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Cascading detection model for prediction of apnea-hypopnea events
based on nasal flow and arterial blood oxygen saturation
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Abstract
Purpose Sleep apnea and hypopnea syndrome (SAHS) seriously affects sleep quality. In recent years, much research has focused
on the detection of SAHS using various physiological signals and algorithms. The purpose of this study is to find an efficient
model for detection of apnea-hypopnea events based on nasal flow and SpO2 signals.
Methods A 60-s detector and a 10-s detector were cascaded for precise detection of apnea-hypopnea (AH) events. Random
forests were adopted for classification of data segments based on morphological features extracted from nasal flow and arterial
blood oxygen saturation (SpO2). Then the segments’ classification results were fed into an event detector to locate the start and
end time of every AH event and predict the AH index (AHI).
Results A retrospective study of 24 subjects’ polysomnography recordings was conducted. According to segment analysis, the
cascading detection model reached an accuracy of 88.3%. While Pearson’s correlation coefficient between estimated AHI and
reference AHI was 0.99, in the diagnosis of SAHS severity, the proposed method exhibited a performance with Cohen’s kappa
coefficient of 0.76.
Conclusions The cascading detection model is able to detect AH events and provide an estimate of AHI. The results indicate that
it has the potential to be a useful tool for SAHS diagnosis.
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Apnea-hypopnea events

Introduction

Sleep apnea and hypopnea syndrome (SAHS) is a prevalent
sleep breathing disorder in middle-aged people. The gold stan-
dard for diagnosis of SAHS is to perform polysomnography
(PSG) in a laboratory. However, PSG requires patients to sleep
with many sensors for at least one night; the scoring of apnea-
hypopnea (AH) events can take a long time. Therefore, many
researchers hope to simplify or replace PSG by using a limited
number of physiological signals. Electrocardiogram (ECG) was
first studied for this purpose. McNames et al. [1] found that heart
rate, S-pulse amplitude, and pulse energy were correlated with
SAHS. Bsoul et al. [2] cut the ECG into 60-s segments and used

a support vectormachine (SVM) for real-time detection of apnea.
However, many other diseases except SAHS also affect ECG.
Hence, nasal flow (NF) [3–6], arterial blood oxygen saturation
(SpO2) [7], snoring [8], or a combination of these signals [9, 10]
have been adopted more recently. Gutierrez et al. [4] used the
overall features of NF for the diagnosis of SAHS severity. Xie
et al. [10] utilized a combination of classifiers to achieve real-
time detection of SAHS based on ECG and SpO2. All the above
studies can be roughly divided into two categories: those that
predict the AH index (AHI) based on the detection of AH events
[2, 3, 5, 7, 9–11], and those that predict AHI based on the overall
signal features [1, 4, 6, 8, 12, 13]. The latter approach cannot
provide time information for each AH event, whereas most stud-
ies in the former [2, 7, 10, 11] only involve a 60-s segment
identification which may not be accurate for predicting the seg-
ments containing multiple AH events and may lead to errors in
the estimation of AHI. On the other hand, the methods men-
tioned above include rule-based [5, 7, 9], SVM [2, 10, 11], and
supervised neural network [3, 11], which require a large number
of hyperparameters to be set by experience. Therefore, we
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utilized random forests composed of classification and regression
trees (CARTs) based on morphological features extracted from
NF and SpO2 forAH events detection. A 60-s detector and a 10-s
detector were cascaded for more precise detection of AH events.

Materials and methods

Subjects

The St. Vincent University Hospital/Dublin University College
Sleep Apnea Syndrome Database (UCDDB) [14] public on
Physionet [15] was used for a retrospective data analysis
throughout this paper. The database contains 25 subjects’ PSG
data, including EEG, electrooculogram, submental electromyog-
raphy, NF, ribcage and abdomenmovements, SpO2, snoring, and
body position. All signalswere obtained using a Jaeger–Toennies
system. The annotation files consisted of onset time and duration
of respiratory events provided by an experienced specialist. The
cutoff values for AHIwere commonly set to 5, 15, or 30 events/h
[3, 4, 7, 16, 17]. There were data for two non-SAHS subjects,
twelve mild-SAHS subjects, five moderate-SAHS subjects, and
six severe-SAHS subjects in the database. While there was a
severe distortion in the NF signal of subject ucddb005 thus this
recording was excluded. Consequently, totally 24 subjects’
polysomnography recordings were taken into this study. The
sleep-related parameters of the subjects are summarized in
Table 1.

According to the American Academy of Sleep Medicine
(AASM) manual [16], apnea is scored when there is a more
than 90% drop in the peak signal of the pre-event baseline for
NF with a duration longer than 10 s. Hypopnea is scored by
the following rules: (1) there is a more than 30% drop in the
peak signal of the pre-event baseline for nasal pressure with a
duration longer than 10 s, accompanied by (2) more than 3%
arterial oxygen desaturation or an arousal. As a result, we
selected NF and SpO2 for SAHS detection. The NF signal
was recorded by a thermistor while SpO2 was recorded by a
finger pulse oximeter and the sampling rate of both was 8 Hz.

Study design

The cascading detection model based on AH event detection
is shown in Fig. 1. It comprises the following main steps: (1)
removal of invalid data, NF signal filtering, segmentation with

a sliding window, and SpO2 alignment; (2) extraction of a
specific feature set from each segment; 3) the cascading de-
tection model predicts each segment and outputs a sequence
of segments’ results; (4) the event detector corrects the invalid
results in the sequence and calculates the AHI.

Signal preprocessing

Signal preprocessing comprises the following four steps: (1)
removal of invalid data. Any SpO2 values lower than 50%
were considered to be artifacts and removed from the analysis
(5.6% of the data). (2) NF signal filtering—a four-point slid-
ing average filter and a third-order Butterworth high-pass filter
with a cutoff frequency of 0.05 Hz were used to prevent high-
frequency noise caused by artifacts and baseline drift in NF
signal. (3) Segmentation—the original signals were segment-
ed using a 60-s window and a 10-s window, respectively. In
both cases, the step was set to 1 s. All segments were catego-
rized into two classes: AH and N according to the annotations.
The segments containing more than 5 s of AH events were
labeled as class AH. Other cases were labeled as class N. (4)
SpO2 alignment. As SpO2 responds slowly to AH events [18],
a time advance of τ s (0 < τ < 30) was applied in SpO2. The
results showed that the model performed best with τ set to
23 s. After preprocessing, the number of extracted segments
were 487,974 (AH, N = 44,476: 443,498).

Feature extraction

NF feature set According to the AASM definition of AH
events, the amplitude of NF provides important information.
Therefore, we first extracted the maximum and minimum
points from each NF segment. Then, the tidal volume per
breath Ft was calculated as the difference between two adja-
cent extreme points. The mean, standard deviation, and range
of the tidal volume (Fmean, Fstd, Fran) were extracted within
each segment. Besides, we calculated the maximum value of
the tidal volume every 30 s using Eq. (1):

Fbi ¼ max Fti−30;Fti−29;…;Fti−1f g ð1Þ
where Fti represents the tidal volume values in the ith segment.
Fbi represents themaximum tidal volume value in 30 s before the
ith segment. The number of breaths with tidal volume drops by
more than 30%, 70% from Fb were calculated within each

Table 1 Summary of sleep-
related parameters (mean ±
standard deviation)

Non-SAHS Mild SAHS Moderate SAHS Severe SAHS

Number of patients 2 12 5 5

Age (years) 52.0 ± 15.6 48.6 ± 8.5 56.8 ± 6.4 46.6 ± 5.5

AHI (events/h) 4.1 ± 5.7 9.9 ± 2.9 24.6 ± 3.9 43.8 ± 16.3

Epworth Sleepiness Score 7.0 ± 8.5 11.6 ± 5.1 11.2 ± 6.9 12.4 ± 7.9
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segment and denoted as Fha, Fap. And the number of breaths
with tidal volume above 85% of Fb was also calculated and
denoted as Fnor. In addition, the ratios of them to the total num-
ber of breaths (Fhap, Fapp, Fnorp) within each segment were
calculated. Besides, owing to the cessation of breathing, there
will be fluctuations in the breathing rate during AH events.
One normal breath lasts for 3–5 s; energy will be concentrated
with a peak in the corresponding frequency. As a result, we took
the fourth statistical moment (Fkur) in 0.2–0.4 Hz of NF’s fre-
quency spectrum as another feature.

SpO2 feature set We first calculated the standard deviation and
range coefficients of SpO2 (Spstd, Spran) in each segment. The
tendency of SpO2 in each segment (Spten) was also calculated by
using the last SpO2 value minus the first SpO2 value. The com-
monly used feature: time SpO2 stays below 90% [19, 20] was
referred while we calculated the indices Sp92, Sp91 with thresh-
olds set to 92% and 91%. Besides, the maximum SpO2 value
(Spbm) and average SpO2 value (Spba) in every 30 s were com-
puted. Then within each segment, the time SpO2 stays below
98% of Spbm and that below 98% of Spba were calculated and

Table 2 Features and their definitions

Index Name Definition

1 Fmean, Fstd, Fran Average, standard deviation, and range of tidal volume

2 Fha, Fhap Number of breaths with a reduction more than 30% in tidal volume and its ratio to total number of breaths

3 Fap, Fapp Number of breaths with a reduction more than 70% in tidal volume and its ratio to total number of breaths

4 Fnor, Fnorp Number of breaths with a reduction less than 15% in tidal volume and its ratio to total number of breaths

5 Fkur Fourth statistical moment in 0.2–0.4 Hz of NF’s frequency spectrum

6 Spstd, Spran Standard deviation and range of SpO2

7 Spten Tendency of SpO2

8 Spdum, Spdua Duration of SpO2 desaturation

9 Spldm, Splda Level of SpO2 desaturation

10 Sp92, Sp91 Duration of SpO2 staying below 92 and 91%
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denoted as Spdum, Spdua respectively. Finally, the level of oxy-
gen desaturation Spldm and Splda in each segment was calculat-
ed as Eqs. (2) and (3) show.

Spldmi ¼ Spbmi−mean Spif g ð2Þ

Spldai ¼ Spbai−mean Spif g ð3Þ
where i represents the ith segment. Spi represents the SpO2

values in the ith segment. Spbmi, Spbai represent the

maximum and average SpO2 value in 30 s before the ith seg-
ment respectively. The total feature set is shown in Table 2.

Design of cascading detector

The cascading detector contained two parts. The first was a
random forest consisting of 10 CARTs for the prediction of
60 s segments. This could screen out most of the N segments
while retaining the AH segments. The second part was a ran-
dom forest consisting of 20 CARTs for the prediction of 10 s

Table 3 Results for segments
Reference ACC (%) SEN (%) SPE (%)

AH N

Estimated AH 33,429 46,247 88.3 75.2 89.6

N 11,047 397,251

ACC accuracy, SEN sensitivity, SPE specificity

Fig. 2 a AH event estimation
result for mild-SAHS. bAH event
estimation result for medium-
SAHS. c AH event estimation
result for severe-SAHS
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segments. Based on the results of the 60-s detector, the 10-s
detector was able to detect AH events more precisely.

Note that the 60 s detector was trained using a feature set
composed of features 2, 6, and 8 in Table 2 in order to improve
the training speed. The results indicated that there was almost
no effect on the performance. Owing to the imbalance in the
number of AH and N segments, the weights for the two clas-
ses in CARTs were set to inverse ratio of their numbers.

A twofold cross-validation was used in the test. Each time,
half of the segments were used for training with the remaining
half used for testing. The cascading detector output the se-
quence composed of the prediction results of the 10 s seg-
ments. The detector was trained on a computer with an i5-
7600k CPU and 8 G RAM.

Design of event detector

The sequence predicted by the cascading detector was then
fed into the event detector to correct invalid results following
two rules; (1) Only more than 10 consecutive segments clas-
sified as AHwere considered to be one valid AH event. As the
original data were segmented by a 10-s window, and one AH
event lasts at least 10 s, so one AH event corresponded to at
least 10 consecutive AH segments. Any segment which did
not meet the rule was modified to class N. (2) The number of

segments classified as N between two valid AH segments was
supposed to be more than five. This was also determined by
the way of data segmentation. Any segment that did not meet
the rule was reset to class AH.

Results

The cascading detection model was able to estimate
AHI and provide the time information for each AH
event. We analyzed its performance with respect to
two aspects: segments and AHI.

Segment analysis

The prediction results for the segment-by-segment analysis
are shown in Table 3. The cascading detectionmodel achieved
an accuracy of 88.3%, a sensitivity of 75.2%, and a specificity
of 89.6% for 487,974 test segments.

Figure 2 displays the AH event estimation results for one
mild-SAHS, medium-SAHS, and severe-SAHS subject. For
the mild-SAHS subject, the accuracy, sensitivity and specific-
ity were 92.9%, 80.6%, and 94.0%. The corresponding values
for the medium-SAHS subject were 92.2%, 82.2%, and
93.6% while 86.7%, 81.1%, and 88.2% for the severe one.

Table 4 Comparison of number
of AH events, duration of AH
events, and AHI predicted by
cascading model with PSG (mean
± standard deviation)

Group Number of AH events Duration of AH events (min) AHI (events/h)

Reference Estimated Reference Estimated Reference Estimated

Non 17.0 ± 7.0 9.0 ± 8.3 4.6 ± 2.3 6.2 ± 4.6 3.2 ± 1.4 1.7 ± 1.6

Mild 61.5 ± 19.4 83.0 ± 37.2 18.8 ± 6.2 29.6 ± 7.9 9.9 ± 2.8 12.1 ± 4.2

Moderate 132.2 ± 18.7 155.0 ± 23.6 42.5 ± 14.2 54.3 ± 15.5 24.6 ± 3.5 27.5 ± 5.4

Severe 193.2 ± 63.2 200.2 ± 63.8 61.3 ± 21.2 72.2 ± 30.8 43.9 ± 14.5 45.3 ± 14.3
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AHI analysis

Figure 3(a) shows a scatter plot of the AHI (AHIest) estimated by
the model and the AHI (AHIref) determined from PSG. The solid
line fitted shows a high correlation (Pearson’s correlation coeffi-
cient 0.99, p < 0.01) between AHIest and AHIref. Figure 3(b)
shows the Bland–Altman plot of AHIest and AHIref. The average
error of AHIest andAHIref was − 0.8 events/h, and the error range
was − 3.4 to 1.8 events/h (95% confidence interval).

Table 4 compares the number of AH events, duration of AH
events and AHI values for the cascading model and scored by
PSG. Table 5 summarizes the classification results for SAHS
severity. The mean values for sensitivity, specificity, PPV, and
accuracy were 100.0%, 91.1%, 86.7%, and 94.4%, respectively,
for AHI thresholds of 5, 15, and 30 events/h. Besides, the kappa
coefficient for diagnosis of SAHS severity was 0.76.

Discussion

Weproposed a cascading detectionmodel that could predict AHI
based on AH event detection. Compared with PSG, only NF and

SpO2 were used. Previously, the original signals were commonly
cut into 60 s segments for AH event detection [2, 7, 10, 11].
However, the detection of AH events may not be precise based
on 60 s segment analysis because it can only determine whether
there was AH in the segment, while, may make mistakes for the
segments containing multiple AH events and lead to an error in
AHI estimation. Therefore, some researchers [3, 9] cut the signals
into shorter segments for detection. However, it is difficult to
extract effective features from a segment shorter than 10 s, be-
cause there will be no more than five complete breaths in one
segment in most cases. As a result, we proposed a cascading
detection model composed of a 60-s detector and a 10-s detector
to predict AH events precisely. Table 3 shows the classification
results for the segments. Notably, the model tended to make false
positive errors. In approximately 12.1% of these errors, the am-
plitude of NF signal decreased by more than 30% from previous
event baseline accompanied with a SpO2 desaturation, however
no arousal or nasal pressure signals were adopted for identifying
hypopneas. Therefore, these segments may be mistaken for class
AH.

As illustrated in Fig. 3, AHIest showed high correlation
with AHIref (Pearson correlation coefficient 0.99, p < 0.01).

Table 5 SAHS severity classification and diagnostic performance

Determined from PSG AHI cutoff (\)

Non Mild Moderate Severe ≥ 5 ≥ 15 ≥ 30 AVE

Estimated Non 2 0 0 0 SEN (%) 100.0 100.0 100.0 100.0

Mild 0 9 0 0 SPE (%) 100.0 78.6 94.7 91.1

Moderate 0 3 4 0 PPV (%) 100.0 76.9 83.3 86.7

Severe 0 0 1 5 ACC (%) 100.0 87.5 95.8 94.4

ACC accuracy, SEN sensitivity, SPE specificity, PPV positive predictive value

Table 6 Comparison with other studies

Related work Method Signal AHI cutoff ACC (%) SEN (%) SPE (%)

Choi et al. [3] Convolutional neural networks Nasal pressure 5 96.2 100.0 84.6

15 92.3 98.1 86.5

30 96.2 96.2 96.2

Gonzalo et al. [4] AdaBoost-Linear discriminant analysis Nasal flow 5 86.5 87.1 80.0

15 81.0 85.9 72.9

30 82.5 74.2 90.6

Da Woon Jung et al. [7] Rule-based SpO2 5 97.8 98.6 94.4

10 96.7 98.4 92.9

15 95.7 96.4 94.6

30 96.7 97.1 96.5

Our study Cascade of random forests Nasal flow and SpO2 5 100.0 100.0 100.0

15 87.5 100.0 78.6

30 95.8 100.0 94.7

ACC accuracy, SEN sensitivity, SPE specificity
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The performance of the model also showed good consistency
among different subjects. On the other hand, AHIest was
slightly higher than AHIref. Consequently, SAHS severity
was overestimated for four subjects; for the remaining 20 sub-
jects, the model gave the correct prediction (Table 5). The
kappa coefficient of the cascading detection model for diag-
nosis of SAHS severity was 0.76, indicating that this method
represents a powerful screening tool for SAHS.

We also tested the speed of the cascading detection model.
Training required 24.7 s, while only 20.3 s was needed to
provide results for all segments and to predict AHI for all 24
subjects. It took 41.6 μs to predict one segment and 0.85 s to
diagnose one subject on average. This implies that the model
could be used for real-time AH event detection.

As Table 6 shows, our method exhibited a good sensitivity
but not very good specificity compared with other studies.
That is mainly because excursions in NF is not as prominent
as those in nasal pressure signal during hypopnea [16] thus
decrease the event detection performance. Nasal pressure sig-
nal or a combination of NF and nasal pressure signal will be
taken into study in future to improve this. More importantly,
the model could not only predict the severity of SAHS but
could also provide time information for each AH event.
Furthermore, compared with other methods such as
convolutional neural networks, a smaller number of
hyperparameters and less computation were required by our
random forest based approach, and the CARTs provided better
interpretability for clinical detection.

However, there were some limitations to this study.
First, we did not further classify AH events into apnea
events and hypopnea events. Second, the model was not
tested in an online environment. We hope to confirm
the usability of our method online in the future. Third,
the model was not able to distinguish central and ob-
structive events because no ribcage or abdominal move-
ment signals for identifying central events from obstruc-
tive events were adopted in this study. Finally, no elec-
troencephalography was adopted in this algorithm, thus
sleep and awake time were not evaluated in this study.

Conclusion

The purpose of this study was to propose a model for real-time
detection of AH events. Based on the morphological features
of NF and SpO2, the cascade of a 60-s detector and 10-s
detector could not only predict AH events, but could also
provide time information for each AH event. Compared with
previous research, the cascading detection model based on
random forests provides better interpretation with reduced
computational complexity. Therefore, it is expected to be an
effective tool for SAHS diagnosis.
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