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Abstract

Recurrent outbreaks of the influenza virus continue to pose a serious health threat all over

the world. The role of mass media becomes increasingly important in modeling infectious

disease transmission dynamics since it can provide public health information that influences

risk perception and health behaviors. Motivated by the recent 2009 H1N1 influenza pan-

demic outbreak in South Korea, a mathematical model has been developed. In this work, a

previous influenza transmission model is modified by incorporating two distinct media effect

terms in the transmission rate function; (1) a theory-based media effect term is defined as a

function of the number of infected people and its rage of change and (2) a data-based media

effect term employs the real-world media coverage data during the same period of the 2009

influenza outbreak. The transmission rate and the media parameters are estimated through

the least-squares fitting of the influenza model with two media effect terms to the 2009

H1N1 cumulative number of confirmed cases. The impacts of media effect terms are investi-

gated in terms of incidence and cumulative incidence. Our results highlight that the theory-

based and data-based media effect terms have almost the same influence on the influenza

dynamics under the parameters obtained in this study. Numerical simulations suggest that

the media can have a positive influence on influenza dynamics; more media coverage leads

to a reduced peak size and final epidemic size of influenza.

1 Introduction

Biological and social aspects are critical factors in the transmission dynamics of human infec-

tious diseases. The biological characteristics of pathogens play a critical role in how easily an

individual is influenced by the pathogen, how long the latent period might be, and how severe

the disease might be. The individual-to-individual transmission of diseases is greatly depen-

dent on social aspects of human populations. The way that interactions among individuals are

structured can determine whether a disease spreads throughout a population or dies out. Thus

intervention strategies are devised, focusing on social aspects such as school-closing or social

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0232580 June 11, 2020 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kim Y, Barber AV, Lee S (2020) Modeling

influenza transmission dynamics with media

coverage data of the 2009 H1N1 outbreak in Korea.

PLoS ONE 15(6): e0232580. https://doi.org/

10.1371/journal.pone.0232580

Editor: Roberto Barrio, University of Zaragoza,

SPAIN

Received: September 4, 2019

Accepted: April 17, 2020

Published: June 11, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0232580

Copyright: © 2020 Kim et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data is

within the paper and its Supporting Information

files.

Funding: This work was supported by a National

Research Foundation of Korea (NRF) grant funded

http://orcid.org/0000-0003-1138-6802
http://orcid.org/0000-0003-1126-0660
https://doi.org/10.1371/journal.pone.0232580
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232580&domain=pdf&date_stamp=2020-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232580&domain=pdf&date_stamp=2020-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232580&domain=pdf&date_stamp=2020-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232580&domain=pdf&date_stamp=2020-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232580&domain=pdf&date_stamp=2020-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232580&domain=pdf&date_stamp=2020-06-11
https://doi.org/10.1371/journal.pone.0232580
https://doi.org/10.1371/journal.pone.0232580
https://doi.org/10.1371/journal.pone.0232580
http://creativecommons.org/licenses/by/4.0/


distancing, as well as biological aspects such as vaccination or anti-viral treatment. For

instance, whether and how to make people participate in a vaccination program can be consid-

ered a social problem because psychological factors such as vaccine scares can affect the vacci-

nation behavior of individuals [1]. Those two aspects affect each other, and the mode of this

mutual influence determines the mode of disease spread [2].

There has been much effort towards incorporating such social factors into mathematical

models [3]. They facilitate or hinder human behaviors, which are related to epidemics based

on the assumption that people may adopt behaviors that reduce the risk of disease if they know

about it. Since the mass media is both the easiest way of disseminating information to a large

number of people and the major information source regarding disease outbreak, mass media

is one of the factors that has drawn the most attention. With many headings such as mass

media coverage [4, 5], awareness and psychological impact [6–8], the role of mass media on

the spread of infectious disease has accounted for a significant amount of literature about

mathematical modeling of social aspects in epidemiology.

Previous studies about the effects of mass media on the spread of infectious diseases can be

categorized into three kinds according to the way that the media effect is represented in mathe-

matical equations. There are studies that divide classes in the SIR-type model by the response

to mass media. Funk et al. [6] separated each of the classes in the SIR model into either being

aware or unaware of the disease. Individuals can be aware of the disease in any class of the SIR

model, and individuals’ awareness affects the infection rate, recovery rate, and rate of immu-

nity loss. By conducting mean-field analysis and numerical simulations, they found that

spreading awareness of an endemic disease, which is identical to the media effect, can make it

impossible for the disease to settle in a population under certain conditions. They have also

shown that the media can decelerate the spread of the disease. Kiss et al. [9] reached similar

conclusions with a modified SIRS model. They divided the classes into responsive and non-

responsive, and they considered three scenarios. The first is where information about a disease

is transmitted by contact among individuals, the second one is where information is spread

population-wide, and the third one is where the value of the information decays over time.

They showed that population-wide information transmission, which is equivalent to the media

effect, is less effective in resisting disease spread than contact-based information transmission.

Misra et al. [7] utilized a simpler model, which divided the S class into being aware and

unaware of a disease, based on the SIS model, and concluded that media campaigns are helpful

in decreasing the spread of infectious diseases by ensuring that individuals are more cautious

of making contact with those that are infected.

Another way of representing the media effect in a mathematical model is reducing the

transmission rate. This is based on the assumption that individuals who are aware of the dis-

ease will change their behavior, causing the transmission rate to decrease. There have been a

few ways of reducing the transmission rate. Cui et al. [5] and Sun et al. [10] reduced the trans-

mission rate by lowering the contact rate term in the model. Other studies utilized a transmis-

sion rate that decays exponentially as a function of the number of infected people [4]. In other

words, the media reports only the number of infected people and the transmission rate decays

exponentially as the reported number of infected people increases. In the model of Liu et al.

[8], in contrast, the exponential decay is a function of the number of those exposed and hospi-

talized as well as the number of infected people; the transmission rate decreases exponentially

as the media-reported numbers of exposed, hospitalized, and infected people increase. Most

models considered only the number of infected individuals in the media effects, however, both

work [11, 12] made a more realistic assumption that people tend to be sensitive not only to the

number of infected people but also to whether diseases spread is getting better or worse. Thus,

they built a model where the transmission rate is a function of both the number of infected
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people and its rate of change. This media term will be employed as our theory-based model in

the next section.

Also, a non-linear incidence rate was utilized to represent the media effect in a mathemati-

cal model. Tchuenche et al. [12, 13] incorporated the contact rate reduction parameters, which

represent the change in human behavior when the numbers of infectious and vaccinated indi-

viduals are reported in the media. A similar approach was used by Li and Cui [14], with the

only difference being that they only took into account the number of infectious individuals. In

a similar vein, Xiao and Ruan [15] adopted a nonmonotonic incidence rate that rapidly

decreases as the number of infected individuals increases. They considered this as a psycholog-

ical effect based on the assumption that people tend to reduce the contact rate when there are

many infected people in the population. This psychological effect can be regarded as identical

to the media effect because the only practical way that an individual can receive information

about the number of infected people is through the media. The model in the work of Mum-

mert and Weiss [16] was based on the assumption that the media would report the number of

new infections and deaths.

In addition, some studies explored the influence of the time gap between awareness and

vaccination behavior. d’Onofrio et al. [17, 18] incorporated the notion of decaying memory

based on the assumption that individuals do not necessarily get vaccinated immediately after

they learn about the infectious disease. Buonomo et al. [19] paid attention to the fact that indi-

viduals sometimes give more weight to past information and incorporated this into their math-

ematical model.

As seen from the above, there has been much literature about how the media affects the

spread of infectious disease. Yet almost no research has been done trying to fit this model to

real-world media coverage data. Yoo et al. [20], Ma et al. [21] and Reintjes et al. [22] statisti-

cally analyzed the relationship between media coverage and vaccination rate, but they did not

explore how those two dynamically affect each other or the resulting dynamics of infectious

disease transmission.

This study explores how media coverage influences the infection dynamics. Therefore, we

focus on the case of H1N1 in 2009, South Korea. The media coverage data were gathered from

the news article database, KINDS (www.kinds.or.kr), maintained by the Korea Press Founda-

tion using the query term ‘H1N1’ or ‘novel flu’ (English translation of informal Korean words

for H1N1) and counting the number of news articles that matched the query term [23]. The

2009 H1N1 confirmed cases were taken from the Korea Centers for Disease Control and Pre-

vention [24]. Both of the data sets span from April 2009 to August 2010 and are transformed

into a week-based format. A mathematical model in [25] is modified by incorporating the

media effect. The present study utilizes two kinds of models: one incorporates a theory-based

media effect term from previous research [11, 12] and the other incorporates a data-based

media effect term from media coverage data during the 2009 H1N1 season in South Korea.

Both of them are fitted to the incidence data in the same period of epidemic duration. Using

these two models, the relationship between media coverage and influenza dynamics is

explored.

2 An influenza transmission model with the media effect

2.1 Modeling the media effect

We propose a mathematical model to investigate the media effects on the influenza transmis-

sion dynamics of H1N1 in South Korea, 2009. Our mathematical model is based on the model

in the previous study [25]. A standard compartment model is employed to divide the popula-

tion into the following compartments with different epidemiological status; susceptible (S),
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vaccinated (V), exposed (E), clinically ill and infectious (I), asymptomatic but still infectious

(A), hospitalized (H), recovered (R) and cumulative clinically ill and infectious cases (C).

Since the disease-induced death is negligible for a single outbreak duration (less then a

year), it is assumed that the total population size, N(t), remains constant, where N(t) = S(t) + V
(t) + E(t) + I(t) + A(t) + H(t) + R(t)� N. In addition, the population is assumed to be

completely susceptible at the beginning of the epidemic. β is the baseline transmission rate and

η stands for the relative infectiousness of asymptomatic cases compared with symptomatic

cases (0� η� 1), u is the vaccination rate with which the vaccination is administered to sus-

ceptible individuals, and σ is the vaccine efficacy based on the assumption that the vaccine pro-

vides only partial immunity so that vaccinated individuals are less susceptible than

unvaccinated individuals. Exposed individuals proceed to the infectious status after some

latent period, which is represented as k in the model, and a proportion p of infected individuals

become symptomatic. Infectious individuals are assumed to be hospitalized at the rate of α,

and are treated with an antiviral drug at the rate f. Both symptomatic and asymptomatic indi-

viduals recover at the rate γ. Hospitalized individuals recover at the rate θ. Recovered individu-

als are assumed to gain immunity for the duration of the epidemic. The system of differential

equations that describes our influenza transmission model is given as follows:

dS
dt
¼ � e� cMðtÞbfZAþ I

N
gS � uS;

dV
dt
¼ uS � ð1 � sÞe� cMðtÞbfZAþ I

N
gV;

dE
dt
¼ ðSþ ð1 � sÞVÞe� cMðtÞbfZAþ I

N
g � kE;

dI
dt
¼ kpE � ðaþ gþ f ÞI;

dA
dt
¼ kð1 � pÞE � gA;

dH
dt
¼ aI � yH;

dR
dt
¼ gðAþ IÞ þ fI þ yH;

dC
dt
¼ kpE:

ð1Þ

As shown in the model, it is assumed that susceptible individuals become infected at the fol-

lowing rate:

e� cMðtÞbf
ZAþ I
N
g;

which suggests that individuals adopt behaviors that may reduce the probability of being

infected (e−cM(t)) in β. The model in [25] is modified by incorporating the media effect in β is

the baseline transmission rate and c is the nonnegative weight constant (a level of media cover-

age). The media effect is incorporated as the term M(t), which is described below.

In the present study, we consider two scenarios to incorporate the media effect into our

influenza transmission model.

(M1). Model 1

MðtÞ ¼ max 0; aIðtÞ þ b dI
dt ðtÞ

� �
, where the media effect is the term M(t), which is the

sum of the number of infected individuals and its rate of change with scale constants a
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and b, respectively. It is based on the assumption that people will pay attention both to

the current situation of influenza and whether it is getting better or worse, as in [11,

12].

(M2). Model 2

M(t) = d ×m(t), where m(t) is the amount of media coverage at time t and d is a scale

constant (m(t) and d are nonnegative).

In Model 2, the media coverage data m(t) were gathered from the news article database,

KINDS (www.kinds.or.kr), maintained by the Korea Press Foundation using the query

term ‘H1N1’ or ‘novel flu’ (English translation of informal Korean words for H1N1) and

counting the number of news articles that matched the query term [23]. The 2009 H1N1 con-

firmed cases were taken from the Korea Centers for Disease Control & Prevention [24]. Both

of the data span from April 2009 to August 2010 and are transformed into a week-based

format.

In Fig 1, time series of H1N1 cases is displayed in the top panel. Media coverage data during

the same period is displayed in the bottom panel. Note that the index case of H1N1 was traced

back during April 20-26, 2009 and confirmed in May 1, 2009 [26]. Due to this index case, the

number of articles on H1N1 increased dramatically from May, 2009 (see the number of new

articles in the bottom panel: 1 in the first week, 2 in the second week, 0 in the third week, and

43 in the fourth week). It is clear that Korean press began to pay attention to H1N1 only after

confirmation of the first case in Korea. This leads that the first peak of the media data in May,

2009 before the actual H1N1 peak (in October, 2009).

2.2 The basic reproduction number

The basic reproduction number is defined as the average number of secondary cases generated

by a primary infectious case in a completely susceptible population [27]. The basic reproduc-

tion number for our influenza model (1) is computed by the next-generation method [28].

The model (1) can be rearranged, and its solutions can be expressed by x = (x1, � � �, x7) = (E, I,
A, S, V, H, R). Let the right side of the system (1) be zero and one can verify that x0 = (0, 0, 0,

N, 0, 0, 0) is the equilibrium. We refer to this equilibrium as the disease-free equilibrium

(DFE). Then, the disease-free equilibrium (DFE) is used to evaluate the basic reproduction

number. The basic reproduction number, denoted R0, can be evaluated using the two vectors

F and V defined as:

F ¼

SbfZAþ I
N
ge� cMðtÞ

0

0

0

0

0

0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

; V ¼

� ð1 � sÞbVe� cMðtÞfZAþ I
N
g þ kE

� kpEþ ðaþ gþ f ÞI

� kð1 � pÞEþ gA

bSe� cMðtÞfZAþ I
N
g þ uS

ð1 � sÞe� cMðtÞbVfZAþ I
N
g � uS

� aI þ yH

� gðAþ IÞ � fI � yH

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:
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Fig 1. Time series of H1N1 cases is displayed from April 20, 2009, to July 18, 2010, in the top panel. Media coverage data during the

same period are displayed in the bottom panel. The amount of media coverage dramatically increased in May, 2009, shortly after the first

case of H1N1 in South Korea was appeared on April 20-26, 2009.

https://doi.org/10.1371/journal.pone.0232580.g001
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We take the Fréchet derivatives of F and V and evaluate them at the DFE (F ¼ @F
@xi

� �
and

V ¼ @V
@xi

� �
). Then, we obtain

F ¼

0 b bZ

0 0 0

0 0 0

2

6
6
6
4

3

7
7
7
5
;V ¼

k 0 0

� kp ðaþ gþ f Þ 0

� kð1 � pÞ 0 g

2

6
6
6
4

3

7
7
7
5
:

F is non-negative and V is a non-singular matrix with V−1

V � 1 ¼

1

k 0 0

p
ðaþgþf Þ

1

ðaþgþf Þ 0

1� p
g

0 1

g

2

6
6
6
6
4

3

7
7
7
7
5
:

Thus, FV−1 is non negative

FV � 1 ¼

bp
ðaþgþf Þ þ

bZð1� pÞ
g

b

ðaþgþf Þ
bZ

g

0 0 0

0 0 0

2

6
6
4

3

7
7
5:

Hence, the basic reproduction number is the spectral radius of FV−1 given as

R0 ¼
bp

ðaþ gþ f Þ
þ
bZð1 � pÞ

g
: ð2Þ

It is assumed that the population is completely susceptible at the beginning of the epidemic

and the R0 measures the average secondary cases at the beginning of the epidemic. This

implies that media coverage is assumed to have no effect at the beginning of the epidemic.

Therefore, media coverage does not play a role in the basic reproduction number R0 in Eq (2).

Note that the basic reproduction number R0 is a function of six parameters. The basic repro-

duction number R0 includes some intervention parameters: a treatment rate (f) and a hospital-

ization rate (α). Let us denote the basic reproduction number by R0 when there are no

interventions, that is, f = 0 and α = 0. We will distinguish R0 with the controlled reproduction

number Rc when there are interventions (f> 0 and α> 0).

3 Numerical results

3.1 The basic reproduction number

We present numerical simulations to explore the effects of various parameters on the basic

reproduction number R0. Influenza parameters are taken from [25], which investigated the

2009 H1N1 influenza dynamics in Korea. These baseline parameter values are collected in

Table 1. Let us recall that a proportion 0< p< 1 of exposed individuals progress to the infec-

tious class I at the rate k while the rest (1 − p) progress to the asymptomatic partially infectious

class A at the same rate k. Here, η is the relative constant (0< η< 1) that accounts for the

reduction in transmissibility for asymptomatic individuals (partially infectious). Note that p
and η are associated with asymptomatic individuals and they have higher uncertainty levels

(larger variances) than other parameter values as investigated in [29].
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First, we carry out sensitivity of R0 with varying each of six individual parameters. Fig 2

illustrates a sensitivity analysis of R0 to the variation of six parameters; parameters are made to

vary in the following ranges; β = [0.3, 1.5], p = [0.1, 0.9], γ = [0.1, 0.5], η = [0.1, 0.5], f = [0.1,

0.5], α = [0.1, 0.5]. The sensitivity is carried out as we vary each parameter while other parame-

ters are kept as baseline values in Table 1. Recall that the basic reproduction number R0 is a

function of six parameters as shown in (2); R0 has a linear relationship with β, p, and η. There-

fore, the basic reproduction number increases for larger values of β, p or η in a linear fashion.

Similarly, the basic reproduction number has a reciprocal relationship with f, α, and γ; it

Table 1. Baseline parameter values taken from the previous work [25].

Parameter Description Value

σ Vaccine efficacy 0.8

η Relative infectiousness of asymptomatic cases 0.142

k Rate of progression from the latent to infected (days−1) 0.833

p Proportion of infected individuals who become symptomatic 0.33

γ Recovery rate for infected individuals (days−1) 0.22

θ Recovery rate for hospitalized individuals (days−1) 0.34

u(t) Vaccination rate (days−1) 0-0.006

f(t) Antiviral rate (days−1) 0-0.6

α(t) Diagnostic rate (days−1) 0-0.08

c Level of media coverage 1

S(0) Initial number of susceptible individuals 4.8746693 × 107

I(0) Initial number of infected individuals 1

https://doi.org/10.1371/journal.pone.0232580.t001

Fig 2. Sensitivity of R0 with varying each individual parameter; β = [0.3, 1.5], p = [0.1, 0.9], η = [0.1, 0.5], γ = [0.1,

0.5], f = [0.1, 0.5], α = [0.1, 0.5] (the baseline parameter values are given in Table 1).

https://doi.org/10.1371/journal.pone.0232580.g002
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decreases as γ, f and α increases. Also, the R0 shows the larger ranges for β, p or η due to their

higher uncertainty levels.

Next, the effects of the inclusion of the asymptomatic class and the reduction constant of

the A-class are further explored, as well as the effects of interventions of treatment (f) and hos-

pitalization (α). The impacts of the three parameter values β, p, η are f and α on the basic repro-

duction number R0 are displayed in Fig 3. The results are shown as a function of the baseline

transmission rate (β) for each parameter. For larger values of p and η, the basic reproduction

number increases as the baseline transmission rate (β) increases (top panels). In the presence

of interventions, the controlled reproduction number Rc becomes smaller under the imple-

mentation of intensive (higher) treatment and hospitalization (bottom panels). Overall, the

basic (or controlled) reproduction number gets larger (smaller) as p or η (or f and α) get larger

in a straightforward manner.

Furthermore, Fig 4 shows three-dimensional results: the impact of the two parameter values

p and η (f and α) on the basic (controlled) reproduction number. Similarly, the overall basic

reproduction number R0 increases as p and η increase (see Fig 4(a)). Again, the controlled

Fig 3. Sensitivity analyses for R0: (a) The impact of p when γ = 0.22, η = 0.142, f = 0, α = 0, (b) the impact of η when γ = 0.22, p = 0.33, f = 0, α = 0;

sensitivity analyses for Rc: (c) the impact of f when γ = 0.22, η = 0.142, p = 0.33, α = 0, (d) the impact of α when γ = 0.22, η = 0.142, f = 0, p = 0.33.

https://doi.org/10.1371/journal.pone.0232580.g003
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reproduction Rc becomes smaller under more intensive treatment and hospitalization, as

shown in Fig 4(b).

3.2 Parameter estimation

In this section, we estimate parameters for the media effect term under two models, whose

only difference lies in the media effect term, M(t). This media term is incorporated into the

incidence rate, e� cMðtÞbfZAþIN g. Model 1 incorporated the media effect term as

MðtÞ ¼ maxf0; aIðtÞ þ b dI
dt ðtÞg. Model 2 utilized the real-world media coverage data of H1N1

in South Korea 2009 as M(t) = d ×m(t). Here, m(t) is the amount of media coverage of H1N1

at time t and d is the scale constant (m(t) is obtained from [23]). Both models were fitted to the

actual 2009 H1N1 data provided by KCDC (the cumulative number of confirmed cases during

April 2009 to August 2010) [24].

For Model 1, the transmission rate β and the scale constants a, b in the media term were

estimated. For Model 2, the transmission rate β and the scale constant d in the media term

were estimated. The rest of the parameter values were fixed, as given in Table 1. Initial condi-

tions for other variables are set to be zero (V(0) = E(0) = A(0) = H(0) = R(0) = C(0) = 0). The

three parameter values Ŷ1 ¼ ðb; a; bÞ in Model 1 and the two parameter values Ŷ2 ¼ ðb; dÞ in

Model 2 were estimated through least-squares fitting of C(t) (the last differential equation for

Fig 4. (a) Sensitivity analyses of the basic reproduction number for p and η (β = 1, γ = 0.22, α = f = 0). (b) Sensitivity

analyses of the controlled reproduction number for α and f (β = 1, γ = 0.22, p = 0.33, η = 1.42). The bottom panels are

the contour plots of (a) and (b), respectively.

https://doi.org/10.1371/journal.pone.0232580.g004
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the cumulative number of confirmed cases) in system (1). Denote the observed cumulative

cases data in day as Y = (y1, � � �, yM) and the influenza model output for C(t) as C(m, Θ) with

(m = 1, � � �, M). The parameter vector Ŷ for both models was obtained by minimizing

argminΘ2W J(Θ) for a cost functional JðYÞ ¼ jjY � Cð�;YÞjj2 ¼
PM

m¼1
jym � Cðm;YÞj2,

where W = {Θ 2 D|lb� Θ� ub} was an admissible set for the parameter vector Θ. Note that D
is a n-dimensional real vector space; D = R3 for Model 1 and D = R2 for Model 2.

As shown in Fig 1, the intrinsic nature of 2009 H1N1 epidemic curves included the follow-

ing four stages: very small cases, a tiny first peak, a second huge peak and very small cases

again. Using only one parameter set in the entire time window, we had a very crude approxi-

mation of the model fit. Therefore, for the better fit to the data, the entire time interval ([1,

455] days) was divided into the following four subintervals: Period1 = [1, 65], Period2 = [65,

170], Period3 = [170, 275], Period4 = [275, 455] (in days).

Both Ŷ1 and Ŷ2 were estimated for Model 1 and Model 2 in a sequential manner. First, Ŷ1

(Ŷ2) was estimated in Period1, then Ŷ1 (Ŷ2) was estimated in Period2 using the initial condi-

tions (which were obtained from the model output values at 65day). We completed this

sequential process for Period3 and Period4, respectively. For the least-squares fitting (numeri-

cal) procedure on each subinterval, we employed the Trust–Region-Reflective method imple-

mented in MATLAB (The Mathworks, Inc.) in the built-in routine fimincon, which was part of

the optimization toolbox (with constraints on positive parameter values).

This is a typical inverse problem associated to many epidemic models. Generally, it is highly

nonlinear, with none or low regularity, multiple solutions (or even none), being very compli-

cated to solve [30, 31]. The inverse problem seeks to estimate a finite number of parameters on

a finite dimensional space with a nonlinear cost function. Furthermore, Theorem 4.5.1 in [32]

showed a proper sense of well-posedness of the inverse problem (existence, uniqueness and

local stability). Also, the Trust-Region-Reflective method (TRR) is employed here to numeri-

cally approximate a solution for the inverse problem [33]. Hence, this ensures the global mini-

mum of the parameter estimation under the above assumptions. More details of theses inverse

problems are given in [34].

As shown in Fig 5, our fitted model for Model 1 and Model 2 during the 2009 influenza epi-

demic duration in Korea agreed well with the observed epidemic data. The resulting parameter

estimates of the four-time windows for both models were collected in Table 2. The numbers of

cumulative cases under Model 1 and Model 2 (solid curves) were compared with the actual

cumulative 2009 H1N1 data (circle): the top panel for Model 1 and the bottom panel for

Model 2. Dashed vertical lines divided the entire time window into the four subintervals.

3.3 The impact of media on influenza dynamics

In this section, we investigate the impacts of the media effect term on influenza transmission

dynamics under Model 1 and Model 2. We carry out numerical simulations using the esti-

mated parameters above and the rest of the baseline parameter values in Tables 1 and 2. First,

Fig 6(a) illustrates the resulting dynamics of Model 1 whose media effect term is based on the-

ory. Fig 6(b) illustrates the dynamics of the number of infected individuals and its rate of

change, both of which are elements of M(t) in Model 1. Next, Fig 7(a) illustrates the resulting

dynamics of Model 2, whose media effect term is based on the real-world media coverage data

during the 2009 H1N1 epidemic duration. The media term M(t) = d ×m(t) is displayed in Fig

7(b). The overall results are almost identical to the results in Fig 6, which means that the media

effect term in Model 1 effectively captures the media effect that manifests in real-world data.

More detailed dynamics of the two media effect terms are compared in Fig 8: Model 1

(solid) and Model 2 (dashed). Under the parameters we obtained in this study, the two
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resulting dynamics are very similar with double peaks as observed in the media coverage data

(the bottom panel of Fig 1). Note that the first peak is larger than the second peak in both

media terms. The first peak appeared right before the actual epidemic peak. Interestingly, the

actual H1N1 peak appeared in the middle of double media peaks. This has been observed in

other research [21, 22]: the actual media data showed the dip during the time where the actual

epidemic peak occurred. Even though their data showed a similar dip of media coverage

Fig 5. The best-fit cumulative number of cases obtained by fitting Cðt; ŶÞ (solid curve) in system (1) to the

cumulative number of H1N1 cases (circle): The top panel for Model 1 and the bottom panel for Model 2.

https://doi.org/10.1371/journal.pone.0232580.g005

Table 2. Estimated parameter values.

Model 1 Model 2

β a b β d

Period 1 0.5797 7.5661e-13 2.3335e-14 0.5701 9.7969e-13

Period 2 0.7201 1.4453e-04 1.1071e-8 0.7566 1.2172e-04

Period 3 1.1934 4.3325e-06 4.8625e-10 1.1704 6.6231e-05

Period 4 0.7027 1.7356e-06 1.062e-04 0.7479 6.3447e-18

https://doi.org/10.1371/journal.pone.0232580.t002
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during the influenza season, no clear explanations were addressed. As seen in Fig 1, the actual

epidemic peak happened about five months after the first and second media peaks. This sug-

gests that the media became loose the alert and thus reduced the amount of coverage. Soon,

the epidemic peak occurred, and media coverage increased again. This is only a conjecture,

and these issues should be addressed in future research.

Finally, the impacts of media coverage c on influenza dynamics is investigated using three

values of c = 0.5, 1, 1.5. Figs 9 and 10 illustrate incidence and cumulative incidence for Model 1

and Model 2, respectively. The higher the media coverage, the smaller the peak of epidemic

curves in the results of both models. Specifically, the peak of epidemic curves would be signifi-

cantly higher if there were less media coverage (c = 0.5) in comparison to the default (c = 1)

amount of media coverage. As the value of c increases (c = 1.5), which is equivalent to increas-

ing the amount of media coverage, both the peak size and the final epidemic size decrease in a

straightforward manner. The results of a more detailed analysis are presented in Table 3. In

addition, the impact of media coverage on other classes is shown in Figs 11 and 12 for Model 1

and Model 2, respectively. Time series of S (susceptible), V (vaccinated), E (exposed individu-

als), A (asymptomatic individuals), H (hospitalized individuals), and R (recovered individuals)

are displayed under three values of mass media coverage, c. Similarly, as the value of c increases

(c = 1.5), which is equivalent to increasing the amount of media coverage, both the peak size

and the total size decrease in each class (E, A, H). The comparison above suggests that the the-

ory-based and data-based media effect terms have almost the same influence on the influenza

Fig 6. Model 1 output: (a) the best-fit solution obtained by fitting Cðt; ŶÞ (dashed curve) in system (1) to the

cumulative number of H1N1 cases is displayed. (b) Dynamics of the media effect term

MðtÞ ¼ maxf0; aIðtÞ þ b dI
dt ðtÞg.

https://doi.org/10.1371/journal.pone.0232580.g006
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Fig 7. Model 2 output: (a) the best-fit solution obtained by fitting Cðt; ŶÞ (dashed curve) in system (1) to the

cumulative number of H1N1 cases is displayed. (b) Dynamics of the media effect term (M(t) = d ×m(t)) of Model 2 are

displayed.

https://doi.org/10.1371/journal.pone.0232580.g007

Fig 8. Dynamics of the two media effect terms are compared: Model 1 (solid) and Model 2 (dashed).

https://doi.org/10.1371/journal.pone.0232580.g008
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Fig 9. Model 1 output: Incidence and cumulative incidence are displayed with varying degree of mass media

coverage (c = 0.5, 1, 1.5).

https://doi.org/10.1371/journal.pone.0232580.g009
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Fig 10. Model 2 output: Incidence and cumulative incidence are displayed with varying degree of mass media

coverage (c = 0.5, 1, 1.5).

https://doi.org/10.1371/journal.pone.0232580.g010
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dynamics under the parameters we obtained in this study. The final epidemic size shows that

the results of Model 1 are slightly more sensitive to c (as shown in Table 3). This suggests that

further modeling efforts need to be grounded in real-world knowledge.

4 Discussion

The media plays a crucial role in modern societies, which is also the case when it comes to

infectious disease. As societies become larger and more diversified, an individual is hardly able

to obtain enough correct information about the infectious disease in question for himself.

Individuals inevitably depend on information that the media provide, and individuals alter

their behavior based on that information. In this regard, it is proper to assume that media cov-

erage might have an influence on infectious disease dynamics.

Concerning the media effect, previous studies have suggested a variety of results [4–7, 10,

17]. One of the key results is that the media effect by itself does not have an explicit effect on

Table 3. Peak size and final epidemic size with varying degree of mass media coverage.

c = 0.5 c = 1 c = 1.5

(a) Model 1 Peak size 17, 064 14,755 11,622

Proportion 15.7% - -21.0%

Cumulative 892,637 763, 751 609,282

Proportion 16.8% - -20.2%

(b) Model 2 Peak size 19, 491 16,837 14,504

Proportion 15.5% - -13.8%

Cumulative 875,485 767, 561 675,010

Proportion 14.0% - -12.0%

https://doi.org/10.1371/journal.pone.0232580.t003

Fig 11. Model 1 output: S (susceptible), V (vaccinated), E (exposed individuals), A (asymptomatic individuals), H (hospitalized individuals), and R (recovered

individuals) are displayed with varying degree of mass media coverage (c = 0.5, 1, 1.5).

https://doi.org/10.1371/journal.pone.0232580.g011
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R0, thus mass media coverage alone cannot eradicate infectious disease [5, 9]. Instead, it can

have different influences according to R0. When R0 is less than 1, the disease-free equilibrium

is stable and the media does not have an explicit effect. When R0 is greater than 1, in contrast,

the endemic equilibrium is stable and a higher level of media coverage may lead to a smaller

level of infection prevalence [10, 16] or decelerate the spread of a disease [6, 7]. In addition,

previous studies suggest that when to stop media coverage may be an issue; if the media stops

coverage before the disease is eradicated, this may lead to another peak [5, 8]. Further, what

information is given to the media can be an issue. Caution in reporting the decreased number

of hospitalized individuals is important because it can lead to the misunderstanding among

the people that the situation is getting better [8]. Further, if the mass media coverage began

late after the outbreak of the disease, reporting current data is more helpful than reporting his-

torical data [16].

In line with these studies, the present study investigated how the media affects influenza

dynamics by incorporating the media effect term into the mathematical model. We estimated

epidemiological parameters via least-squares fitting of the model to the cumulative number of

the 2009 H1N1 data. What makes our study distinct is that the incorporated media effect term

comes from the media coverage data as well as from theory based on previous studies. Results

of numerical simulation suggest that the media can have a positive influence on influenza

dynamics; more media coverage may lead to a reduced peak size and final epidemic size of

influenza. Our results highlight that the theory-based and data-based media effect terms have

almost the same influence on the influenza dynamics under the parameters we obtained in this

study. However, the results can be different for highly transmissible influenza. This suggests

that further modeling efforts need to be grounded in real-world knowledge.

Fig 12. Model 2 output: S (susceptible), V (vaccinated), E (exposed individuals), A (asymptomatic individuals), H (hospitalized individuals), and R (recovered

individuals) are displayed with varying degree of mass media coverage (c = 0.5, 1, 1.5).

https://doi.org/10.1371/journal.pone.0232580.g012
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It becomes critical to understand the complex interplay between media attention, risk per-

ception, behavior changes and the transmission dynamics of infectious diseases. More work

can be done regarding the effect of the media on infectious diseases. First, the individual diver-

sity of media credibility can be explored. Since it might be the case that individuals do not

believe media coverage to the same degree, incorporating diverse media credibility of individ-

uals might make the model more elaborate. Next, influence of the leader’s opinion may be

another topic worth studying. Mass media exerts its influence not only directly on individuals,

but also through the opinion leaders who are more intelligent than the lay person and can

deliver the content of the media to the population. Thus, it can be assumed that how cautious

the leader is regarding their opinion on infectious disease may have an influence on the behav-

ior of other individuals who are under the influence of the leader.

Furthermore, there are other important factors that can be considered and incorporated

into a mathematical model such as various forms of mass/social media (audience rate in TV,

newspaper, or web page) and the characteristics of infectious diseases (size or location). In

addition, to investigate which media forms work best at reducing transmission dynamics, fur-

ther research should be provided on sensitivity of media dependent risk perception and behav-

ior changes. Finally, the behaviors of journalists can be considered. Journalists sometimes

cover an issue as independent investigators, but it is much more common that they form

groups and behave as a member of the group. Such group dynamics can be assumed to have

an influence on the covering behavior of journalists, and as a result, on the behavior of individ-

uals regarding infectious disease.
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