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Background: Triple-negative breast cancer (TNBC) is highly invasive and metastatic to the lymph nodes. Therefore, 
it is an urgent priority to distinguish novel biomarkers and molecular mechanisms of lymph node metastasis as the first 
step to the disease investigation. Long non-coding RNAs (lncRNAs) have widely been explored in cancer tumorigenesis, 
progression, and invasion. 
Objectives: This study aimed to identify and evaluate lncRNAs in the signaling pathway of MMP11 gene in both metastatic 
and non-metastatic TNBC samples. The potential of lncRNAs in prognosis and diagnosis of the disease was also assessed 
using bioinformatics analysis, machine learning, and quantitative real-time PCR.
Materials and Methods: Using machine learning algorithms, we analyzed the available BC data from the Cancer 
Genome Atlas Network (TCGA) and identified three potential lncRNAs, gastric adenocarcinoma-associated, positive 
CD44 regulator, long intergenic noncoding RNA (GAPLINC), TPT1-AS1, and EIF1B antisense RNA 1 (EIF1B-AS1) that 
could successfully distinguish between metastatic and non-metastatic TNBC. 
Results: The results showed the upregulation of GAPLINC lncRNA in metastatic BC tissues, compared to non-metastatic 
(P<0.01) and normal samples, though TPT1-AS1 and EIF1B-AS1 were downregulated in metastatic TNBC samples 
(P<0.01). 
Conclusion: Given the aberrant expression of candidate lncRNAs and the underlying mechanisms, the above-mentioned 
RNAs could act as novel diagnostic and prognostic biomarkers in metastatic BC.

Keywords: Biomarkers, Breast neoplasms, Long noncoding RNA, Neoplasm metastasis, Triple negative breast neoplasms

1. Background
Breast cancer (BC) is the most commonly diagnosed 
cancer and the leading cause of cancer malignancy 
among females worldwide. The BC burden is still 
increasing in form of incidence and mortality and 
continues to have a large impact on the global number 
of cancer deaths (1). BC is categorized into three main 

subtypes based on the presence or absence of proteins 
in BC cells. Hormone receptor-positive BC, which 
has either estrogen receptor or progesterone receptor 
protein in cancer cells, includes 70% of BC patients. 
ERBB2-positive or HER2-positive BC has high levels 
of ERBB2 protein in cancer cells and constitutes for 
15%-20% of BC cases. Triple-negative breast cancer 
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(TNBC) entails 15% of BC cases and does not have 
estrogen, progesterone, or ERBB2 protein on the 
surface of cancer cells (2). Among all the BC subtypes, 
TNBC is more complex and accounts for a major cause 
of gynecological cancer deaths, associated with more 
positive lymph nodes, higher tumor grading, and poorer 
prognosis (3). A vast number of patients with TNBC 
relapse rapidly and often develop visceral (including 
liver, lung, and brain) metastasis (4). 
Current targeted options for treating BC include 
hormonotherapy and immunotherapy, as well as PARP 
inhibitors; however, there is not such therapy for TNBC, 
mainly due to the lack of predictive biomarkers (5). 
Recently, remarkable advances have been made toward 
the early diagnosis and intervention, i.e. the identification 
of MMP-11 gene as a metastatic BC biomarker that is 
overexpressed in cancer cells, stromal cells, and the 
adjacent microenvironment. MMP-11 belongs to the 
matrix metalloproteinase family (MMPs), known for 
their overexpression in cancer cells, stromal cells, and 
the surrounding microenvironment. MMPs are zinc-
dependent endopeptidases responsible for degrading 
the extracellular matrix, thus aiding in the breakdown of 
the basal membrane and connective tissue matrix. This 
activity is crucial in cancer progression and metastasis. 
MMP-11 expression has been found to be elevated 
and more varied in metastatic specimens compared to 
non-metastatic tumor samples. Moreover, diagnostic 
kits for cancer metastasis are developed based on 
the expression level of this gene and are currently in 
clinical trials (6-8). Despite this progress, the study of 
novel candidate genes involved in TNBC progression 
and prognosis and the role of molecular mechanisms 
in tumorigenesis need further illumination. Moreover, 
for the improvement of the survival of TNBC patients, 
identification of predictive biomarkers is essential, in 
order to evaluate the risk of metastasis, assess response 
to therapies and develop new therapeutic methods (9). 
Recently, investigations across the species have 
demonstrated that eukaryotic genomes transcribe a 
wide range of RNAs, including long noncoding RNAs 
(lncRNAs), protein coding mRNAs, and short non-
coding transcripts. LncRNAs are recognized as RNA 
molecules comprising of transcripts with more than 
200 nucleotides in length, though they lack the ability 
of coding proteins. These molecules have also been 
experimentally characterized to show their distinct 
cellular functions (10). LncRNAs have been suggested 

as significant regulators for promoting or preventing 
tumor progress and play a crucial regulatory role in terms 
of transcriptional, post-transcriptional, and epigenetic 
levels. Therefore, mutations or aberrant expression of 
lncRNAs have been correlated with various malignant 
biological processes, comprising carcinogenesis, cell 
proliferation, migration, invasion, and apoptosis (4). 
Evidence of novel and potentially beneficial biomarkers 
has revealed that the abnormal expression of these 
RNAs is closely related to TNBC development and 
invasion (11). 

2. Objective
This study attempted to explore candidate lncRNAs 
that correlate with MMP11 signaling pathways and 
metastatic BC in TNBC samples, using a comprehensive 
bioinformatics analysis, machine learning, and quanti-
tative real-time PCR. For the first time in the present 
research, the expression level and the role of lncRNA 
EIF1B-AS1 biomarker have been investigated on BC 
samples.

3. Materials and Methods

3.1. Data Collection and Preparation
The Cancer Genome Atlas (TCGA, https://www.
cancer.gov/) (12, 13) and Gene Expression Omnibus 
(GEO, https://www.ncbi.nlm.nih.gov/geo/) (14, 15) 
were the datasets used in the current study. From the 
TCGA-BRCA dataset, the RNA-Seq (raw HTseq) data 
(16)with corresponding clinical data were downloaded 
from the TCGABiolinks R package (15, 17). Also, five 
microarray datasets, including GSE20685, GSE19615, 
GSE17907, GSE16446, and GSE6532, were selected 
from GEO databases (15, 18) and generated from 
GPL570 (Affymetrix Human Genome U133 Plus 2.0 
Array) platform (14, 15, 19). For RNA-seq data, we 
used the edgeR package to eliminate the genes with 
zero or near-zero expression, based on the count-per-
million criterion, which was less than 10% in 70% of 
the samples (20, 21). The normalization of the data was 
then carried out using the TMM method, and finally, 
the data were transferred to the logarithmic mode (22, 
23). For further analysis, the normalized expression 
matrix was utilized. Also, microarray data (CEL files) 
of each dataset were downloaded. Subsequently, using 
the affy and limma packages, data reading, data transfer 
to logarithmic mode, and data normalization using the 
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RMA method, background correction was performed 
(24). In the end, all the selected data from each dataset 
were merged with each other, and the batch effects 
were removed using the Combat function provided 
by the SVA package version 3.48.0 (25). The obtained 
expression matrix was employed for all the analyses.

3.2. Differential Gene Expression Analysis
TCGA samples were classified into two (normal and 

patient) groups based on their clinical data. The 
total number of samples was 1,222, i.e. 113 samples 
with normal and 1109 samples with cancer tissues. 
We applied edgeR and limma packages in the R 
environment for differential gene expression analysis 
to fit the linear model on the expression data (26, 27). 
Only genes that remained from the count-per-million 
gene exclusion filter were considered for differential 
gene expression analysis. The lncRNA expression 

Figure 1. The heatmap of lncRNAs genes. The genes (n = 117) were grouped into two main clusters 
using ggplot2 R package.
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matrix was extracted from the normalized expression 
matrix, and then the spearman correlation test was 
performed between all lncRNAs and MMP11, a very 
signifi cant gene related to BC metastasis.

3.3. Receiver Operating Characteristic (ROC) Curve 
and Diagnosis Analysis
The pROC package in R was used to draw ROC curves. 
For this purpose, the genes correlated with MMP11 
were classifi ed into two main clusters through the 
K-means hierarchical clustering method. The second 
cluster that contained more genes was divided into 
nine subclusters in order to have higher ROC curves. 
Finally, two tables were created, the fi rst included 
the labels of samples (1: patient and 0: healthy), 
and the second included the transposed expression 
matrix on 117 lncRNAs plus MMP11 (columns show 
corresponding genes, and rows are samples). The 
sensitivities and specifi cities of the classifi cation 
model were calculated in the pROC package, and ROC 
curves were generated using the ggplot2 R package.
 
3.4. Evaluation of Candidate LncRNAs as Biomarkers 
for BC Diagnosis and Progression
To evaluate the impact of candidate lncRNAs on BC 

progression and their potential application as diagnosis 
markers, we fi rst performed a ROC curve analysis. 
Then the 117 genes were grouped into two main 
clusters, as shown in the heatmap (Fig. 1). The fi rst 
cluster contained 18 genes, including MMP11 and its 
positively correlated genes; however, the second cluster 
included 100 genes, most of which were negatively 
correlated with MMP11. We executed ROC analysis 
on each cluster separately, and to depict it better, 
we subdivided the second cluster into nine smaller 
segments, each containing a different number of genes.

3.5. Survival Analysis of Samples
To perform the survival analysis of samples, we 
eliminated all 113 normal samples from the gene 
expression dataset, and only 1109 patients remained. 
The patients’ clinical data were added to the expression 
matrix. Patients with unknown conditions and those 
with non-BC deaths were removed from further 
investigation. Overall, 945 patients remained that were 
divided into two groups (dead: 58 and alive: 887). Using 
Cox regression model, we analyzed the survival of the 
patients. First, the univariate Cox proportional hazard 
model was performed for all genes to fi nd survival-
related candidate lncRNAs (28, 29). The expression 

Figure 2. Cox regression analysis. Multivariate Cox regression model in patients’ survival rate 
considering two crucial factors, the pathological stage and age, indicating risk scores A) in high- and 
low-risk patients and B) of the survival plot.

A) B)
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level of each lncRNA was scaled between zero and 
one, separately, with the following formula (30):
Where “X” indicates the expression of a specific 
lncRNA, “i” stands for patients’ number, and min and 
max show minimum and maximum levels of lncRNAs 
expression in all the patients. Moreover, the risk score 
was measured based on the beta value related to 
survival-related lncRNAs using the following formula 
(31):
Where “Wj” implies the univariate coefficient for 
lncRNA j, “expij” indicates the scaled (between 0 
and 1) expression value of lncRNA j in patient i, 
and “n” denotes the number of testings lncRNAs. To 
evaluate the independence of the risk score model, 
we applied a multivariate Cox regression model for 
patients’ survival rate considering two crucial factors, 
the pathological stage and age. In addition, using the 
median of risk scores as the cut-off value, we classified 
the patients into high-risk and low-risk groups (Fig. 
2A). The univariate test allowed us to find significant 
genes related to the survival prognosis of BC patients. 
The criteria for the selection of these genes were LRT 
results, which revealed that 15 out of 117 lncRNAs 
were significantly associated with patients’ survival 
(Table 1). 

3.6. Deep Learning Model Training
A new expression matrix was generated from five 
microarray datasets containing data from patients 
with non-metastatic and metastatic breast tumors. The 
matrix included a total of 700, 457 non-metastatic and 
243 metastatic, samples. TCGA data were transferred 
to logarithmic scale using the following formula: ; 
where X stands for scaled expression for each gene, and 
C stands for raw expression value. We considered only 
51 lncRNAs in our matrix because other lncRNAs did 
not exist in the GPL570 platform. By applying Keras 
and Tensorflow libraries in the python environment, 
we used both datasets to train deep learning models 
for classification of patients into non-metastatic and 
metastatic cases. Ultimately, four deep learning models 
were generated using the mentioned libraries. We 
compared the performance of all the models, and one 
model with the highest capability was selected. We 
considered 15% of our total data for testing, 15% for 
validating and 70% for training datasets. The model 
contained four hidden layers; the first layer consisted of 
51 units, and the second, third, and four layers included 
40, 25, and 10 units, respectively. The activation 
function for all the hidden layers was tanh, and the 
output layer was sigmoid. RMSprop was selected as the 

Ensembl Ids Beta LRT HR Hrlower HRupper Name

ENSG00000241158 -0.3824 0.0183 0.6822 0.4765 0.9766 ADAMTS9-AS1
ENSG00000225670 -0.3261 0.0284 0.7216 0.5261 0.9900 CADM3-AS1
ENSG00000222041 0.3753 0.0049 1.4554 1.1220 1.8879 CYTOR
ENSG00000226031 -0.3280 0.0408 0.7203 0.4967 1.0446 FGF13-AS1
ENSG00000232284 -0.3383 0.0215 0.7129 0.5268 0.9648 GNG12-AS1
ENSG00000179428 -0.4284 0.0140 0.6515 0.4371 0.9711 IL6-AS1
ENSG00000254862 -0.3375 0.0415 0.7134 0.4928 1.0329 LGR4-AS1
ENSG00000244968 -0.3634 0.0096 0.6953 0.5241 0.9223 LIFR-AS1
ENSG00000237248 -0.4484 0.0033 0.6386 0.4569 0.8925 LINC00987
ENSG00000225039 -0.2927 0.0401 0.7462 0.5531 1.0066 LINC01058
ENSG00000223485 0.3837 0.0010 1.4678 1.1996 1.7960 LINC01615
ENSG00000232679 0.3596 0.0020 1.4328 1.1605 1.7690 LINC01705
ENSG00000267013 0.2554 0.0384 1.2910 1.0283 1.6208 LINC01929
ENSG00000229108 -0.3791 0.0359 0.6844 0.4561 1.0270 LINC02587
ENSG00000172965 0.4961 0.0001 1.6423 1.2750 2.1154 MIR4435-2HG

Table 1.  Results of Cox regression and unvariant test. 
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optimizer, and the learning rate of 0.00003 was chosen 
to determine the speed of model training. As our model 
performed only binary classification, we used binary 
cross entropy as loss function and accuracy as reporting 
metrics. The model was trained for 3000 epochs, and 
the bias was considered for all layers at zero at the 
beginning of training. We used 19% of the remaining 
training data to fit the model as the validation dataset. 
Therefore, the model was first trained based on the 
training dataset, then compared to validation data and 
finally double-checked with the test dataset. In the end, 
a model with high accuracy and low loss was selected. 
To avoid overfitting, we used dropout layers with 0.3 
rate. Thus, we ensured that the model will focus on 
general features, instead of attending to only certain 
features.

3.7. Sample Collection 
Overall, 60 BC samples and 10 normal breast samples 
were acquired from the Iranian Tumor Bank, Cancer 
Institute of Iran, Tehran. The samples did not receive 
any drugs or therapy, and all cancer samples were 
confirmed by a pathologist and stored in liquid nitrogen 
until use. The samples’ clinical information is illustrated 
in Table 2.

3.8. RNA Extraction, Complementary DNA Synthesis, 
and RT-Quantitative PCR 
RNA was isolated from each sample using Trizol (In-
vitrogen, Germany) in conformity with the manufactur-
er’s instructions after three washes with PBS for the re-
moval of contaminants and necrotic cells. Based on the 
procedure of Invitrogen DNase kit, DNA was excluded 
from the extracts. Afterwards, the TaKaRa kit (USA) 
was used to synthesize complementary DNA. Specif-
ic primers, as shown in the Supplementary Table 1, 
were designed by Primer-BLAST tool (www.ncbi.nlm.
nih.gov/tools/primer-blast). The expression of the men-

tioned genes (GAPINC, EIF1B-AS1, TPT1-AS1, and 
MMP11) in normal and cancer samples was quantified 
by the aid of RT-quantitative PCR with specific primers 
and SYBR Green master mix. Beta-actin was employed 
as an internal reference, and 2-∆Ct was utilized to deter-
mine the gene expression in each sample.

3.9. Statistics and Software
All the data preprocessing and analysis were 
accomplished by the R programming language (version 
4.0.2). GhraphPad v8 was employed to draw and 
display charts. Differential expression analysis was 
performed using the Limma package in R. Normalized 
gene expression data were inputted, and a design matrix 
was specified to account for experimental conditions. 
Limma fitted a linear model to the data, incorporating 
empirical Bayes moderation to stabilize variance 
estimates. Hypothesis testing was conducted to identify 
differentially expressed genes, with multiple testing 
correction applied to control false discovery rate. 
Significant genes were determined based on adjusted 
p-values. False discovery rate level considered in all 
analysis was less than 0.01. The log-rank test (LRT) 
was also employed to evaluate the significance of 
candidate gene expression, which was considered as 
LRT threshold of 0.05, in patients’ prognosis. 

4. Results

4.1. Identification of Significant lncRNAs in BC 
Metastasis
The TCGA RNA-seq dataset was applied to find 
significant lncRNAs that may be important in BC 
metastasis. According to TCGA RNA-seq, the 
expression matrix contained 56,602 genes, among 
which 29,833 were removed because of low expression 
levels in breast tissue. Thus, only 267,69 genes were 
kept for our study (Fig. 3A). In both cancer and normal 

Factor Beta LRT HR lower HR HR upper
TS 1.3256 <0.0001 1.9698 3.7645 7.1942

Risk score 2.1334 <0.0001 3.4898 8.4472 20.1284
Age 0.5064 0.0561 0.9672 1.6502 2.8612

Pathological stage 1.1941 <0.0001 2.2465 4.8533 3.3129

Table 2. Results of multivariate Cox regression
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samples, we found that 117 lncRNAs were signifi cantly 
correlated with MMP11 expression level (correlation 
coeffi cient > 0.4 or <-0.4; P<0.01). The list of 117 
candidate lncRNAs is shown in Supplementary Table 
2. To fi nd signifi cantly deregulated genes between the 
normal and patients groups, selected based on their 
corresponding clinical data, we analyzed a differential 
gene expression, and the results revealed that all the 
117 candidate lncRNAs and MMP11 were considerably 
up- or downregulated, when compared to the normal 
and cancer groups (adj.P.Val < 0.0001 & LogFC [log 
fold change] > |0.8|; Fig. 3B). 

4.2. ROC Curve and Diagnosis Analysis
The results of ROC curve revealed that most of 
our candidate lncRNAs are potential biomarkers 
for BC diagnosis. The area under curves (AUCs) 
indicated fi ve lncRNAs as fair (0.7<AUC<0.8), 19 as 
good (0.8<AUC<0.9), and 92 as excellent potential 

biomarkers (0.9<AUC<1). The only poor biomarker 
with the lowest AUC (0.697) was LINC01788, and 
the excellent biomarkers, except for MMP11, were 
LINC01614, TMEM220.AS1, ADAMTS9.AS2, and 
LINC02511 with AUC>0.98.  

4.3. Prediction of Patients’ Survival Rate by LncRNAs
A multivariate Cox regression analysis was performed 
to show the dependency of the calculated risk scores 
on other important clinical characteristics. According 
to Cox regression and univariant test, 10 genes showed 
good prognosis behavior, whereas fi ve genes had poor 
prognosis (Table 1). In addition, a risk score model was 
computed based on survival-related lncRNAs. In order 
to avoid the impact of high and low expression levels of 
lncRNAs, we scaled the expression level of lncRNAs 
between zero and one. The outcomes indicated that the 
risk score model could dependently predict the patients’ 
survival rate, and the combination of 15 lncRNAs 

Figure 3. TCGA RNA-seq dataset results. A) Results of TCGA RNA-seq and expression matrix 
to identify the number of genes related to breast cancer; B) Analysis of lncRNAs expression 
in cancer and normal samples, showing that 117 lncRNAs were signifi cantly correlated with 
MMP11 expression level.

A)

B)
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expression levels is related to their survival state 
(Table 1). In the Cox regression analysis, the cut-
off value was considered as median risk scores, and 
based on this criterion, the patients were categorized 
into two (high-risk and low-risk) groups (Fig. 2A). 
A survival plot was drawn to distinguish the survival 
rates of patient groups (Fig. 2B). Results revealed 
that 63% (44 out of 58 deaths) and 88% (only 14 
deaths) of the patients were in the high- and low-
risk group, respectively. The results also suggested 
that 15 out of 117 lncRNAs could be considered as 
prognostic biomarkers and could have a role in the BC 
development and malignancy.

4.4. A Deep Learning Model with High Capability for 
Classifi cation of Patients
The model was trained several times and fi nally showed 
satisfactory results, with 82% training accuracy, 81% 
validation accuracy, and 70% test accuracy. To avoid 
overfi tting, we simultaneously checked the validation 
and training data loss and accuracy (Fig. 4A). We 
also generated the confusion matrix (Fig. 4B) and 
computed other parameters to assess our model with 

details. Calculations suggested that the weighted F1 
score of this model is 0.79, which is highly acceptable 
for classifi cation of patients. Finally, those lncRNAs 
that had the most signifi cant role in the model, in 
both methods, were evaluated. According to the 
decision tree, six lncRNAs (TPT1-AS1, PGM5.AS1, 
R4435.2HG, FIF1R.AS1, GAPLINC, and LUARIS) 
indicated the most important role in the model and in 
separation of metastatic from non-metastatic samples 
(Fig. 5A). On the other hand, the results of support 
vector machine showed that TPT1-AS1, LINC01099, 
GAPLINC, LINC01140, and EIF1B-AS1 had the 
most essential function in the model (Fig. 5B). These 
fi ndings suggest that the mentioned lncRNAs could 
have a crucial role in the metastasis of BC.  

4.5. Signifi cant Expression Changes of GAPLINC, 
TPT1-AS1, and EIF1B-AS1 in Samples
Since GAPLINC, TPT1-AS1, and EIF1B-AS1 have been 
less studied in BC, they were taken into consideration 
in this study. In this regard, MMP11, GAPLINC, 
TPT1-AS1, and EIF1B-AS1 expression levels were 
investigated in  metastatic cancer samples compared to 

Figure 4. Deep learning analysis. A) Model accuracy and loss; B) confusion matrix using creat R package.

A) B)
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Figure 5. Decision tree constructed by R packege rpart. A) The genes that play the most important role in 
the model and in separation of metastatic from non-metastatic samples; B) The results of SVM showed that 
TPT1-AS1, LINC01099, GAPLINC, LINC01140 and EIF1B-AS1 had the most essential role in the model.

A)

B)

normal and non-metastatic BC samples. Data showed 
that the expression level of MMP11 and GAPLINC in 
cancer, but not normal, samples increased significantly 
(Fig. 6; FDR<0.01; logFC>0.8). This result was 
similar to our ex vivo studies (Fig. 6; P<0.01). 
Our results also revealed that the expression level 
of MMP11 and GAPLINC increased in metastatic 
compared to non-metastatic samples (Fig. 6A and 
6B; P<0.01). However, the expression level of TPT1-
AS1 and EIF1B-AS1 decreased in both TCGA and ex 
vivo data and in metastatic relative to non-metastatic 
samples (Fig. 6C and 6D; P<0.01). These data display 
that GAPLINC, TPT1-AS1, and EIF1B-AS1 could 
have a role in BC malignancy through the process of 
metastasis.

5. Discussion
TNBC, in comparison to other BCs, is characterized 
by high malignancy, easy recurrence, young onset, 

and low survival rates. While initial response to 
chemotherapy might be more profound, relapse in 
visceral organs, including the central nervous system, 
is common, though its underlying mechanism has not 
been revealed properly (32, 33). Therefore, targeting 
lncRNAs could be an opportune clinical approach in 
metastatic TNBC diagnosis and treatment, especially 
in early stages. 
Recent studies have shown the potential role of 
GAPLINC in the biological processes of several 
malignancies. Its high expression enhances the 
migration and proliferation of renal carcinoma cell 
through increasing the expression of CSF1 by sponging 
miR-135b-5p (34). It has also been suggested that 
overexpression of GAPLINC promotes invasion in 
colorectal cancer by targeting SNAI2 through binding 
with PSF and NONO (35). Likewise, it has been 
disclosed that GAPLINC expression upregulated 
in human non-small cell lung cancer (NSCLC) is 
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Figure 6.  Comparison of expression level changes of candidate lncRNAs with the MMP11 gene. The 
expression level of A) MMP11, B) GAPLINC, C) TPT1-AS1, and D) EIF1B-AS1 in cancer compared to normal 
samples using GhraphPad (V 8).

A) B)

C) D)

associated with poor prognosis in patients with such 
a disease (36). The expression pattern of GAPLINC 
reported in previous investigations is comparable to 
that reported in the current study. Hence, GAPLINC 
could serve as a potential prognostic and metastatic 
factor. 
Another lncRNA candidate identified in this study 
is TPT1-AS1 that has not demonstrated similar 
expression pattern in different types of cancers. For 
instance, overexpression of IncRNA TPT1-AS1 has 
been shown to suppress hepatocellular carcinoma cell 
proliferation by downregulating CDK2 (37), while 

the high expression level of TPT1-AS1 was found to 
be correlated with unfavorable clinicopathological 
characteristics in colorectal cancer with less 
tumorigenesis and metastasis in vivo (38). Moreover, 
TPT1-AS1 expression is significantly greater in liver 
cancer tissues and cell lines than adjacent paracancerous 
tissues (39). 
LncRNA array and bioinformatics analysis in the 
present study exhibited the downregulation of TPT1-
AS1 in metastatic, but not non-metastatic, BC tissues. 
Therefore, further research is needed to unravel the 
role and mechanism of TPT1-AS1 in tumorigenesis and 
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metastasis. Until now, no research has been conducted 
on the function of EIF1B-AS1 in cancer disease, 
but our bioinformatic analysis results displayed 
the potential role of this lncRNA in BC. Thus, we 
evaluated the expression pattern of this novel lncRNA 
in TNBC tissues (in vitro); however, our findings 
were significant (P<0.01). More studies are, therefore, 
demanded to identify EIF1B-AS1 as a biomarker in BC 
or other cancers.
The presented study successfully utilized deep 
learning methodologies to classify patients into non-
metastatic and metastatic breast cancer cases using 
a new expression matrix, comprising 51 lncRNAs 
derived from five microarray datasets. Despite the 
achievement of promising results, i.e. 82% training 
accuracy of 82%, validation accuracy of 81%, and test 
accuracy of 70%, several challenges and limitations 
remain to be addressed. Firstly, the reliance on a 
specific set of lncRNAs due to platform constraints 
may limit the generalizability of the model to other 
datasets with different lncRNA profiles. In order 
to address the challenge posed by a vast number of 
features compared to the sample size, which often 
leads to data redundancy and overfitting, we employed 
a strategy leveraging our biological understanding to 
identify key genes and reduce the dimensionality of our 
dataset. We conducted standard differential expression 
analysis and assessed the correlation of lncRNAs used 
herein with well-established genes associated with BC. 
The specific criteria and thresholds used for feature 
selection are detailed in the current study. While 
alternative techniques such as autoencoders or machine 
learning methods (e.g. PCA, t-SNE, and UMAP) could 
be employed, we did not use these methods because 
autoencoders require extensive data, which could 
limit their effectiveness in our context. Additionally, 
while PCA offers dimensionality reduction, its linear 
nature may not adequately capture the complexity 
of non-linear transcriptomic data. t-SNE, primarily 
a visualization tool, lacks robustness in dimension 
reduction due to its stochastic nature. Although UMAP 
presents a promising alternative, it predominantly 
relies on data correlations and non-linear relationships, 
lacking integration of biological insights. In contrast, 
our approach by applying biological knowledge offers 
the advantage of informed feature selection, enhancing 
the interpretability and generalizability of our findings. 
Moreover, the performance of model could be influenced 

by the imbalanced distribution of non-metastatic and 
metastatic samples within the datasets, warranting 
further investigation into strategies for mitigating 
class imbalance. Furthermore, the interpretation of the 
model’s decisions and the identification of key lncRNAs 
contributing to classification remain challenging tasks, 
requiring advanced techniques for model explainability 
and feature importance analysis. Future directions 
for improving deep learning methodologies in this 
context could involve the integration of multi-omics 
data sources, including genomic, transcriptomic, 
and epigenomic data, to enhance the robustness and 
predictive power of the models. Moreover, exploring 
novel architectures, regularization techniques, and 
transfer learning approaches tailored to biomedical 
data could facilitate the development of more 
accurate and interpretable models for BC metastasis 
prediction. Lastly, validation and external validation 
of the developed models on independent datasets are 
essential steps towards ensuring their clinical relevance 
and generalizability, ultimately advancing their 
translation into clinical practice for personalized cancer 
management.

6. Conclusion
The present study evaluated the role of lncRNAs, 
including GAPLINC, TPT1-AS1, and EIF1B-AS1, in 
the diagnosis of metastatic TNBC samples through 
Bioinformatics and Machine Learning. Non-coding 
RNAs candidates identified in this study exhibited 
significantly different expression levels in metastatic 
TNBC tissues vs. non-metastatic samples. As the 
candidate lncRNAs were expressed apparently, we 
can deduce that these could serve as novel diagnostic 
and prognostic biomarkers in metastatic BC. While the 
present findings may help better understand the crucial 
role of lncRNAs, identifying their mechanisms in the 
pathogenesis of cancers is still urgent because these 
RNAs have capability of activating and repressing 
gene expression via different mechanisms, which 
act alone or in combination with miRNAs and other 
molecules as a part of various pathways. Moreover, it is 
necessary to demonstrate the reliability of GAPLINC, 
TPT1-AS1, and EIF1B-AS1 as indices for diagnosing 
other subtypes of BC or in human body fluids. Our 
findings represent a promising and powerful idea that 
we could produce pannels, measuring the expression 
of not all the genes, but only a few lncRNAs, and could 
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predict and monitor the stage and state of the patients 
using only these genes. With further computational 
resources, we would be able to reconstruct the whole 
expression matrix of patients and therefore make 
the gene regulation map of patients only using a few 
genes, improving our understanding of BC and its 
progression. 
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