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Background. We assessed the impact of exposure to Plasmodium falciparum on parasite kinetics, clinical symptoms, and func-
tional immunity after controlled human malaria infection (CHMI) in 2 cohorts with different levels of previous malarial exposure.

Methods. Nine adult males with high (sero-high) and 10 with low (sero-low) previous exposure received 3200 P. falciparum 
sporozoites (PfSPZ) of PfSPZ Challenge by direct venous inoculation and were followed for 35 days for parasitemia by thick blood 
smear (TBS) and quantitative polymerase chain reaction. Endpoints were time to parasitemia, adverse events, and immune responses.

Results. Ten of 10 (100%) volunteers in the sero-low and 7 of 9 (77.8%) in the sero-high group developed parasitemia detected 
by TBS in the first 28 days (P = .125). The median time to parasitemia was significantly shorter in the sero-low group than the sero-
high group (9 days [interquartile range {IQR} 7.5–11.0] vs 11.0 days [IQR 7.5–18.0], respectively; log-rank test, P = .005). Antibody 
recognition of sporozoites was significantly higher in the sero-high (median, 17.93 [IQR 12.95–24] arbitrary units [AU]) than the 
sero-low volunteers (median, 10.54 [IQR, 8.36–12.12] AU) (P = .006). Growth inhibitory activity was significantly higher in the sero-
high (median, 21.8% [IQR, 8.15%–29.65%]) than in the sero-low group (median, 8.3% [IQR, 5.6%–10.23%]) (P = .025).

Conclusions. CHMI was safe and well tolerated in this population. Individuals with serological evidence of higher malaria ex-
posure were able to better control infection and had higher parasite growth inhibitory activity.

clinical Trials Registration. NCT03496454.
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Naturally acquired immunity against malaria parasites, which 
limits high-density parasitemia and severe disease, develops 
after repeated exposure, and more rapidly in high- than in low-
transmission areas [1, 2]. This immunity is thought to be pri-
marily mediated by anti–blood stage antibodies, which reduce 
parasite multiplication and cytoadherence of infected erythro-
cytes to endothelial cells [3]. In contrast, there is limited evidence 

for immunological responses preventing blood-stage infection by 
neutralizing sporozoites and liver-stage parasites [4, 5].

Over the past 2 decades, malaria control measures have led 
to substantial reductions in malaria burden [6], with several en-
demic countries transitioning from high to low malaria trans-
mission [7, 8]. Decreased malaria exposure leads to increased 
susceptibility to infection and severe disease [9, 10] and is as-
sociated with decreased levels of antibodies to blood-stage 
antigens [11–13].

Controlled human malaria infection (CHMI) of healthy vo-
lunteers by exposure to the bites of infected, laboratory-reared 
Anopheles mosquitoes or inoculation of infected erythrocytes has 
been used for nearly 100 years to investigate malaria pathophys-
iology and immunology and efficacy of vaccines and drugs [14, 
15]. During the last decade, CHMI studies have been expanded 
in the United States and Europe and increasingly performed in 
Africa using injectable, aseptic, purified, cryopreserved, vialed 
Plasmodium falciparum sporozoites (PfSPZ, Sanaria PfSPZ 
Challenge) [5, 16–20], including assessment of innate resistance 
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[5], naturally acquired immunity, and preerythrocytic and 
asexual erythrocytic-stage vaccines [20, 21]. In this study we as-
sessed how exposure to P. falciparum, as measured by serology to 
6 predefined antigens, affected parasite kinetics, clinical symp-
toms, and functional immunity after CHMI by direct venous in-
oculation (DVI) of PfSPZ Challenge [16, 17] in Gambian men 
with markedly different levels of previous malarial exposure.

METHODS

Study Design and Participants

This was an open-label, nonrandomized clinical trial, con-
ducted at the Medical Research Council Unit The Gambia 
(MRCG). Healthy male participants aged 18–35  years were 
recruited between 13 and 23 March 2018. Volunteers were 
preferentially recruited from tertiary learning institutions and 
provided written informed consent before screening. Eligible 
volunteers had normal hematological and biochemical tests 
and no abnormalities by electrocardiography. Participants had 
to be P. falciparum negative by molecular methods on 2 occa-
sions, at recruitment and just before DVI. Previous individual 
P. falciparum exposure was assessed using serologic responses 
to a panel of P.  falciparum antigens using a Luminex plat-
form [22]. These included responses associated with cumu-
lative exposure, namely apical membrane antigen 1 (AMA-1), 
merozoite surface protein 1.19 (MSP-1.19), and glutamate-
rich protein (GLURP.R2) [23], and responses associated with 
malaria infection in the past 6 months, namely reticulocyte-
binding protein homologue (Rh2.2030), gametocyte ex-
ported protein (GEXP18), and early transcribed membrane 
protein (Etramp5.Ag1) [24]. A  complete description of the 
eligibility criteria is provided in Supplementary Appendix 1. 
The study received approval from the Scientific Coordinating 
Committee of MRCG, The Gambia Government/MRCG 
Joint Ethics Committee, and the London School of Hygiene 
and Tropical Medicine Research and Ethics Committee and 
was conducted according to the International Conference on 
Harmonisation Good Clinical Practice guidelines and regis-
tered with ClinicalTrials.gov (identifier NCT03496454).

Study Objectives

The primary objectives were to assess the feasibility of the CHMI 
model in The Gambia and determine the parasite kinetics in nat-
urally exposed Gambian adults after PfSPZ Challenge administra-
tion. Secondary objectives were to analyze humoral and cellular 
immune responses and their association with time to patency and 
parasite density at time of first detection, and to assess the fre-
quency, incidence, nature, and magnitude of adverse events.

PfSPZ Challenge

Sanaria PfSPZ Challenge is composed of aseptic, purified, 
vialed, cryopreserved, fully infectious NF54 PfSPZ isolated 

from Anopheles stephensi mosquitoes [16, 18, 25]. PfSPZ 
Challenge was supplied by Sanaria Inc as 20-µL cyrovials con-
taining 15 000 PfSPZ and stored in liquid nitrogen vapor phase 
at –150°C to –196°C [25]. For this study, only 1 lot of PfSPZ 
manufactured on 30 April 2015 was used. The potency (ca-
pacity to invade and fully develop in cultured human hepato-
cytes [HC-04]) and viability (sporozoite membrane integrity) 
of this lot were tested as detailed in Supplementary Appendix 2.

Study Procedures

All screened volunteers were ranked by the cumulative quar-
tile score of the mean fluorescence intensities of the 6 prede-
fined antigens [24]. Volunteers with the highest and lowest 
scores were assigned to the sero-high and sero-low groups, 
respectively. This classification resulted in significantly higher 
responses to all individual antigens reflected by mean fluores-
cence intensities of cumulative and recent exposure markers 
that were 4- to 13-fold and 3- to 5-fold higher, respectively, in 
the sero-high group (Supplementary Appendix 3). While popu-
lations were defined based on a cumulative quartile score for 
all antigens combined, recognition was also statistically signifi-
cantly higher for the high exposure population for each of the 6 
individual antigens (P < .014) (Figure 1). All volunteers received 
PfSPZ Challenge (3.2 × 103 PfSPZ in 0.5 mL) by DVI through a 
25-gauge needle performed on a single day (29 March 2018) fol-
lowing Sanaria’s standard operating procedures. After injection, 
participants were observed for 1 hour and subsequently closely 
monitored on an outpatient basis, with regular visits to the study 
clinic. Participants were instructed to register their daily symp-
toms in a study diary, measure temperature twice daily, and 
contact the clinical investigators when any symptoms occurred. 
From day 5 postinjection onward, participants were seen twice 
daily until day 15, and daily until day 28 or day of treatment. 
At each follow-up visit, temperature was taken, adverse events 
(AEs) were recorded, and blood samples were collected; phys-
ical examination was done on indication. Participants had a 
mobile phone by which they could be contacted. As an addi-
tional safety precaution, participants stayed in a hostel close 
to the study clinic from the day of infection until 3 days after 
treatment. The following signs and symptoms were solicited at 
all visits: fever, headache, malaise, fatigue, dizziness, myalgia, 
arthralgia, nausea, vomiting, chills, diarrhea, abdominal pain, 
chest pain, palpitations, and shortness of breath [26]. AEs were 
reported as mild (grade 1, easily tolerated), moderate (grade 2, 
interfered with normal activity), or severe (grade 3, prevented 
normal activity); for fever, as grade 1 (>37.5°C–38.0°C), grade 2 
(38.1°C–39.0°C), or grade 3 (≥39.1°C). Laboratory values were 
graded using the National Institute of Allergy and Infectious 
Diseases Division of AIDS Table for Grading the Severity of 
Adult and Pediatric Adverse Events, version 2.1, March 2017.

If a thick blood smear (TBS) was positive with any par-
asitemia, with or without signs and symptoms of malaria, 
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treatment with artemether-lumefantrine was started immedi-
ately. Participants who did not develop parasitemia by day 28 
received artemether-lumefantrine on that day. Treatment was 
directly observed, and all participants were seen at day 35 for 
an end of study visit.

Blood Sampling and Laboratory Assessments

Screening for parasitemia by microscopic examination of 
TBS and quantitative polymerase chain reaction (qPCR) was 
done twice daily from days 5 to 15 and daily from days 16 to 
28. A complete blood count was done the day prior to PfSPZ 
Challenge injection, every 3 days between days 5 and 28, just 
before treatment, and thereafter daily for the following 3 days 
and at day 35. Blood biochemistry was performed 1 day before 
PfSPZ Challenge injection, 2 days after treatment, and at day 
35. To check if volunteers had self-medicated with artemether-
lumefantrine, lumefantrine levels were measured at baseline 
by high-performance liquid chromatography with photodiode 
array detection [27]. Peripheral blood mononuclear cells 
were collected for immunological studies 1  day before PfSPZ 
Challenge injection and at day 35. Malaria infection was de-
fined as asexual parasites in peripheral blood by TBS during the 

study and by qPCR retrospectively. The prepatent period was 
defined as the time between PfSPZ Challenge injection and first 
positive qPCR. Thick blood smears were performed according 
to an internationally harmonized protocol for thick smears in 
CHMI studies [28]. qPCR was done retrospectively using estab-
lished methodologies [29] and considered positive at a parasite 
threshold of ≥5 parasites per mL.

Immunological Assays

Assessment of sporozoite invasion inhibition by volunteer 
serum samples was done as described previously [30, 31] 
and in Supplementary Appendix 4. Antibody levels in cit-
rate plasma from volunteers at baseline were measured by 
enzyme-linked immunosorbent assay (ELISA) to NF54 sporo-
zoite or schizont extract. Growth inhibition was determined 
by invasion/growth inhibition assays (GIAs) as described in 
Supplementary Appendix 4.

Sample Size Estimation and Statistical Analysis

Sample size calculation was based on the difference in prepatent 
period between groups. Assuming a mean time to qPCR pos-
itivity of 7.1 (standard deviation [SD], 0.8] days [32], it was 

Figure 1. Antibody histogram plots for screened volunteers in The Gambia controlled human malaria infection study. Light colors are the sero-low group, dark colors are 
the sero-high group, and gray colors are the other screened volunteers with intermediate immunological profile. Abbreviations: AMA-1, apical membrane antigen 1; Etramp5.
Ag1, early transcribed membrane protein; GEXP18, gametocyte exported protein; GLURP.R2, glutamate-rich protein; MSP-1.19, merozoite surface protein 1.19; Rh2.2030, 
reticulocyte-binding protein homologue.
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estimated that 15 participants per cohort would be sufficient 
to detect a 1-day longer time to first detection of parasites by 
qPCR in the high-exposure group (8.1 days), with 90% power 
and α = .05. Due to low numbers of participants presenting for 
screening and volunteers not meeting eligibility criteria just 
before study start, only 19 volunteers were enrolled. Prepatent 
period and parasite density at first detection by qPCR were 
compared between groups using the log-rank test. For the im-
munological analyses, differences were assessed by comparing 
mean values between groups or time points using either a 
2-tailed Student t test or nonparametric equivalents. Time to 
patency and parasite density at first detection of infection were 
associated with immune responses.

RESULTS

Study Population

Eighty-four volunteers were screened; of these, 8 were qPCR 
positive during screening. Nineteen volunteers at the ex-
tremes of the immunological spectrum (Supplementary 

Appendix 3) were enrolled into the study: 9 in the sero-
high group and 10 in the sero-low group (Supplementary 
Appendix 5). Baseline characteristics are shown in Table 1. 
Most of the volunteers resided in the West Coast region, an 
area previously reported to have low transmission compared 
to the other regions [33]. However, malaria transmission 
in The Gambia is highly heterogenous with both high- and 
low-exposed individuals in all regions. Volunteers in the 
sero-high group were older than those in the sero-low group 
(mean age, 25.7 [SD, 3.3] years vs 22.6 [SD, 2.3] years, re-
spectively; P = .028).

Parasite Kinetics and Clinical Malaria

Seventeen of the 19 volunteers (89%) developed parasitemia 
detected by microscopy in the first 28 days of follow-up: all 
individuals in the sero-low group (10/10 [100%]) and 7 (7/9 
[77.8%]) in the sero-high group (P = .125; Table 2). One of 
the 2 volunteers who remained microscopy negative was 
qPCR positive at day 18 (Figure 2A and 2B). All volunteers 
reported no prior or current use of antimalarial drugs and 

Table 1. Demographic Characteristics of Volunteers Enrolled in The Gambia Controlled Human Malaria Infection Study

Characteristic High Exposure Group Low Exposure Group P Value

No. of participants 9 10 .752

Age, y, mean (SD) 25.7 (3.3) 22.6 (2.3) .028

Male sex, No. (%) 9 (100) 10 (100)  

Height, cm, median (range) 177.0 (174.0–182.0) 177.0 (174.0–181.0) .968

Weight, kg, median (range) 62.8 (59.8–80.1) 64.8 (52.8–86.7) .490

BMI, kg/m2, median (range) 21.0 (18–26) 20.7 (18–26) .936

Ethnicity, No. (%)    

 Mandika 2 (22.2) 7 (70.0) .043

 Fula 5 (55.6) 1 (10.0) .038

 Other 2 (22.2) 2 (20.0) .909

Residence, No. (%)    

 West Coast region 7 (77.8) 7 (70.0) .707

 Upper River region 2 (22.2) 0 (0.0) .125

 Central River region 0 (0.0) 3 (30.0) .081

Abbreviations: BMI, body mass index; SD, standard deviation.

Table 2. Parasitological and Clinical Outcomes Following Controlled Human Malaria Infection

Characteristic High Exposure Group (n = 9) Low Exposure Group (n = 10) P Value

Subjects positive by microscopy, No. (%) 7 (77.8) 10 (100.0) .125

Subjects positive by qPCR, No. (%) 8 (88.9) 10 (100.0) .292

Days to parasitemia by microscopya 14 (6.6) 13.5 (1.5) .327

Days to parasitemia by qPCRa 11 (6.3) 9 (1.6) .016

Days from qPCR positivity to microscopy positivitya 3 (2.6) 5 (0.5) .156

Subjects who developed symptomsb, No. (%) 3 (33.3) 9 (90.0) .013

Peak parasite density during study (qPCR, parasites/mL)c 3748.9 (50.6–71 264.3) 49 340.3 (5186.5–205 850) .088

AUC of parasitemia until treatment (qPCR), median (range)d 8035 (0–122 054) 34 504 (3404–120 441) .173

Abbreviations: AUC, area under the curve; qPCR, quantitative polymerase chain reaction (positive at ≥5 parasites/mL).
aMedian (standard deviation).
bOnly possibly or probably related to study.
cGeometric mean (range). 
dAUC represents the total parasite exposure over time until treatment (parasite load).
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none had measurable concentrations of lumefantrine at base-
line. The median prepatent period was significantly shorter 
in the sero-low than in the sero-high group (9.0 [SD, 1.6] 
days vs 11.0 [SD, 6.3] days; log-rank test, P  =  .005) (Table 
2, Figure 2B). Parasite density by qPCR on day of treatment 
was significantly higher in the sero-low than in the sero-high 
group (P = .01; Figure 2C). Individual-level parasite kinetics 
showed faster parasite multiplication in the sero-low group 
(Figure 3). Parasite multiplication rates were calculated for 
all available 48-hour intervals (PMR48) following first de-
tection of parasites by qPCR until treatment. The median 
PMR48 was nonsignificantly higher in the sero-low group 
(P  =  .143) and was negatively associated with antibody 
titers against asexual parasite lysate (r = –0.5074, P = .0376) 
(Supplementary Appendix 6).

Participants in the sero-low group had a significantly higher 
probability of having clinical malaria symptoms (9/10 [90.0%]) 
than those in the sero-high (3/9 [33%]) group (log-rank 
P = .0008; Table 2, Figure 4).

Safety and Tolerability of PfSPZ Challenge

There were minimal AEs in the first 7 days after PfSPZ Challenge. 
Fourteen volunteers, 5 in the sero-high (55.6%) and 9 in the sero-
low (90.0%) group, experienced 82 AEs, including hematological 

and biochemistry abnormalities, that were possibly or probably 
related to malaria (Table 3). Seventy of the 82 (85.4%) AEs oc-
curred in the sero-low group, whereas only 12 (14.6%) occurred 
in the sero-high group (P  <  .0001). Most AEs (73/82 [89.0%]) 
were mild to moderate and occurred around the time parasitemia 
became detectable by TBS. Moderate and severe AEs were only 
observed in the sero-low group (Table 3, Figure 4). Headache 

Figure 2. Comparison of parasite kinetics between the 2 exposure groups following controlled human malaria infection. Kaplan–Meier curve for time from inoculation 
to parasitemia detected by thick blood smear (A) and quantitative polymerase chain reaction (qPCR) (B). Differences in parasite density by qPCR at treatment (C) and peak 
parasitemia (D).

Figure 3. Individual-level kinetics of parasitemia by quantitative poly-
merase chain reaction (qPCR) following controlled human malaria infection with 
Plasmodium falciparum (Pf).
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was the most frequently reported AE in both the sero-high (3/12 
[25%]) and sero-low (14/70 [20%]) groups. Fever was only ob-
served in the sero-low group (5/70 [7.1%]) (Table 3). Of the 20 
hematological and biochemistry abnormalities recorded, 75% 

(15/20) were in the sero-low and 25.0% (5/20) were in the sero-
high group (P = .002). No serious AEs or cardiac AEs were re-
ported, and all AEs had resolved by day 35.

Humoral and Functional Immunity

Antibody recognition of sporozoites by sporozoite-binding 
ELISA was significantly higher in plasma of sero-high (me-
dian, 17.93 [interquartile range {IQR}, 12.95–24] arbitrary 
units [AU]) compared to the sero-low volunteers (median, 
10.54 [IQR, 8.36–12.12] AU) (P =  .006; Figure 5A). However, 
the groups did not differ in their ability to block sporozoite in-
vasion of HC04 hepatocytes, (sero-high: median 88.26% inva-
sion [IQR, 83.52%–100.1%]; sero-low: 91.74% invasion [IQR, 
90.54%–103%]) (P = .18; Figure 5B). Invasion was indexed as a 
percentage relative to invasion in the presence of nonimmune 
serum from naive donors, where 100% meant no invasion inhi-
bition. The presence of blood-stage antibodies, determined by 
schizont extract, was also significantly higher (P = .0003) in the 
sero-high group (median, 50.98 [IQR, 22.46–65.07] AU; Figure 
5C) than in the sero-low group (median, 3.16 [IQR, 2.43–8.71] 
AU). We observed indications for functional differences in 
blood-stage immune responses, with significantly higher GIA 
in the sero-high (median, 21.8% [IQR, 8.15%–29.65%]) than 
in the sero-low (median, 8.3% [IQR, 5.6%–10.23%]) (P = .025; 
Figure 5D). Length of prepatent period correlated positively 
with sporozoite-binding antibody titers (r  =  0.64, P  =  .003), 
blood-stage antibody titers (r  =  0.48, P  =  .036), and blood-
stage GIA activity (r = 0.65, P = .003) but not with sporozoite 
invasion inhibition (r = –0.29, P =  .236). For individual anti-
body responses, Rh2.2030 (r = 0.5357, P =  .018) and AMA-1 
(r  =  0.4959, P  =  .031) were the most predictive of prepatent 
period (Supplementary Appendix 7). Significant correlation 
was also seen between the different immunological responses 
(Supplementary Appendix 8).

DISCUSSION

This study demonstrated the feasibility and successful imple-
mentation of CHMI with PfSPZ Challenge in The Gambia, 

Figure 4. Differences in clinical outcomes following controlled human malaria infection in the 2 exposure groups, showing proportion of participants without symptoms, 
number of adverse events (AEs) per participant, and total number of AEs per group.

Table 3. Adverse Events Following Controlled Human Malaria Infection 
in the 2 Exposure Groups

Adverse Event
Sero-high Group  

(n = 9)

Sero-low 
Group 

(n = 10)

Participants with any AE (including 
laboratory abnormalities)

5 (55.6) 9 (90.0)

Participants with grade  
2 or higher AEs

2 (22.2) 8 (80.0)

Total grade 1 and 2 AEs 12 61

 Headache 3 (25.0) 12 (19.7)

 Fever 0 5 (8.2)

 Chills 1 (8.3) 4 (6.6)

 Fatigue/malaise 1 (8.3) 8 (13.1)

 Myalgia 0 4 (6.6)

 Arthralgia 2 (16.7) 1 (1.6)

 Anorexia 0 5 (8.2)

 Nausea 0 2 (3.3)

 Vomiting 0 1 (1.6)

 Abdominal pain 0 2 (3.3)

 Dizziness 0 3 (4.9)

 Diarrhea 0 1 (1.6)

 Rib cage pain 0 1 (1.6)

 Low platelet count 1 (8.3) 2 (3.3)

 Low lymphocyte count 1 (8.3) 5 (8.2)

 Low absolute neutrophil count 1 (8.3) 0

 Elevated total bilirubin 0 2 (3.3)

 Elevated lactate dehydrogenase 0 1 (1.6)

 Elevated ASTa 0 1 (1.6)

 Elevated γ-glutamyl transferase 1 (8.3) 0

 Elevated sodium levels 1 (8.3) 1 (1.6)

Total grade 3 adverse events 0 9

 Headache 0 2 (22.2)

 Chills 0 2 (22.2)

 Fatigue/malaise 0 2 (22.2)

 Low lymphocyte count 0 3 (33.3)

Data are presented as No. (%).

Abbreviations: AE, adverse event; AST, aspartate aminotransferase.
aNo clinically significant elevations in alanine aminotransferase were observed.
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increasing the capacity of conducting such studies in endemic 
areas: CHMI with PfSPZ Challenge has now been done in 6 
African countries [5, 18–21]. A  study in Gabon with PfSPZ 
Challenge reported that previous exposure to both P.  falcip-
arum and sickle cell trait impacted the rate of blood-stage in-
fection, prepatent period, and clinical manifestations of malaria 
[5]. While previous studies in Kenya also associated immune 
responses to parasite kinetics among CHMI volunteers [34], 
ours is the first assessment of the effect of previous exposure 
to P. falciparum as measured by a predefined serology panel of 
6 antigens on parasite kinetics, clinical symptoms, and func-
tional immune responses. Individuals with serological evidence 
of higher recent and cumulative malaria exposure had a longer 
prepatent period, lower mean parasite density, and fewer symp-
toms of malaria. Whereas there was considerable variability 
in individual responses, the prescreening panel used to define 
exposure in this population correlated directly with clinical 
outcomes [22]. Using functional assays for preerythrocytic im-
munity and blood-stage immunity, this study also sheds light on 
the mechanisms underlying these differences. Antisporozoite 
responses were higher in highly exposed individuals but did not 
translate into responses preventing liver-stage infection in vitro 
while antibody responses controlling blood-stage parasite mul-
tiplication in vitro were markedly stronger in this group.

Understanding the impact of declining malaria exposure on 
malaria immunity is highly relevant in the context of widescale 
and often pronounced reductions in malaria burden in African 
and non-African settings [35, 36]. More direct methods for 

assessing immunity are needed to quantify the clinical conse-
quences of declined exposure. While we directly defined our 
cohorts based on serological markers that have been presented 
as indicators of recent and cumulative exposure [24, 37], sev-
eral previous studies have indirectly determined malaria expo-
sure based on self-reported clinical history of malaria episodes 
and long-term residence in malaria-endemic areas [5, 23] or by 
measuring responses to whole parasite lysate and the blood-
stage antigen MSP-2 with a very long half-life [38]. In line 
with our findings, these studies observed a lower likelihood 
of parasite positivity post-CHMI in the highly exposed group 
[5, 23, 38]. Lell and colleagues postulated that mechanisms for 
the control of parasitemia included a combination of adaptive 
immune mechanisms such as prevention of hepatocyte infec-
tion, elimination of infected liver cells by T-cell–mediated cy-
totoxicity or immune mediators, and highly effective clearance 
of the first generation of merozoites leaving infected hepato-
cytes [5]. Our study directly examined differences in functional 
preerythrocytic and blood-stage immunity using established 
methodologies. Though we found no evidence for differences 
in inhibition of sporozoite invasion, we observed stronger par-
asite growth inhibition in the sero-high cohort. As volunteers 
were selected based on distinct immune profiles, our functional 
immune parameters must be interpreted with caution given 
challenges in disentangling functional immune responses from 
markers of exposure [39]. The single volunteer who remained 
parasite-negative by qPCR had median levels of preerythrocytic 
antibodies (17.93 AU), moderate HC04 invasion (104.13%; 

Figure 5. Antibody-mediated responses to Plasmodium falciparum in high- and low-exposure groups. A, The sero-high group had significantly higher (P = .006) titers of anti-
bodies to sporozoite antigens, expressed as arbitrary units (AU). B, There were no significant differences between groups in their ability to block sporozoite invasion of HC04 
hepatocytes. C, Plasma from the sero-high group also had significantly higher (P = .0003) levels of antibodies to asexual-stage antigens, also expressed as AU. D, Purified 
immunoglobulin G from the sero-high exposure group also had significantly higher growth inhibitory activity (P = .025) against blood-stage 3D7 parasites.
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mean, 95.41% invasion), very low levels of asexual antibodies 
(5.98 AU; mean, 47.42 AU), and average GIA (23% inhibition; 
mean, 21.94%). The striking difference in growth inhibition in 
our 2 cohorts suggests that functional blood-stage antibodies 
contributed significantly to the differences in clinical symptoms 
and parasite kinetics. There was a weak, negative correlation 
(r = –0.4474, P =  .0548) between levels of sporozoite-binding 
antibodies and functional invasion-blocking activity, sug-
gesting a minor invasion-blocking role for naturally acquired 
antibodies. Sporozoite-targeting antibodies in this study may 
be markers of exposure only or may enhance cellular immunity 
but lack direct invasion-blocking activity.

The systemic and laboratory AEs observed were consistent 
with uncomplicated malaria, with most AEs recorded at the 
time of positive microscopy. Severe symptoms, including chills, 
fatigue, malaise, and headache reported in 3 sero-low volun-
teers, were also consistent with uncomplicated malaria and re-
solved within 48 hours posttreatment. Two sero-low volunteers 
had grade 3 reductions in total lymphocyte count considered 
related to malaria and resolved by day 4 of malaria treatment. 
Similar declines have been reported previously [40]. This study 
does not allow us to extrapolate findings to other populations.

In summary, CHMI was safe and well tolerated in this popu-
lation and the manifestations of malaria, although significantly 
different between the 2 exposure groups, were consistent with 
previous CHMI studies. Volunteers with high previous expo-
sure to malaria infection were able to better control the in-
fection as shown by the significantly lower parasite densities, 
less-severe symptoms, and lower incidence of symptoms asso-
ciated with parasitemia.
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