. To solve this problem, in figure 3, we
propose a model in which the coupling between respiratory
complex and ATP synthase could happen on a monolayer
of the membrane complex (in the scheme is shown only the
respiratory complex I for simplicity), as already reported in
[36]. In particular, the scheme shows the single ATP synthase
coupled through the H+ circuit with respiratory complex I
oriented on its side. With this arrangement, they are active
with both ATP synthase, regardless of their orientation. It
should be noted that this scheme would allow for the central
section of the circuit to be common to both the ATP synthase.
This hypothesis is based on the fact that the circuit, built
entirely inside a monolayer of the membrane, displays an
H+ current that regards the charge but not the mass (Grot-
thuss mechanism) [71]. On the other hand, the experimental
reconstruction of ATP synthase in liposomes has already pro-
vided a series of evidence in favour of the bi-faced orientation
of this nanomachine [72].

Moreover, myelin appears a good ‘proton-sponge’
because it is rich in myelin basic protein, which, owing to
its strong basic properties, could be particularly efficient in
storing and disposing of protons.
6. Conclusion and perspectives
The universally accepted statement that mitochondria,
intended as individually separated organelle, are the cell
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powerhouse bearing the exclusive ability to aerobically pro-
duce ATP for the cell was here reconsidered. Mitochondria
and ER would have evolved early interactions rendering the
mitochondrial aerobic ATP production more efficient along
with the evolution. The endoplasmic and mitochondrial
reticulum may be in close contact, forming a unit with a
common functioning. Given this hypothesis, in some cell
types, there is also the actual transfer of the OxPhosmachinery
from the IMM to the extra-mitochondrial sites, with the inter-
mediation of the ER. An impressive amount of data shows that
the extra-mitochondrial aerobic synthesis of ATPoperateswith
great efficiency in the nervous system.

The active synthesis of ATP by the ER is an element of
evolutionary connection, finding more and more credit for
the theory that sees the ancestral bacteria, carriers of the
OxPhos machinery, benefited by the development of the
internal membranes present in the archaea that have
then evolved into the eukaryotic cell to this symbiosis
according to the mito-intermediate hypothesis [22] and, on
the other hand, appear convincing that the ancestral
eukaryotic cell has transmitted to the mitochondria the
molecular devices to increase its own internal surfaces and,
therefore, the efficiency of OxPhos. On the other hand, the
mitochondria appear as the privileged site for the assembly
of the complicated OxPhos machinery.

Although the present hypotheses attempt to answer
several basic topics, the interaction between mitochondria
and ER is well documented [43,44], the mechanisms involved
in the OxPhos machinery transfer from mitochondria to the
other cellular membranous structures remain to be clarified.
Consistently, the ER lipid rafts contain components of
OxPhos [8,19] and the plasma membrane expresses typical
mitochondrial components [9]. In perspective, this is a
question that needs to be answered adequately in future
experimentation.
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