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Abstract
Consumption of live microorganisms “Probiotics” for health benefits and well-being is increasing worldwide. Their use as 
a therapeutic approach to confer health benefits has fascinated humans for centuries; however, its conceptuality gradually 
evolved with methodological advancement, thereby improving our understanding of probiotics-host interaction. However, the 
emerging concern regarding safety aspects of live microbial is enhancing the interest in non-viable or microbial cell extracts, 
as they could reduce the risks of microbial translocation and infection. Due to technical limitations in the production and 
formulation of traditionally used probiotics, the scientific community has been focusing on discovering new microbes to be 
used as probiotics. In many scientific studies, probiotics have been shown as potential tools to treat metabolic disorders such 
as obesity, type-2 diabetes, non-alcoholic fatty liver disease, digestive disorders (e.g., acute and antibiotic-associated diar-
rhea), and allergic disorders (e.g., eczema) in infants. However, the mechanistic insight of strain-specific probiotic action is 
still unknown. In the present review, we analyzed the scientific state-of-the-art regarding the mechanisms of probiotic action, 
its physiological and immuno-modulation on the host, and new direction regarding the development of next-generation pro-
biotics. We discuss the use of recently discovered genetic tools and their applications for engineering the probiotic bacteria 
for various applications including food, biomedical applications, and other health benefits. Finally, the review addresses the 
future development of biological techniques in combination with clinical and preclinical studies to explain the molecular 
mechanism of action, and discover an ideal multifunctional probiotic bacterium.
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Introduction

In 1908, Ellie Metchnikoff introduced probiotics as useful 
microbes to favorably improve the human gut microbiota, 
replacing harmful microbes, thereby boosting human health 
[1]. The term “probiotic” was first introduced by Lilly and 
Stillwell in 1965, as secreted microbial by-products that 
strengthen the growth of its neighbors [2]. Previous stud-
ies have illustrated probiotics as favorable therapeutics to 
treat gut microbiota imbalance [3, 4]. Probiotics are “live 

microorganisms” that confer beneficial health effects to the 
host when administered in adequate amounts [5]. Probiotics 
are inclusive of a broad range of microbes and their applica-
tion, and they differentiate live microbes used as sources of 
useful compounds from those that are used for health benefits 
only [5]. Currently, the probiotics market is growing expo-
nentially estimated to reach USD 61.1 billion in 2021, and 
is projected to reach USD 91.1 billion by 2026 (http://​www.​
marke​tsand​marke​ts.​com/​Press​Relea​ses/​probi​otics.​asp).

Probiotics are described as free of pathogens and antibi-
otic resistance and their activity, viability, and growth effi-
cacy should be properly established [6, 7]. The most com-
mon species used in probiotics research and development 
belong to Lactobacillus spp. and Bifidobacterium spp. More-
over, other species are available in the market including the 
Bacillus spp., Enterococci, Escherichia coli, Weissella spp., 
and Saccharomyces [8]. Probiotics have been commercial-
ized as lyophilized pills, but also as supplements to various 
food sources such as cheese, yogurt, and nutritional bars to 
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enhance human health. Most of the probiotic strains belong-
ing to the Lactobacilli and Bifidobacterium have been given 
the Generally Regarded as Safe (GRAS) status in the USA, 
and qualified for the safety status given by EFSA (Euro-
pean Food Safety Authority). The multifactorial selection 
criteria of probiotics used in various food sources are often 
divided into three categories: resistant to acidic gastric con-
ditions, capable of attaching to the gastrointestinal mucosa, 
and immune system modulator [9, 10]. Diverse approaches 
have been undertaken by Asian countries mainly Indonesia, 
Malaysia, Philippines, Singapore, Thailand, and Vietnam to 
regulate probiotics marketing [11]. Among these countries, 
only Indonesia, Malaysia, Philippines, and Thailand have 
enacted specific regulations related to the legal definition 
of probiotics. Malaysia, Philippines, and Thailand have 
permitted to use of probiotics foods or health supplements; 
however, all six Southeast Asian countries have permitted 
for application of new microorganism to be used following 
different approaches and requirements [11].

Probiotics have previously been classified into mono- or 
multi-strain microbial products [12]. Microbial strains in 
multi-species probiotics belong to Bifidobacterium breve, 
Bifidobacterium infantis, Bifidobacterium longum, Eubacte-
rium faecium, Lactobacillus acidophilus, Lactiplantibacillus 
plantarum, Lacticaseibacillus casei, and Streptococcus ther-
mophilus [12]. Multi-strain/multi-species probiotic strains 
due to their symbiotic nature show a cumulative positive 
effect on health in terms of treating antibiotic-associated 
diarrhea, improving growth performance and mortality in 
broilers, and protecting against Salmonella typhimurium 
infection [12]. Similarly, Chapman et al. [13] showed that 
probiotic mixtures comprised of different strains produced 
a superior effect than that of single-strain probiotics, against 
pathogenic growth. Among the multi-species, Bifidobacte-
rium lactis W51, L. acidophilus W22, Lactiplantibacillus 
plantarum W21, and Lactococcus lactis W19 have been 
proven to strengthen the gut barrier function and are also 
currently commercialized worldwide [14]. These probiotic 
mixtures were proven to be beneficial to patients with food 
intolerances by increasing the IL-10 levels and decreasing 
the cytokine Th2 [15]. Classical probiotics comprising the 
Lactobacillus and Bifidobacterium groups were shown as 
promising biological tools for the treatment of a wide variety 
of inflammatory and metabolic diseases [9].

The results of many clinical trials involving humans and 
mice studies have shown the efficacy of probiotics against 
multiple diseases including their ability to suppress hyper-
tension [16], reduce irritable bowel symptoms [17], prevent 
inflammatory bowel disease [18], and post-operative com-
plications [19]. Similarly, probiotics showed higher efficacy 
against allergic disorders [20], potent antimicrobial [21], 
and anti-colorectal cancer properties [22]. At the molecu-
lar level, probiotics initiate the gene activation to regulate 

the host cells’ immune response including the regulation 
of brain behaviour through bidirectionalneuronal signaling 
[23].

The human gut microbiome in the form of probiotics can 
act as potential therapeutics against various issues like met-
abolic disorders, obesity, bacterial infection, and immunity 
[24]. Ingested microbes in the form of probiotics act as a 
source of useful compounds such as vitamins, bacteriocins, 
fatty acids, oligosaccharides, and various other immune-
modulatory compounds that control the host immune sys-
tem [25]. The human gut contains different microbes such 
as bacteria, fungi, and viruses; however, the consumption 
of probiotic bacteria alters the gut microbial composition 
in a strategic way to combat the pathogenic microbes in the 
intestinal niche [26]. However, in-depth studies in humans 
are urgently required to assess the probiotics-induced 
changes in gut microflora and these changes are associated 
with clinical benefits in the host. The recent discovery of 
high-throughput sequencing techniques coupled with other 
experimental approaches such as improved culturing meth-
odologies, cost-effective genome and metagenome sequenc-
ing, and more powerful tools to unravel the bacterial 
genomes allows focusing on probiotics’ relevant biological 
questions, facilitating patient-oriented therapeutics [27]. 
The development of new tools integrated with the analysis 
of the microbial community composition, transcriptome 
shotgun sequencing, and proteomics approaches allows 
the identification of potent probiotic strains [28]. Novel 
sampling systems provide information about the immune 
system, metabolism, and microbiome alteration, driving 
this field forward [29]. Ultimately, an integrated approach 
will support the establishment of mechanistic insight into 
effector molecules and will pave the way for researchers 
to developnovel, emerging concepts like postbiotics [30].

Accumulating evidence addresses the increasing impor-
tance of the identification/discovery of novel probiotic 
bacteria with robust functionalities that hold great poten-
tial to commercialize worldwide as functional products 
and therapeutics. In the present review, we summarize the 
use of bacterial strains as probiotics and provide an over-
view of microbial selection, screening trials, metabolic 
engineering, and molecular biology approach in combina-
tion with synthetic biology to address research develop-
ments in the rational design and engineering of probiotic 
bacteria.

Mechanistic and Molecular Insight of Probiotic 
Function

Previous studies have shown diverse probiotic effects 
through multifarious mechanisms like pathogenic protec-
tion, enhancement of immunomodulation, alteration of 
gut microbiota, improvement ofthe barrier function of gut 
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epithelium, and short-chain fatty acids (SCFAs) produc-
tion (Fig. 1a) [31, 32]. The efficacy of probiotics to treat 
various diseases has been summarized in Table 1. Probiot-
ics activity requires either direct contact or proximity to 
host cells for induction of inflammatory responses. The 
role of probiotics at an immune marker levelcomprises the 
modulation of mitogen-activated protein kinase (MAPK) 
signaling pathway, interleukin (IL)-6 & IL-8, tumor necro-
sis factor (TNF)-α, phosphoinositide 3-kinase (Akt), Inter-
feron (IFN)-γ, and other contact-dependent mechanisms 
[72]. The specific effect of probiotics includes Lactoba-
cillus (effector: lipoteichoic acid) mediated secretion of 
TNF-α, through toll-like receptor 2 (TLR-2), B. longum 
(effector: cell surface pilli) stimulated IL-10 secretion, 
modulation of proinflammatory cytokine and helper-T cell 
response by B. longum 36,524 (effector: exopolysaccha-
ride), and L. rhamnosus (effector: cell surface appendages) 
mediated modulation of TNF-α, IL-6/10/12 in the intes-
tinal mucous. Additional examples include L. rhamnosus 
(effector: pilli) induced generation of reactive oxygen spe-
cies (ROS) and inhibition of NF-κB activation, Ligilacto-
bacillus salivarius Ls33 (effector: peptidoglycan) medi-
ated protection from colitis in IL-10 dependent manner, 
L. acidophilus L-92 (effector: surface layer protein slpA) 
mediated immune modulation, and B. lactis mediated 
induced IgA secretion [73, 74].

Most mice studies have demonstrated that probiotics 
inhibit pathogenic colonization either by attachment to 
epithelium cells through competition for mucosal bind-
ing sites, by producing antimicrobial compounds, or by 
blocking the ability of pathogens to adhere (Fig. 1b). Col-
lectively, most of these responses were shown in differ-
ent probiotic strains in mice models. Also, the response 
is strain-dependent (Table 2). Many lactic acid bacteria 
(LAB) produce compound such as bacteriocins which show 
antimicrobial activity [83]. Bacteriocins have been shown 
to disrupt the quorum sensing (QS) signaling pathway. Pro-
duction of bacteriocin Abp118 by L. salivarius UCC118 
inhibits the infection of L. monocytogenes in mice [84]. L. 
acidophilus La-5 has been shown to inhibit the virulence 
factor expression of pathogenic E. coli O157:H7 in an in-
vitro mice model [85]. L. acidophilus A4 antagonized the 
adhesion of E. coli to the intestinal epithelium by upreg-
ulating the secretion of IL-8, TNF-α, and mucin-2 [86]. 
Among other lactic acid bacteria, L. acidophilus GP1B 
improved the survival of mice subjects, following infec-
tion with Clostridium difficile. Additionally, Limosilacto-
bacillus reuteri RC-14 repressed the virulence of Staphy-
lococcus aureus through toxic shock syndrome toxin-1 
[87]. Among other functionalities, probiotic bacteria have 
been shown to maintain gut barrier function through the 
up-regulation of tight junction proteins like claudin-1 and 
occluding [88]. The hydroxy cis-12-octadecenoic acid 

(HYA) produced by L. plantarum has been demonstrated 
to modulate the tight junction proteins by inducing the 
secretion of INF-γ and TNF-α, via mitogen-activated pro-
tein kinase (MAP-K) and extracellular signal-regulated 
kinase (ER-K) pathway [89]. Additionally, many probiot-
ics can secrete metabolites, improving colonic epithelial 
resistance, enhancing the upregulation of mucous secretion 
(MUC1, MUC2, MUC3) in colonic epithelial cells, and 
modulating the microbiome population.

In mice, probiotic metabolite HYA ameliorated the path-
ogen-induced epithelial barrier disruption by preventing 
the degradation of E-cadherin and beta-catenin in a GPR 
40-dependent pathway [90]. L. rhamnosus secreted proteins 
p40 and p75, which play a key role in maintaining intestinal 
epithelial stability by inhibiting cytokine-mediated apopto-
sis. In an in-vitro cell-based assay, Lactobacillus strains have 
been shown to secrete MUC-3 in HT29 cells and MUC-2 in 
Caco-2 cells; however, these effects require direct mucosal 
adherence. Various Bifidobacterium and Lactobacillus 
resist bile salts by producing the bile salt hydrolase (BSH), 
thus minimizing weight gain and also reducing the choles-
terol, and triglyceride levels in mice [91]. Sarkar et al. [92] 
reported that probiotics can also regulate the host’s antide-
pressant and anxiolytic effects via regulating the signaling to 
the central nervous system. In L. rhamnosus JB-1 adminis-
trated mice, corticosterone response was attenuated through 
the expression of mRNA for γ-GABA-A and GABA-B brain 
receptors [93]. Mice fed with L. reuteri (strain ATCC PTA 
6475) restored the oxytocin level, and improved their social 
behaviour when fed with the high-fat diet, which resulted in 
gut dysbiosis [94].

Up to now, a few in-vivo proteomics studies involving 
large-scale characterization of microbiota-mediated changes 
have been displayed especially in gastrointestinal tract (GIT) 
models [95]. Proteomics studies involving probiotics have 
provided insight into molecular mechanisms and metabolic 
pathways, required to overcome the challenges of acidic pH 
in GIT (pH 2.0) and bile salts in the small intestine. Most 
proteomic studies highlighted the over-expression of proteins 
regulating the carbohydrate metabolism, over-expression of 
Clp family proteins (GroES, GroEL, DnaK, DnaJ), and pro-
ton translocating ATPase to maintain cytoplasmic homeo-
stasis. Additionally, the expression level of proteins involved 
in transcription, translation, DNA repair, nucleotide, and 
amino acid biosynthesis were highly affected [96, 97]. Fur-
thermore, proteomic evidence showed enhanced exopolysac-
charides (EPS) production, supporting the hypothesis that 
EPS may confer protection to bacterium against the adverse 
environment in the GIT. On the other hand, in L. rhamnosus 
the under-expression of EPS biosynthesis genes resulted in 
a less protective EPS layer, which was found to assist in gut 
adhesion [98]. Moreover, proteomic evidence supports that 
Lactobacillus exposure to bile salts triggers the expression 
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Fig. 1   a Mechanism of action of probiotic bacteria; (i) probiotic bac-
teria can be used to cure depression by enhancing beneficial bacte-
ria population which further improve mood through gut-brain axis; 
(ii) probiotic-produced SCFAs (acetate, butyrate, propionate) con-
fers beneficial effects in the gut, brain, and also enhace the relese of 
IL-10 and cytokines; (iii) probiotic bacteria also alters the tight junc-
tion protein that forms a seal between adjacent epithelial cells near 
apical surfaces; (iv) probiotic bacteria interact with epithelial cells 
through TLR1/TLR2 and induces an increase in downstream signal-

ling that are involved in immune response, and other processes like 
cell-proliferation, pro-inflmmatory cytokines productions, and dif-
ferentiations. b Transport of probiotic and their active metabolites/
factors from intestinal lumen to mucosa. Probiotic bacteria and their 
active metabolites confers several beneficial effects by (1) strengthen-
ing the epithelial barrier, (2) antimicrobial productions, (3) enhance-
ment of adhesion protein to mucosa, (4) inhibiting the pathogen atta-
chement, (5) activating the dendritic cells, and (6) competitive exlude 
the pathogens
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of Nag A/Nag B proteins, maintaining the redox balance and 
preventing oxidative damages [99, 100].

An in-vitro proteomic study identified the major proteins 
associated with adhesion processes as well as the probiotic-
host effect was interestingly shown by cell appendages/
or envelopes [101]. Furthermore, proteins such as eno-
lase (ENO), glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH), and elongation factor Tu (EF-Tu) promote pro-
biotic adhesion to GIT. However, these proteins are also used 

by pathogens to bind to the mucous layer of GIT, illustrating 
the key role of probiotics in preventing enteropathogenic 
bacteria to attach to the intestinal mucosa [102]. Moonlight-
ing proteins such as GroEL and EF-Tu, present in the probi-
otic strain Lactobacillus johnsonii NCC533, enhance IL-8 
secretion in macrophages, illustrating their role in immune 
modulation. Izquierdo and associates suggested that dif-
ferences in the surface proteome of Lactobacillus strains 
were responsible for their diversity in adhesion ability to 

Fig. 1   (continued)
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Table 1   Probiotic strains and 
their use in metabolic disorder 
and disease prevention

Strain Disease prevention References

L. rhamnosusGG Allergy and Immune Response [33]
Enterococcus mundtii ST4SA Antibiotic removal [34]
Lactobacillus strains [35]
L. brevis KB290
Bifidobacterium strains
L. plantarum 299v Cardiovascular disease [36]
E. coli 1917 Colitis [37]
E. faecalis Colon cancer [38]
L. plantarum Diarrhea [39]
L. caseiDN-114 001 [40]
B. bifidum Eczema [41]
B. lactis [42]
Escherichia coli Food allergies [43]
L. casei Gastroenteritis [44]
E. faecium M-74 Hypercholesterolemia [45]
Propionibacterium freudenreichii [46]
L. reuteri Infant colic syndrome [47]
Lactobacillus strains Intestinal dysbiosis [48]
L. johnsoniiN6.2
B. infantis35624 Irritable bowel syndrome [49]
B. bifidum [50]
E. coliDSM17252 [51]
Lactobacillus strains
Saccharomyces cerevisiae CNCM I-3856 [52]
L. acidophulus Lactose intolerance [53]
S. cerevisiae Pain relief [54]
L.acidophulus Peptic ulcer disease [55]
L. rhamnosus GR-1 Urinary tract infection [56]
L. reuteri RC-14
L. acidophilus Ulcerative colitis [57]
E. coli
Bifidobacterium [58]
L. rhamnosus GR-1 Vaginal candidiasis [59]
L. pentosus B281 Inhibition of cancer cell proliferation [60]
L. plantarum B282 and cell cycle arrest
L. casei ATCC 393 Induction of apoptosis [61]
Bacillus polyfermenticus KU3 [62]
Enterococcus faecium RM11 [63]
L. fermentum RM28
L. acidophilus SNUL Suppressed proliferation of tumor cells [64]
L. casei YIT9029
B. longum HY8001
L. reuteri PTCC 1655 Prevention of gastric cancer [65]
L. kefiri P-IF [66]
Bacillus natto, Prevention of colorectal carcinoma [67]
L. acidophilus
Propionibacterium freudenreichii Prevention of liver cancer [68]
Streptococcus thermophilus Decreased the risk of colorectal cancer [69]
Lactobacillus delbruckii
L. acidophilus L1 Decreased the risk of bladder cancer [70]
L. casei Shirota (LcS) Minimized the human papilloma virus

(HPV) associated infection
[71]
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mucous of GIT [103]. A higher ratio of proteins like GroEL 
and DnaK responsible for mucin binding was present in 
highly adhesive L. plantarum WHE 92, when compared to 
less adhesive L. plantarum 299v and CECT 4185. The pro-
teomic map of the L. plantarum 299v identified 29 proteins, 
highlighting their role in mucin binding [101]. Ashida et al. 
[104] reported the surface layer protein (SlpA) of L. acido-
philus in adhesion to Caco-2 cells. The immuno-stimulatory 
activity and protective role of SlpA in L. helveticus against 
Salmonella typhimurium have been reported [105]. A muta-
tional study featuring the SlpA of L. acidophilus confirmed 
the SlpA’s role in binding to dendritic cells for enhanced 
pro-inflammatory cytokine production [106]. Candela et al. 
[107] reported that exposure to bile acids upregulates Plg 
receptors such as ENO/DnaK and phosphoglycerate mutase 
in Bifidobacterium animalis BI07. Similar changes were 
observed in the surface layer proteome of B. longum under 
bile stress [108]. These findings illustrate the role of bile 
as signaling trigger molecule to enhance the probiotic-host 
cross-talk and further colonization processes.

Recently, Caenorhabditis elegans has attracted attention 
as an Ideal model for testing the efficacy of suitable probiotic 
candidates [109]. As compared to cell culture, C. elegans has 
a certain advantage of being an entire organism with different 
cell and tissue structures. Additionally, the absence of ethi-
cal issues and lower cost allows a safe orientation of future 
experiments on mammals and also decrease the number of 
animals to use/or sacrifice. A study showed that probiotic 
administration decreased the bacterial load in its intestine and 
also increased its lifespan. Some Lactobacilli and Bifidobac-
terial strains (B. infantis, B. longum) increased the survival 

of C. elegans from 17% to a maximum of 46% [110–112]. 
A recent study observed that probiotic bacterium L. para-
casei D3-5 and L. plantarum SK-9 administration increased 
the function of C. elegans with an improvement in physi-
cal functions and high muscle mass [112]. Probiotic bacte-
ria enhance the longevity of C. elegans via modulating the 
p38 mitogen-activated protein kinase (p38 MAPK) signaling 
pathway and through induction of the SKN-1 genes encoding 
antioxidant proteins. A study showed that probiotic intake 
increased the longevity of C. elegans through involving the 
pmk-1 and NHR (nuclear hormone receptor) family; how-
ever, the detail mechanism is still unclear [113]. Recently, it 
was observed that probiotic B. infantis administration signifi-
cantly increased the lifespan of C. elegans through mutation 
of Toll-like receptor homolog TOL-1 [114]. These shreds of 
evidence clearly indicate that C. elegans model represents 
a cheap, easy-to-handle and rapid tool to screen the new 
probiotic microorganisms and also to explore the molecular 
aspects of interactions. Additionally, in the future C. elegans 
will emerge as powerful, bioethical and pertinent model host 
between in-vitro and mammalian models.

Probiotics: Important Source of Bioactive Molecules

Probiotics are important sources of various bioactive com-
pounds (Table 3). Among these bioactive compounds, bacte-
riocins are proteinaceous toxins produced by a wide variety 
of bacteria [129]. Target-specific bacteriocins are non-toxic 
in nature and limit the progression of pathogens to neighbor-
ing cells. Many LAB-produced bacteriocins are emerging 
as antibiotics with proven potential in in-vitro and in-vivo 

Table 2   Microorganism employed as probiotics

Species Response References

A. muciniphila Enhance the immunity and gut barrier function, production of 
Vitamin B12

[75]

B. uniformis Intestinal homeostasis and immune [75]
B. coagulans, B. subtilis, B. laterosporu Control of infections and increased survival of host [76]
B. longum, B. catenulatum, B. breve, B. animalis, B. bifidum Enhanced maturation of DCs and production of IL-10 & IL-12, 

upregulation of c-myc and il-6 genes
[77]

E. faecium Prevention of diarrhea and minimizing the chronic sinusitis and 
bronchitis

[78]

L. plantarum, L. paracasei, L. acidophilus, L. casei, L. 
reuteri,L. rhamnosus, L. curvatus, L. crispatus

Induction of mucin secretion, induction of mucosal, humoral and 
cellular immune responses

[79]

L. lactis Activate the innate immune response and protection against 
pathogen infection

[80]

P. productus Improvement of nervous system functioning [75]
P. jensenii, P. freudenreichii [75]
S. boulardii Prevention of Clostridium difficile infection and antibiotic associated 

diarrhea
[81]

S. sanguis, S. oralis, S. mitis, S. thermophilus, S. salivarius Inhibition of fungal infection, prevention of biofilm formation by 
pathogenic bacteria

[82]
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systems [130, 131]. LAB-bacteriocins are very specific to 
their target species, displaying bacteriostatic and bacteri-
cidal activity and do not affect their neighboring bacteria. 
Therefore, simultaneous applications of bacteriocins and 
antibiotics are appearing as possible therapeutic agents 
[132–135]. Members of the LAB-group belong to the hetero-
fermentative group and have the ability to produce various 
organic acids. The produced organic acids act on the outer 
surface of pathogenic bacteria and hamper the protein syn-
thesis machinery resulting in increased fatalities [136]. The 
lactic acid produced by LAB completely inhibits the growth 
of pathogens, such as E. coli, Salmonella, and L. monocy-
togenes even at 0.5% (v/v) concentration. Additionally, the 
mucous layer of epithelial cells provides protection against 
damages caused by these acids. Similarly, diacetyl produced 
by many LAB-groups, interacts with arginine receptors of 
Gram-negative bacteria, leading to reduced arginine avail-
ability [137]. Some LAB-groups have the ability to produce 
H2O2, which inhibits pathogenic bacteria through a toxic oxi-
dation mechanism [138]. The reuterin produced by L. reuteri 
inhibited DNA replication and was shown to compromise the 
survival of E. coli and Candida spp. [139].

Probiotic bacteria have the ability to produce EPSs in 
bulk [140]. Microbial EPSs have caught attention for their 
cumulative health effect. These have been shown to promote 
an immunostimulatory response, antitumor and antioxidant 
activity, and also lower blood cholesterol [141]. Enzymes such 

as glycosyltransferase and glycantransferase can metabolize 
sugar nucleotides into EPSs. EPSs contain multiple sources of 
oligosaccharides, which are cross-linked polymers, composed 
of monomer units. Probiotics together with other gut residing 
bacteria ferment non-digestible oligosaccharides to monosac-
charides, therefore, providing nutrients for the proliferation 
of gut microflora [142]. Dietary oligosaccharides boost the 
immunoglobulin-A (IgA) level, which plays a natural role in 
the host’s defense. In animal studies, fructooligosaccharide 
(FOS) induced the synthesis of IgA [143]. Similarly, FOS and 
galactooligosaccharides (GOS) have been used for nutritional 
therapy in case of constipation [142].

Probiotics are a source of various important enzymes 
like lactase, amylase, esterase, and lipases. Lactase hydro-
lyses lactose to glucose and galactose, which are further 
converted to SCFAs [144]. LAB reduces the amount of 
lactose in yoghurt through β-galactosidase, lowering lac-
tose intolerance [145]. Similarly, amylase and peptidase are 
also probiotically produced enzymes that severely affect the 
biochemical reaction of the host, modulating its metabo-
lism. Probiotic bacteria also play an important role in flavor 
development through the biochemical conversion of amino 
acids to aldehydes, alcohols, and acids. Small molecules like 
acyl-homoserine lactones produced by gut bacteria play an 
important role in quorum sensing and biofilm formation 
[146]. Many LAB produces small peptides and amino acids 
by proteolysis of casein [147].

Table 3   Bioactive compounds of probiotic bacteria and its effect on health system

Probiotic strain Bioactive compounds Health effects References

B. coagulansRK-02 Exopolysaccharides (EPS) Amelioration of toxic oxidative free radicals [115]
B.adolescentis DSM 18,350 Folate vitamins Biosynthesis of nucleic acid [116]
B. pseudocatenulatum
Bifidobacterium spp. Pyridoxine (Vitamin B6) Amino acid metabolism [117]
Clostridium spp. Amino acids Provides essential amino acid [118]
E. casseli flavus MI001 Enterocins Antimicrobial activity [119]
Enterobacteriaceae Metabolite like amino acids Nutrient support [118]
Enterococcus spp. Aromatic amino acids Improve the male reproductive system [118]
Fusobacterium varium amino acids (arginine) Improve the male/female reproductive system [118]
F. prausnitzii, Butyric acid Energy source for colonocytes [120]
Lactobacillus spp. Lactic acid Improve the metabolism [121]
Lactobacillus spp. Vitamin B1 Synthesis of nucleic acid/fatty acids [122]
Lactobacillus sp. G3 Amylase Starch hydrolysis [123]
L. gasseri strains DSM 20,604 and 

20,077
Inumins/Levans Minimize fat/cholesterol absorption [124]

L. fermentum E-3 Superoxide dismutase/Catalase Antioxidant activity [125]
L. fermentum E-18
L. fermentum CECT 5716 Vitamin B9 Energy metabolism [126]
L. reuteriJCM1112 Vitamin B12 Improves the RBC formation [127]
P. freudenreichii Propionic acid Play a role in gluconeogenesis [128]
P. freudenreichii β-galactosidase Hydrolysis of β-galactoside [128]
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Many probiotic bacteria produce water and fat-soluble 
B-group vitamins. Water-soluble vitamins are absorbed in 
the intestine, whereas fat-dissolvable vitamins are ingested 
as micelles in the intestinal tract [148]. They are required for 
various metabolic processes of carbohydrates, fats, amino 
acids, and nucleic acid synthesis. Many Bacillus and E. coli 
strains have been shown to produce riboflavin [149]. Simi-
larly, Bifidobacteria strains produce B-complex vitamins, 
which help in the maintenance of the overall health of the 
gut [150]. Interestingly, few bacterial strains are sufficient 
sources of B12, which is not synthesized by plants and is 
important for blood formation and nervous system function. 
The LAB probiotic strain L. reuteri is able to produce the 
cobalamin. Propionibacterium shermani also produces B12, 
propionic acid, and other useful metabolites for industrial 
application. Another group of vitamins, thiamine, is pro-
duced by Bifidobacterium [150].

Metabolic and Functional Potential of Probiotics

Gut bacteria ferment the undigested carbohydrates to pro-
duce energy which can be used for multiple body functions. 
These probiotic bacteria maintain a healthy symbiotic rela-
tionship with the host’s gut flora. Under optimal intestinal 
conditions, they modulate their metabolic pathway machin-
ery to metabolize undigested sugar into SCFAs, such as 
acetate, butyrate, and propionate [121]. It is estimated that 
most of the produced SCFAs (up to 95%) are utilized by the 
gut microbiota for their energy-dependent processes. How-
ever, their profile varies with different prebiotic sources. The 
produced SCFAs act in a beneficial way, specifically as an 
energy source and also counteracting pathogenic microor-
ganisms [151]. In humans, they enhance signaling pathways 
like AMP kinase in muscle, and promote fatty acid oxida-
tion, thereby decreasing lipid accumulation [152]. Among 
SCFAs, acetate crosses the blood–brain barrier and is associ-
ated with regulatory neuropeptides that favor appetite sup-
pression [153]. Butyrate is used as an energy source for the 
propagation of colonocytes and enterocytes. Additionally, 
butyrate has shown therapeutic potential in diseases like 
diarrhea, colon cancer, cardiovascular disease, and other 
inflammatory responses [154, 155]. Propionate diffuses 
into the portal vein system to be utilized for hepatic gluco-
neogenesis processes [156]. Moreover, SCFAs reduce the 
secretion of cytokines/or chemokines by lowering the local 
infiltration of macrophages, and enhance adipogenesis in a 
G-protein coupled receptors such as the GPR43-dependent 
mechanism, by activating the peroxisome proliferator recep-
tor [152]. To regulate carbohydrate and fat metabolism, pro-
biotic bacteria produce many amino acids and their derived 
molecules (Supplementary Figure 1) [144]. The amino acids 
produced in the gut are further fermented by bacteria to pro-
duce phenol and indoles, maintain the energy balance, and 

inhibit pathogen infections. Moreover, the fermentation of 
amino acids generates several chains of esters, alcohols, and 
organic acids, which form the aroma and flavor of various 
food products [157].

Few probiotic bacterial strains contain exopolysaccharide- 
metabolization enzymes such as glycosyltransferases and 
glycantransferases, which convert sugars to EPSs. Besides 
EPS-producing, probiotic bacteria offer further advantages 
in antitumor and antioxidant activity, immune-stimulatory 
behavior, and also lower blood cholesterol [158]. The human 
body develops intolerance to lactose due to a deficiency in 
the enzyme lactase; however, LAB possesses the enzyme 
β-galactosidase which decreases the amount of lactose in 
food products, especially yoghurt [159]. Additionally, LAB 
also produces enzymes like amylase and peptidase that 
improve the metabolism of their host [160]. The biological 
effect of administrated probiotics is severely affected by the 
enzymatic activities in the gut, being estimated that Lactoba-
cillus and Bifidobacteria exhibit over 20 different enzymatic 
functions. B. longum administration changes the intestinal 
microbiota, lowering the β-glucuronidase level [161]. In 
addition, B. longum increases ATP production through the 
phosphoketolase pathway leading to enhanced acetic acid 
production [162]. Similarly, B. animalis activates the path-
way of intermediate metabolites like formate, resulting in 
enhanced oxalate consumption [99].

Furthermore, clinical trials using probiotics to treat non-
alcoholic fatty liver disease (NAFLD), showed a reduction 
in liver aminotransferase activity [163]. A random clinical 
study, featuring 30 healthy individuals fed with yogurt con-
taining two probiotic Lactobacillus strains, compared with 
healthy individuals fed with standard yogurt, detected nine-
teen enzymatic activities in the feces of probiotic-treated 
volunteers. The activity profile tested by both groups was 
constant; however, the naphthol-AS-BI-phosphohydrolase 
and leucine arylamidase activities were higher in the feces 
of the probiotic administrated group [164]. In another study, 
probiotic-treated group received L. gasseri CECT 5714 and 
L. coryniformis CECT 5711, showing higher fecal butyrate 
levels, when compared to the control group. Changes in fecal 
acid contents could be used as biomarkers for identifying 
individuals who benefited from probiotic treatment; how-
ever, the impact of the probiotic intake on microbiota and 
metabolites production is associated with the gut microbial 
ecosystem [165].

Another clinical study featuring 33 healthy individuals 
of different age groups (26 to 76), were given an oral dose 
of L. plantarum strain Lp-8, showed higher levels of acetate 
and propionate when compared to butyrate, illustrating that 
the production of fecal metabolites is bacteria-dependent 
[166]. A 4-week random clinical trial involving 20 human 
volunteers fed with Bifidobacterium reported higher levels of 
metabolites like acetate, butyrate, isobutyrate, and succinate 
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when compared to control groups [167]. Probiotic bacteria 
either by themselves or in symbiosis upon administration 
to elderly people could be able to improve their metabolic 
functions [168]. In a trial of 96 days with probiotic yeast 
Saccharomyces boulardii, the strain was found to be helpful 
for decreasing the occurrence of diarrhea receiving the total 
enteral nutrition. The level of fecal butyrate was found to be 
lower in patients as compared to healthy individuals. A trial 
with S. boulardii boosted the SCFAs content in patients and 
increased fecal SCFAs, potentially contributing to protec-
tion against diarrhea [169]. Probiotic L. plantarum strain 
299v enhanced the fecal SCFAs content especially butyrate 
in patients suffering from C. difficile infection, which con-
tributed to minimizing the effects of antibiotics. The SCFAs 
level was found to be decreased in the group treated with the 
antibiotic metronidazole when compared to the probiotic-
treated group. However, after the study, the total SCFAs 
level regressed to pre-antibiotic treatment levels [169].

A clinical study with L. casei featuring 77 subjects of 
84 years of age showed a decrease in norovirus-gastroenteritis  
processes, while a significant amount of fecal acetic acid 
content was observed [170]. Considering the microbiome 
population, Bifidobacterium and Lactobacillus are the dom-
inant genera, while the population of Enterobacteriaceae 
decreased in the fecal content of probiotic-treated individu-
als. Recently, Nagata et al. [171] documented those individu-
als treated with probiotic L. casei strain Shirota, recorded 
higher fecal acetate content with significantly lower fever 
incidence and enhanced bowel movement. Additionally, the 
C. difficile count was lower in the probiotic-supplemented 
group. Likewise, L. paracasei Lpc-37 and B. lactis HN019 
consumption reduced the risk of diarrhea in children, and 
the concentration of fecal SCFAs and branched-chain fatty 
acids (BCFAs) were higher in probiotic-treated subjects. L. 
paracasei Lpc-37 intake led to increased Bifidobacterium 
population, isobutyrate, and isovalerate levels. B. lactis 
HN019 administration was found to be positively correlated 
with the microbiota population and negatively correlated 
with the propionate level [172]. Consumption of probiotic L. 
salivarius CRCT5713 increased the fecal Lactobacilli popu-
lation and the fecal amino acid content, especially of butyric 
acid [173]. Oral application of probiotic B. lactis Bb12 low-
ered the fecal pH in newborn infants and is positively cor-
related with higher acetate and lactate content [174]. Among 
other probiotic strains, B. bifidum W23 and B. animalis W52 
exhibited higher SCFA and lactate concentrations and lower 
succinate/lactose concentrations in children with eczema. 
The observed outcome emphasizes the role of SCFAs and 
other metabolites in the regulation of the immune system 
[161]. The use of probiotics provided beneficial effects in 
terms of improving carbohydrate metabolism and fasting 
blood glucose levels, reducing metabolic stress, and influ-
encing microbial ecology and immunity [175]. A probiotic 

preparation containing Bifidobacterium, Lactobacillus, 
and S. salivarius attenuated NAFLD, primarily at the level 
of amino acid metabolism, nucleic acid degradation, and 
microbial-mediated amino acids metabolism. In addition to 
lowering liver lipids concentration, probiotics also play an 
important role in NAFLD and some of the fecal metabolites 
act as biomarkers to evaluate the response [176].

Genetic Engineering of Probiotics: a Promising Way 
Forward

In the human body, cellular metabolism and complex bio-
logical processes are regulated by various enzymes. There-
fore, any enzyme deficiency leads to several metabolic 
disorders, where the accumulated toxic product produces 
abnormal responses, in some cases leading to death [177]. 
Thus, engineering the beneficial probiotic bacterial strains 
with specific enzymes or metabolic pathways resulted in pro-
tection against metabolic disorders [27, 178]. Additionally, 
the engineering of probiotics improves their performance 
in terms of their site-specificity and multi-host functional-
ity [179]. In the present scenario, the interest is increasing 
in engineering the probiotics in combination with synthetic 
biology approaches to enhance the delivery of target mol-
ecules [178, 180], the sensing ability [181, 182], and anti-
pathogenicity [183–186]. Additionally, various molecular 
biology tools targeting the multiple regulatory systems can 
be employed to engineer the beneficial probiotic strains 
(Fig. 2). Engineered probiotic strains have advantages over 
microbiota-mediated therapy by displaying specific func-
tions that are not shown by gut microbiota. Individuals with 
diabetes may develop abnormal levels of blood glucose due 
to insufficient production of pancreatic insulin. Currently, 
researchers are designing recombinant probiotic strains for 
the treatment of diabetes. For example, Lactococcus lactis 
was engineered to secrete an immunoregulatory cytokine 
IL-10 and the oral delivery of this strain was found promis-
ing for the treatment of type 1 diabetes [187] (Fig. 3).

In another study, a recombinant strain of L. gasseri was 
developed to include the glucagon-like peptide (GLP)-1 
gene, which is known to induce insulin production both 
in vitro and in vivo. Oral delivery of the L. gasseri GLP-1 
strain in diabetic rats resulted in enhanced insulin produc-
tion from pancreatic beta cells as well as in the reduc-
tion of blood glucose (10 to 20%) [188]. Similarly, engi-
neered L. lactis strains are able to secrete the autoantigen 
GAD65370–575, leading to a decrease in IL-10-induced 
pancreatic islet inflammation under hyperglycemic condi-
tions [189]. Deficiency in phenylalanine hydroxylase (PAH) 
is the root cause of the metabolic disorder phenylketonuria, 
where the organism accumulates phenylalanine resulting in 
several health issues [190]. By recombinant development, 
phenylalanine ammonia-lyase (PAL) gene from Anabaena 
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variabilis was introduced into L. reuteri, which reduced the 
blood phenylalanine level in an in-vivo mice study [191]. 
Similarly, the probiotic strain SYNB1618 was developed to 
secrete PAL and l-amino acid deaminase (LAAD), which 
greatly reduced the blood phenylalanine up to 38% [178]. 
Recently, strain SYNB1618 (thyA−, argR−) was developed 
by genomic insertion of argR215, and its oral administration 
greatly reduced the ammonia level, thereby enhancing the 
survival rate up to 50% [27].

Moreover, in recent years, various mutagenesis approaches 
like single-crossover-insertion [192], double deletion [193], 
homologus recombination [194], and inducible plasmid 

self-destruction (IPSD)-mediated genome engineering have 
been well established for probiotic Bifidobacterial strains. 
Many of these approaches possess several drawbacks like 
low-transformation efficiency, unstable mutations, loss of 
plasmid, and extensive screening of a large pool of colonies 
(Supplementary Figure 2) [195]. However, the CRISPR-Cas 
genome editing tool can be employed for rapid and efficient 
genome modifications [196, 197]. This newly discovered tool 
can be used for transcriptional regulation and control of the 
genetic circuits [196]. The CRISPR-Cas systems for genome 
engineering have been applied to various lactic acid bacterial 
groups like Lactobacillus, Lactococcus, and Streptococcus 
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[196, 197]. The CRISPR-Cas in combination with IPSD will 
further improve the genome engineering in probiotic bac-
terial groups [198]. Therefore, the development of genetic 
tools including the plasmid expression systems, genome 
engineering approaches, etc. will promote the synthetic biol-
ogy applications of probiotics. A number of broad-host range 
plasmids such as pSH71, pAMβ11, pBC1, and pTB6 have 
been characterized for gene expression in LAB [199, 200]. 
However, their functionality in other probiotic strains has not 
been well established.

Various approaches like transformation, conjugation, 
electroporation or phage transduction, etc. can be used to 
transfer plasmid DNA to other microbial strains. However, 
evolved bacterial host defence systems like CRISPR-Cas, 
and restriction-modification systems prevent the invasion of 
foreign DNA [201–203]. To overcome these issues, conju-
gation is an alternative tool to transfer plasmid DNA in a 
single-stranded form from donor to recipient bacteria [204]. 

Higher success was obtained by transferring the plasmid 
from E. coli to a variety of Bifidobacterial strains using a 
conjugative transfer system [205]. On the other hand, for 
efficient expression of the foreign gene products in a host, 
promoters, regulatory elements such as ribosome binding 
sites (RBS), cell-surface anchoring elements, and various 
secretion and localization signals need to be considered 
[206]. Promoters such as hup encoding a histone-like pro-
tein and gap encoding glyceraldehyde-3-phosphate dehy-
drogenase, induce the expression of genes in Bifidobacterial 
strains at high levels [207]. The promoter Pgap has been 
used for efficient homo and/or heterologous expression and 
for the production of various fluorescent proteins and thera-
peutic factors in Bifidobacteria [208, 209]. In response to 
certain signals, genetic circuit elements reprogramme the 
gene expression in a tightly controlled manner [210]. Bac-
terial one/two-component system, and quorum sensing are 
used as a tool to construct the genetic circuit to diagnose 
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disease [181, 182], bacteriocidal activity [185, 186, 211], 
and to deliver therapeutic molecules [180]. Additionally, the 
gene expression system sensing the GI-signals for pH, bile 
salts, inflammation, etc. can be used to construct a genetic 
circuit for various diagnostic, and therapeutic purposes 
[182].

In recent years, engineered probiotics to treat bacterial 
infections and inhibit pathogen proliferation in the gastro-
intestinal tract have received great attention. These “pro-
grammed” probiotics are a safer therapy to efficiently target 
multidrug-resistant bacteria, through the secretion of anti-
microbials, immunomodulation, inhibition of adhesion, and 
toxic protein production from pathogens [184, 212]. Among 
pathogens, biofilm-forming bacteria cause severe chronic 
infections leading to immune system imparity. Research-
ers across the globe have focused on engineering probiot-
ics to inhibit biofilm formation [213, 214]. Attempts were 
made to develop an engineered E. coli strain to inhibit the 
Pseudomonas aeruginosa, through the modulation of quo-
rum sensing. The engineered E. coli was developed with the 
addition of E7 lysis protein and pyocin S5 which minimized 
the P. aeruginosa growth by 99%, also reducing biofilm for-
mation by 90% [214]. During an in-vivo study, dispersin 
B (anti-biofilm protein) was introduced to the constructed 
strain and the engineered strain showed higher efficacy in 
C. elegans and mice infection studies [184]. Furthermore, 
microcin H47 was introduced in E. coli N 1917 to coun-
teract the Salmonella infections [215]. To counteract the 
overgrowth of Salmonella, atetrathionate sensing system 
was incorporated, which induced the production of H47 and 
was found to be effective against Salmonella [216]. Simi-
larly, strain N 1917 was engineered to secrete the antimi-
crobial peptide Mccj25 and the administration of this strain 
was effective to decrease the population of Salmonella by 
97%, while the homeostasis of the native microbiome was 
maintained.

On the other hand, intestinal infection with Vibrio 
cholera causes acute diarrheal disease and if it remains 
untreated, it can lead to shock and even death [217, 218]. 
Infections by this pathogen are regulated by the quorum-
sensing system in a density proportional manner. There-
fore, attempts were made to disrupt the sensing system of 
V. cholerae, using an engineered probiotic E. coli strain. 
Administration of the strain was found to be quite effective 
to decrease the toxin formation in a mouse model [219]. 
Additionally, oral delivery of L. lactis could prevent the V. 
cholerae infection through lactic acid secretion. Pursuing 
engineered probiotics, researchers focused on developing 
a strong sensing system to identify molecules or produce 
strong signals, making them an effective diagnostic device. 
In that sense, a diagnostic circuit was introduced in L. 
lactis through the fusion of CqsS (V. cholera) and NisK 
(L. lactis) domains. The constructed L. lactis strain was 

orally delivered to cholera-infected mice, enhancing their 
β-lactamase secretion, which was recorded by colorimet-
ric shift [185]. Similarly, Sedlmayer et al. [220] coupled 
the formyl peptide sensor with quorum sensors to elimi-
nate pathogenic infections. Expression cassettes encoding 
luciferase (lux CDABE) and β-galactosidase (lac Z) were 
introduced into E. coli to develop the strain PROP-Z, to 
detect liver metastasis by luminescent analysis [221, 222]. 
High levels of nitric oxide (NO) serve as a signaling device, 
as well as an inflammatory indicator in inflammatory bowel 
disease [223, 224]. Probiotics were engineered to detect NO 
levels which serve as markers for inflammation.

Therefore, the development of metabolic engineering 
in parallel with synthetic biology enabled the creation of 
novel probiotic strains with valuable features. The use of 
engineered probiotic strains should precede rigorous clini-
cal trials, required to minimize the exposition of patients to 
any potential risks [225]. Gene encoding as a novel effector 
function must be evaluated in vitro and in vivo in terms of 
genetic stability during the production processes. Nonethe-
less, further research is needed to provide the adequate colo-
nization of anecological niche in the gut by delivered strains.

Probiotics and COVID‑19

Coronaviruses are a large family of viruses that have crown-
like appendages on their surface. Human coronaviruses 
(CoV) were identified in the mid-1960s, and currently, the 
following seven types of CoV have been identified (https://​
www.​cdc.​gov/​coron​avirus/​types.​htm). Viral infections in the 
respiratory tract lead to disturbance in the gut microbiota 
[226]. COVID-19 infection resulted in an increase in disor-
ders of the human stomach and intestine, lymphopenia, acute 
respiratory distress, and multi-organ failure [227]. Addi-
tionally, the overproduction of proinflammatory cytokines 
termed as “cytokine storm” was observed in COVID-19 
patients [228]. The increase in cytokine can damage the 
lung, brain, liver, cardiovascular system, etc. [229].

A recent study demonstrated that COVID-19 infection 
reduced the count of Bifidobacterium spp. and Lactobacil-
lus spp. [230]. Initially, the treatment option applied for 
coronavirus disease 2019 (COVID-19) included artificial 
ventilation and antiviral agents. In addition to the devel-
opment of vaccines, the use of biological agents to target 
viral infections using immunomodulation has received 
great attention [231]. Baud et al. [232] listed the bacte-
ria such as B. bifidum, B. breve, L. casei, L. gasseri, L. 
plantarum, Pediococcus pentosaceus, etc. as potent pro-
biotics with the ability to decrease the burden of COVID-
19 pandemic. Similarly, patients suffering from other 
complications like antibiotic-related diarrhea showed a 
higher proportion of COVID-19 infection. These recent 
findings further indicate that there is a requirement for 

https://www.cdc.gov/coronavirus/types.htm
https://www.cdc.gov/coronavirus/types.htm
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microbiota balance in patients suffering from COVID-19 
infection using some probiotics [230]. COVID-19 infec-
tion also causes severe hypoxia, whereas a reduction in 
probiotic species leads to an increase in the number of 
pathogens like Actinobacteria spp., Corynebacterium 
spp., and Ruthenibacterium spp. [233]. Available theoreti-
cal evidence suggests the biological role of probiotics in 
fighting the cytokine storm related to COVID-19 infection; 
however, there is an urgent need for clinical and laboratory 
evidence [232, 234].

Experimental evidence suggests that L. paracasei and 
L. plantarum have the capability to reduce the immune-
inflammatory response [235]. The biological activity of 
probiotic bacteria belonging to Lactobacillus and Bifido-
bacterium controls the gastrointestinal dysbiosis associated 
with COVID infection [236]. Similarly, biofilm-forming pro-
biotic bacteria like L. Reuteri and a few Lactobacillus spp. 
produces biologically active molecules that showed anti-
inflammatory properties [237, 238]. Bottari et al. [239] illus-
trated the immune benefits of probiotics in COVID infection 
by priming mucosal immunity through stimulation of IgA 
secretion, improvement of biological functions of mac-
rophages, and stimulation of regulatory cells. Experimen-
tal evidence suggests that probiotics also shape the T cell 
subsets [240], enhance the antimicrobial peptide production 
[241], and also direct the Th17 cells’ differentiations in the 
small intestine [242]. Probiotics belonging to Lactobacilli 
have been reported to produce peptides that interact with 
the ACE2 receptor, the host entry receptor of SARS-CoV-2 
viruses [243]. A recent study by Minato et al. [244] find that 
Paenibacillus bacteria naturally produce carboxypeptidase 
homologous to the ACE2 receptor.

Recently, it was observed that acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) spike proteins binds 
to human angiotensin-converting enzyme 2 (ACE2). To 
counteract this problem, biongineered probiotics express-
ing ACE2 were developed to neutralize SARS-CoV-2 [245]. 
Probiotic L. paracasei (LP) expressing secretory human 
ACE2 (sACE2) controlled the viral spread by sequestering 
the virus or blocking the spike protein interaction with host 
cell-associated receptors. The sACE2 produced by probiotic 
bacteria confers systemic effects to control the viral entry at 
multiple organs including the lungs. Additionally, the bio-
engineered bacteria enhance the innate immunity and confer 
beneficial effects to control dysbiosis in the SARS-CoV-2 
infected patients [245].

Probiotics and Cancer

Besides treating various metabolic diseases and disorders, 
probiotics also modulate cancer signaling [246], through 
induction of apotosis [247], and autophagy [248], inhibition 
of mutagenic and kinase activity [249], activation of tumor 

suppressors [250], and prevention of metastasis [251]. The 
structural components of probiotic bacteria, their secreted 
metabolites, and various other signaling molecules can alter 
the metabolic and regulatory reactions associated with the 
host [252].

The structural components constitute the microbe-associated 
molecular pattern and include the S-layer proteins, flagella, pili, 
capsular polysaccharides, lipoteichoic acid, and lipopolysac-
charides [253]. The metabolites include the secreted proteins, 
extracellular vesicles, short-chain fatty acids, hydrogen per-
oxides, and bacteriocins [254]. Previous reports showed that 
probiotic bacteria induce apoptosis to inhibit tumorigenesis and 
progression via altering the tumor necrosis factor, inhibitors of 
apoptosis proteins, B cell lymphoma (Bcl)-2, caspases, and p53 
gene [255, 256]. The bacteriocin produced by probiotic bacteria 
shows anticancer activity through the formation of minute pores 
on the plasma membrane which induce apoptosis and cell cycle 
arrest at the G1 phase [257]. The probiotic-derived ferrochrome 
act as tumor-suppressive molecule to inhibits the colon can-
cer progression via c-jun N-terminal Kinase (JNK)-mediated 
apoptosis [258]. Similarly, linoleic acid produced by probiotic 
L. plantarum initiate the apoptosis in breast cancer cells via 
downregulation of the NFκB pathway [259]. On the other hand, 
L. acidophilus and B. bifidum increased the cytotoxic activity 
against breast and colon cancer cells by upregulating IFN-γ 
and TNF-α expression, and downregulating Bcl2 expression 
[260]. Probiotic bacterium L. acidophilus induces apoptosis via 
increasing the mRNA expression of surviving [261]. Another 
study revealed that Propionibacterium enhanced apoptosis in 
colorectal carcinoma cells through the action of SCFAs on 
mitochondria [262].

The surface protein from L. acidophilus induced HCT116 
cell death via altering the level of autophagy-linked protein 
(microtubule-associated protein 1) [263]. The exopolysac-
charides of probiotic bacteria activate the autophagy in colon 
cancer cells via stimulating the Beclin1/GRP78 and apop-
totic pathways Bcl-2 and Bak proteins [248]. A previous 
study demonstrated that probiotic-produced SCFAs target 
the tumor cell through epigenetic regulation of the tumor 
suppressor and oncogenes [264]. The probiotic bacterium 
L. acidophilus, L. rhamnosus MD14, and L. rhamnosus GG 
enhanced the expression of tumor suppressor genes in an 
experimental colon carcinogenesis model [265]. Similarly, 
probiotic bacterium B. longum induced the expression of 
tumor suppressor miR-15 and miR-145 in an experimental 
murine colorectal cancer [266]. Some studies demonstrated 
the probiotic-mediated tumor-suppressive effect by downreg-
ulation of oncogenes [267, 268]. The probiotic L. crispatus 
and L. rhamnosus alter the cancer progression by affecting 
the expression of mTOR-related genes and altering the proto-
oncogenes (Wnt/β-catenin) pathways [269]. Similarly, probi-
otic bacteria also downregulate the KRAS proto-oncogene, 
thereby decreasing the progression of colon cancer [265].
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Probiotic bacteria also modulate the kinase and phos-
phatase enzymes that play a major role in tumor biology 
such as cell propagation and metastasis etc. [270]. Previous 
studies showed that probiotic bacteria and their produced 
metabolites act as kinase inhibitors to treat diarrhea after 
cancer therapy. A study showed that probiotic secretory 
proteins modulate the protein kinase C (PKC) to protect the 
intestinal epithelial tight junctions from H2O2-induced dam-
age [271]. Probiotic bacterium L. plantarum induces apop-
tosis via downregulating the MAP-kinases and upregulating 
the phosphatases [272]. These shreds of evidence clearly 
show the multifarious effects of probiotics against cancer. 
Although, researchers have discovered the apoptotic poten-
tial of probiotics on cancer, their molecular mechanisms still 
need to be discovered. Further, in-depth investigation and 
clinical trials w.r.t probiotic-mediated autophagy and its role 
in cancer elimination are urgently required.

Probiotics and Neurodegenerative Disease

Neurodegenerative diseases are serious disorders especially 
in the aging population and are characterized by degenera-
tion of structure and function of the central nervous system 
(CNS) and peripheral nervous system (PNS). These diseases 
will impose an increasing socio-economic burden and inci-
dences are also increasing year by year [273]. At present, the 
most common neurodegenerative diseases are Alzheimer’s 
disease (AD) and Parkinson’s disease (PD) and steadily 
progress due to the loss of neurons in the brain [274]. The 
etiology of these diseases is still unknown; however, inflam-
mation may be involved in the progressive development of 
these diseases [275]. A recent study showed a decrease in 
the population of intestinal microbes and a higher abundance 
of pro-inflammatory bacteria in AD patients as compared to 
healthy ones [276]. Another study showed an increased pop-
ulation of gram-negative Bacilli in AD patients may lead to 
increased distribution of lipopolysaccharides from the gut to 
the systemic circulation and it enhances the pathology of AD 
through neuroinflammation [277]. Similarly, in PD patients, 
a higher population of hypothetical pathogens such as E. 
coli, Enterococcus, Proteus, and Streptococcus was observed 
[278]. The influence of the brain-gut axis has attracted atten-
tion especially in neurodegenerative diseases and gut micro-
biota affects immunity, inflammation, and neuroregulation 
through the brain-gut axis [279]. These evidences illustrate 
that maintaining a healthy microbiome benefits normal brain 
functioning, and boosts the immune response etc.

Probiotic intake helps the proliferation of intestinal micro-
flora, ameliorating gastrointestinal function, reducing gut leak-
iness, and helping fight against pathogens by regulating the 
immune system [280]. A recent study showed that probiotic 
intake decreased the inflammatory cytokines IL-6 and TNF-α 
in serum and improved the anti-inflammatory cytokines IL-10 

in serum and brain in PD mice [281]. Probiotic administra-
tion reduced the expression of pro-inflammatory IL-1, TNF-α, 
and increased the expression of anti-inflammatory TGF-β, and 
PPAR-γ in PD patients [282]. Additionally, the CBM (total 
bowel movement), spontaneous bowel movements (SBM), 
very low-density lipoproteins (VLDL), triglyceride, and Bris-
tol Stool Scale improved in PD patients.

A recent in-vitro study with probiotic Lactobacillus 
and Bifidobacterium reduced oxidative stress, and pro-
inflammatory cytokines in peripheral blood mononuclear 
cells isolated from PD patients [283]. A recent investiga-
tion showed that a mixture of probiotics conferred a neuro-
protective response on dopaminergic neurons to counteract 
motor impairments in a PD mouse model [284]. Probiotic 
formulation VSL#3 controls the expression of various genes 
in the brain cortex, minimizes inflammation, and improves 
neuronal performance [285]. The innovative probiotic for-
mulations SLAB51 (known as Sivomixx) effectively control 
the 6-hydroxydopamine-induced deleterious effects both in 
in-vivo and in-vitro PD models. The impairment involves 
the protection of dopaminergic neurons, restoration of pro-
survival and neuroprotective pathways, induction of anti-
inflammatory pathways, and amelioration of behavioral 
impairments [286]. These evidences clearly illustrates that 
probiotics intake modified the gut microbiome and influ-
enced the protective response to CNS disease via the gut-
brain axis, mediating different pathways involving neural, 
hormonal, inflammatory, antioxidant, and immune signaling 
[287, 288].

Next‑Generation Probiotics

Probiotics are live microorganisms, usually isolated from gut 
bacteria; however, until their safety and health effects are 
fully characterized, they cannot be given the term “Probiot-
ics.” Among various nomenclatures, probiotics are referred 
to as “functional food” or “beneficial bacteria” that are 
thought to prevent disturbances and balance the host’s system 
[289]. Previous research trials showed that the gut micro-
biota has limited therapeutical potential, therefore there is a 
high demand for novel and cost-effective formulations [290, 
291]. Promising results have been observed in bacterial spe-
cies Lactobacillus and Bifidobacterium in the prevention of 
diverse metabolic and inflammatory diseases. The informa-
tion generated from recent clinical studies showed a positive 
outcome for inflammatory and metabolic disease, therefore 
making the path for selection of next-generation probiotics 
including the members of Akkermansia muciniphila, Bacte-
roides uniformis, Clostridium spp., and F. prausnitzii [292, 
293]. A. muciniphila are well-known for mucin degradation 
and were linked to the maintenance of a healthier metabolic 
status. Under a high-fat diet, microbiota composition espe-
cially A. muciniphila decreased and was associated with 
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several abnormalities like high-level blood glucose, insulin 
resistance, and increased plasma triglycerides [294]. In a 
clinical study with different diets, Dao et al. [295] found that 
an optimal or even increased population of A. muciniphila 
was associated with blood glucose maintenance as well as 
minimizing hypercholesterolemia. In another study, it was 
observed that the presence of A. muciniphila restored the gut 
barrier and also reduced the inflammation [296].

Among all microbes comprised in the gut, Bacteroides 
constitute approximately 25% of the total population. These 
commonly behave as commensal microorganisms and are 
transmitted from mother to child during delivery. Bacte-
roides are primarily responsible for the fermentation of 
complex sugars, producing volatile fatty acids in the gut. 
Among Bacteroides, B. fragilis and B. thetaiotamicron can 
efficiently metabolizes carbohydrates. Polysaccharides pro-
duced by B. fragilis activate the T cell-mediated immune 
response and therefore, strengthen the host immunity [297]. 
Round et al. [298] reported that B. fragilis-produced poly-
saccharide signals through TLR2 and activates Toll-like 
receptor (TLR) pathways. However, B. fragilis are benefitted 
from the presence of several virulence factors on their cap-
sules and thereby avoiding the host immunogenic responses. 
Additionally, the presence of enterotoxins and proteases are 
responsible for the destruction of tight junctions in the intes-
tinal epithelium and brush border enzymes, respectively. 
Capsular polysaccharides of B. fragiliss showed a positive 
effect on the host, reducing host inflammation and patho-
genesis. B. uniformis isolated from the feces of infants were 
considered a potential probiotic strain. Administration of this 
strain improved the lipid profile, reduced glucose-insulin and 
leptins, and increased phagocytosis under a high-fat diet. 
Therefore, this strain ameliorated the diet-induced metabolic 
disorders and immunological dysfunctions in obese mice 
[299]. Butyrate-producing Eubacterium hallii are natural 
residents of the gut, demonstrated to lower mucosal inflam-
mation, strengthening the epithelial barrier function, and 
providing the energy for colonocytes [300].

Moreover, various physiological processes related to 
energy metabolism and improved insulin sensitivity were 
observed following oral supply of this specific strain to 
obese and diabetic mice. Additionally, an increased dosage 
of E. hallii did not show any negative effect on physiological 
parameters and food intake, illustrating the strain as a safe 
and effective therapeutic agent. Various strains belonging 
to Clostridia clusters were effective in Treg cell differentia-
tion. Atarashi et al. proposed that Clostridia spp. are strong 
metabolites producers including SCFAs [301]. The produced 
SCFAs regulate the Foxp3 gene, controlling the Treg-cell 
development. The author proposed that a cocktail of bac-
terial strains acted more effectively for treating disease as 
compared to a single strain. Faecalibacterium prausnitzii 
belonging to Clostridium cluster IV is one of the most 

predominant bacteria in human feces (3 to 5%). The absence 
of F. prausnitzii is commonly associated with gut-associated 
disorders. However, studies with F. prausnitzii in humans 
are still lacking; therefore, further investigations are needed 
to unravel the safety aspect of this bacterium in humans.

Probiotics and Its Safety Aspects

According to the Food and Drug Administration (FDA), 
probiotics are classified as dietary supplements, therefore 
having less stringent requirements in terms of their safety, 
dosage, and efficacy. Most of the probiotic strains fall into 
the GRAS category [302]. The use of probiotics has been 
growing exponentially and shown in a wide variety of appli-
cations such as the food industry and health care. Probiot-
ics are live microorganisms gaining popularity because of 
their beneficial effects on human health; however, they may 
cause minor infections, especially in adults with second-
ary conditions (e.g., chronic infections, diabetes, immune 
deficiency) [303]. A total of 24 fungemia cases have been 
recorded associated with the probiotic S. boulardii [304]. 
Munoz et al. [305] reported three cases of S. cerevisiae 
infection, in an ICU dealing with S. boulardii therapy. How-
ever, in clinical trials, no reports of bacterial/fungal infec-
tion were observed following probiotic use. All cases of 
fungemia were observed in immuno-compromised, chronic 
or debilitated patients. Additionally, probiotic bacteria may 
be able to transfer antibiotic resistance genes to their neigh-
bor pathogenic microorganisms. Several properties critical 
for probiotic survival should be properly monitored before 
commercializing a specific strain, as the evidence clearly 
shows variations in probiotic strains belonging to the same 
species. Additionally, various other properties like formula-
tion, stability of the organism, colonization in the intestinal 
epithelium, anti-pathogenic response, immuneactivation, 
and various other important functionalities need to be care-
fully monitored. The industrial application requires the sta-
bility and survival of the used strains [306].

Limitation and Future Aspects

As probiotics are live organisms, their count in food items 
must be kept at an optimum level. According to the National 
Sanitary Surveillance Agency, approximately 108–109 CFU 
of probiotics in food are regarded as safe [307]. However, 
its level can be affected by bacteriophages that lead to cel-
lular lysis [308]. Moreover, the accurate effect in the host 
depends on the ingested strain, its quantity, survival rate, 
and physiological condition of the host [309]. Moreover, 
methodologies to detect culturable bacteria require specific 
synthetic media under defined conditions. The selection of 
phage-resistant strains can be performed via plaque assay, 
qPCR, flow cytometry, and biosensors [310, 311]. Selective 
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culture techniques are limited in providing the most holistic 
definition of viable probiotic bacteria for the dose available 
in the final product. Reliance on cell-culture techniques does 
not provide direct cues on microbe-microbe and/or microbe-
host interactions, pertaining to the gut environment and is 
even not consistent in in-vivo trials. Many of the probiotic 
strains lose their viability during the processing of food 
products via acidification or in the presence of oxygen in the 
medium [312, 313]. Viability can be controlled by approach-
ing classical microbiological methods such as growing in a 
specific cultivation medium [314]. Additionally, previous 
studies also showed poor colonization efficiency of exog-
enous probiotics compared to those of humans in the gut 
[315, 316]. Many quorum sensing disrupting probiotic bac-
teria have the potential to inhibit the pathogenic microbes; 
however, their signaling behaviour and complexity may dif-
fer in-vivo, when compared to in-vitro experiments. Addi-
tionally, manipulation of the quorum-sensing pathway may 
result in inhibition of commensal bacteria in vivo [317]. 
Although, the use of probiotics are more often related to the 
enhancement of beneficial gut microbiota or protecting the 
host against multiple diseases. However, the exact mecha-
nisms by which probiotics alter the microbiota in in-vivo 
models are still not properly known.

Nonetheless, many debate that the effect of probiotics 
might not relate to their interaction with the host micro-
biome [5]. The systemic review of Kristensen et al. [23] 
reported the lack of evidence for probiotic-mediated modu-
lation of microbiota in many of the analyzed studies. Simi-
larly, previous studies summarized multiple trials associ-
ated with beneficial probiotics of which only 21% showed 
microbiome alterations [318]. Their establishment for 
broad function and replication in the host environment is 
not clear [319]. Further, human clinical studies are required 
to follow probiotic-mediated cell response to assess possible 
outcomes and observe the colonization potential of strain-
specific probiotics. The identification and characterization 
of biomarkers linked to probiotic properties could lead to 
the evolution of novel strains with improved function and 
health effects [320]. Importantly, in-vivo probiotic effects 
in animal models do not guarantee effective translation to 
human subjects and therefore, future research should focus 
on accurately translating animal trial findings to human 
therapies. Despite having demonstrated their potential for 
various clinical and nutritional applications, further studies 
are required to strengthen the implementation of probiotics 
for human usage. Future research should be directed towards 
controlled human studies to determine the strain-specific 
role of probiotics and which dosages may guarantee effec-
tiveness and safety.

Although the effects of probiotics in health care have 
been demonstrated in many studies, the molecular approach 
integrated with proteomics still requires further research 

efforts to unravel the probiotic-cross talk. Further in-depth 
studies are still needed to explore probiotics’ applications 
as therapeutic agents. More clinical information is required 
to provide the evidence to prevent primary and secondary 
Clostridium-derived infection (CDI), including the selection 
and use of bacterial strains that show better results in immu-
nocompromised or critically ill patients [321]. Bacteroides 
spp. rapidly transfer antibiotic resistance gene among bac-
teria in the human colon, both within the Bacteroides genus 
and among Bacteroides species and Gram-positive bacteria, 
therefore this characteristic has to be taken into account while 
developing next-generation probiotics. Information regarding 
the safety profile of Faeccalibacterium and Akkermansia is 
not sufficient; therefore, further animal and human clinical 
studies are needed [322]. The development of more advanced 
technical tools will promote the production and formulation 
of next-generation probiotics, enabling their use as supple-
ments. Using next-generation probiotics in food is limited 
to their safety and suitability to the target consumer groups 
when compared to traditional probiotics [320]. Moreover, 
recently developed marine probiotics showed their poten-
tial in the prevention of ecological damages. An integrated 
effort would help to develop better formulations that improve 
viability, safety, and higher efficacy. Moreover, the properties 
of a probiotic strain are important for the efficacy of the treat-
ment, maintenance of their characteristics, and relative effi-
cacy should be verified. The increasing evidences indicated 
that manufacturing and production procedures may influence 
the quality and safety of probiotics [323, 324]; thereby, atten-
tion should be given to choosing the specific formulation to 
be administered. Furthermore, before the use of probiotics for 
the prevention and treatment of disorders, greater investment 
in clinical trials is necessary.

Conclusions

Probiotics possess several promising attributes which fulfil 
our prompt nutritional and clinical necessities. Many probi-
otic microbes have been found to show positive responses 
against several diseases. The contribution of probiotics to the 
treatment of severe diseases such as cancer, obesity, diabe-
tes, and infectious diseases is growing, representing a high 
demand in the research arena. Technological advancements 
linked to RNA sequencing, culturomics and metabolomics 
have propelled the field of probiotics, detailing the interac-
tion with the indigenous microbiome. Presently, probiotic 
administration of food products presents a cost-effective 
alternative and fruitful source for the assessment of the 
effects of newly discovered probiotic strains. Moreover, fur-
ther developments gathered in clinical trials highlighted the 
role of specific probiotic strains in terms of their safety (for 
clinical and food applications), antagonistic activity towards 
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pathogens, and ability to tolerate acid and bile stress. The 
probiotics-based biotherapy shows enormous potential as a 
therapeutic agent against neurodegenerative disease; how-
ever, extensive clinical trials and characterization of the 
biochemical effects of probiotics are required to fully eluci-
date the scope of probiotics against specific diseases. There 
is still much to explore the connection between probiotics 
and gut microbiota with neurodegenerative disease, which 
will open a new possibility for researchers in the largely 
uncharted territory of neurodegenerative and gut microbi-
ota. The studies on the relationship between gut microbiota 
and neurometabolites will provide a new concept for the 
prevention and intervention of neurodegenerative diseases. 
The development of probiotics demands close interaction 
between the pharmaceutical industries, research agencies, 
and regulatory bodies.
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