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Abstract

Intracellular calcium signals are studied by laser-scanning confocal fluorescence microscopy. The required spatio-temporal
resolution makes description of calcium signals difficult because of the low signal-to-noise ratio. We designed a new
procedure of calcium spike analysis based on their fitting with a model. The accuracy and precision of calcium spike
description were tested on synthetic datasets generated either with randomly varied spike parameters and Gaussian noise
of constant amplitude, or with constant spike parameters and Gaussian noise of various amplitudes. Statistical analysis was
used to evaluate the performance of spike fitting algorithms. The procedure was optimized for reliable estimation of
calcium spike parameters and for dismissal of false events. A new algorithm was introduced that corrects the acquisition
time of pixels in line-scan images that is in error due to sequential acquisition of individual pixels along the space
coordinate. New software was developed in Matlab and provided for general use. It allows interactive dissection of temporal
profiles of calcium spikes from x-t images, their fitting with predefined function(s) and acceptance of results on statistical
grounds, thus allowing efficient analysis and reliable description of calcium signaling in cardiac myocytes down to the in situ
function of ryanodine receptors.
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Introduction

Calcium signaling in cardiac myocytes has high dynamics

requiring sub-micron and sub-millisecond resolution for exact

characterization. Calcium signals can be observed by means of

calcium-sensitive fluorescent indicators and confocal microscopy

either as calcium sparks [1] or as calcium spikes [2], which differ in

the way they are measured. Both types of signals represent local

calcium release events due to activation of ryanodine receptors in

dyadic clusters [3] that are typically about 0.2 mm in diameter.

Calcium sparks are measured in intact cardiac myocytes loaded

with the indicator in the membrane-permeable esterified form, or

in patch-clamped myocytes dialyzed with the indicator directly.

Calcium sparks can be well discerned only when activation of

calcium releasing sites occurs with a low frequency (typically

,20 s21 per 100 mm of scanned cell length [4]); otherwise sparks

merge into macrosparks [4], waves [4,5] or whole cell calcium

transients [6]. For this reason they are acquired in recordings

lasting many seconds. Calcium sparks represent transient local

increases of fluorescence intensity proportional to the instanta-

neous local concentration of calcium ions [6]. Automatic

algorithms were developed that detect sparks in confocal images

as statistically significant local increases of fluorescence [4,7–10]).

Of major practical use is the frequency of spark occurrence per

unit volume, which is sensitive to experimental interventions [11]

and is related to functionality and density of calcium releasing sites

[12,13]. Deriving the calcium release flux from the calcium spark

requires the use of mathematical models that include reaction-

diffusion properties of the cytosol [14]. Phenomenologically,

however, the time course of sparks can be well described by a

sum of two sequential exponential processes [15]. Still, sparks are

usually characterized by descriptors such as amplitude, full width

at half-maximum, time to peak, and full duration at half-

maximum [4,7–10]). The spatial size of calcium sparks is relatively

large. Measured at half-maximum they are 1.75–2 mm wide [4,5].

This is the length of a typical sarcomere or twice the average

distance between release sites in three dimensions [16]. This large

size, together with duration of about 30 ms [4]) makes resolving

neighboring release sites difficult and complicates interpretation of

the data.

Calcium spikes are measured in patch-clamped myocytes

dialyzed with the calcium-sensitive indicator and the calcium

chelator EGTA, which buffers small increases of calcium and thus

limits calcium signals to vicinity of an activated calcium release site

[2]. Under these conditions, individual release sites can be

discerned from each other even at maximal stimulation [2,17].

The small spatial size of the spikes allows the use of low aperture

pinholes to effectively reduce interference of the out-of-focus

events by increasing the spatial resolution in the z-direction. The

amplitude of calcium spikes is proportional to the intensity of the

local calcium release flux [2,18], which allows direct observation of
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the kinetics of calcium release and of its relationship to the triggers

[17,19]. This advantage has not yet been fully exploited. The

reason is that calcium spikes are difficult to describe due to their

rapid kinetics and inherently small signal-to-noise ratio.

The confocal images of calcium spikes provide spatial informa-

tion in the x axis, temporal information in the y axis, and the

calcium flux information in the fluorescence intensity values

(Figure 1). Correct detection and characterization of calcium

spikes is not trivial. Many technical aspects were analyzed and

solved previously [2,18]. Recently we realized that in laser

scanning confocal microscopy measurements, the differences in

the time of acquisition of individual image pixels that arise due to

sequential principle of the line scan are not taken into account.

This can be a source of a serious error when it comes to the study

of very fast and brief time-variable processes. Additionally,

algorithms developed to analyze calcium sparks do not detect

calcium spikes reliably. Application of general methods of

increasing signal to noise ratio (SNR), such as signal or image

filtration techniques, substantially changes the kinetics of calcium

spikes. Therefore, we have introduced a method based on fitting of

the noisy fluorescent traces containing calcium spikes with a

mathematical model of the time course of calcium spikes [18].

This allowed characterization of calcium spikes under various

experimental manipulations [17,19]. However, the precision of

parameter estimation and the detectability of calcium spikes with a

given SNR had not been determined. It had been originally

assumed that the amplitude distribution of calcium spikes,

measured using the low-affinity calcium indicator Oregon Green

BAPTA 5-N, was biased by the existence of out-of-focus spikes, in

analogy to calcium sparks [7]. The putative low amplitude events

would have a low detection probability; thus, a large fraction of

spikes has been considered undetected [18]. On the other hand,

the amplitude distribution of spikes with a high SNR obtained

using Fluo-3, a high affinity calcium indicator, indicated a very low

fraction of undetected events, as if the most of detected spikes were

in focus and their amplitude distribution was not distorted due to

missed events [19]. This discrepancy asks for assessment of the

limits of calcium spike detectability.

In this work we characterize the relationship between the signal-

to-noise ratio and the quality of parameter estimation of calcium

spikes. This was made effective by original spike analysis software

that included correction for pixel acquisition time implemented in

the MATLAB environment. We conclude that fitting the time

course of the spikes by a kinetic model allows reliable detection

and quantitative description of calcium spikes even at the lowest

experimentally observed SNRs, which together with their excellent

spatio-temporal resolution and straightforward interpretation

favors calcium spikes over calcium sparks in studies aimed to

clarify calcium signaling in cardiac myocytes.

Methods

The analysis procedure developed in this study was tested on the

dataset of images of calcium spikes recorded in isolated rat cardiac

myocytes described previously [17–19]. We tested the analysis

using calcium spikes recorded either with Oregon Green BAPTA-

5N (OG-5N) or Fluo-3 differing in the rate of calcium binding and

in the fluorescence signal-to-noise ratio. All anaesthetic and

surgical procedures were approved by the State veterinary and

food administration of the Slovak Republic and by the Ethical

Committee of the Institute of Molecular Physiology and Genetics,

Slovak Academy of Sciences.

Calcium spikes of the OG-5N or Fluo-3 indicator type were

simulated with parameter values set to mimic experimental

records and used to design, test and optimize the analysis

procedures.

Acquisition, Extraction and Fitting of Calcium Spikes
In experiments, the calcium spikes were recorded and extracted

as illustrated in Figure 1. A part of an isolated whole-cell patch-

clamped cardiac myocyte was scanned by an excitation laser in a

direction parallel to the longitudinal axis (vertical axis in the

image) at a selected frequency. The emitted fluorescence light was

collected by a confocal microscope equipped with a photomulti-

plier and its output signal was digitized. In this way, one column of

pixels was recorded at each scan. The resulting x-t images were

corrected for the average amplitude of the background signal

estimated from the region not containing the cell (Figure 1A, red

rectangle). Positions of the identified calcium spikes were marked

and the time-intensity traces of calcium spikes were obtained by

Figure 1. Detection and extraction of calcium spikes for
analysis. A: a line scan confocal (x-t) image with three indicated
regions of interest. The fluorescence intensity is color-coded. The red
rectangle delineates the non-cell region used for estimation of the
background fluorescence level. The green rectangle delineates the scan
region preceding the stimulus (shown above the image) that is used for
estimation of baseline cell fluorescence and the level of noise. The
white rectangle delineates the region of image chosen for calcium spike
detection. The black trace at the left represents the temporal average of
fluorescent intensity of the pixels in the white rectangle. The
arrowheads mark calcium spikes selected for analysis. B: The time
courses of the fluorescent profiles of the spikes marked by the
numbered red arrowheads in A. The traces were obtained by averaging
7 spatial pixels delineated by the thin black lines indicated around the
calcium spike #2. The time scale is the same for A and B.
doi:10.1371/journal.pone.0064394.g001
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averaging 7 spatial pixels (0.81 mm) centered at the maximum of

the spike to reduce noise. The spike intensity was expressed as

fluorescence increase, DF, normalized to the mean baseline

fluorescence level, F0, estimated in the interval preceding the

voltage stimulus (green rectangle in Figure 1A). The traces were

accepted for analysis if the amplitude of the putative spike passed

the user-specified signal-to-noise-ratio (SNR) threshold. This

subjective step could lead to acceptance of false positive spikes

and to rejection of smaller calcium signals with obvious

consequences for the validity of spike statistics. The fluorescence

traces (Figure 1B) were then fitted with the model spike function

Eq. 1, which is an abbreviated form of the original function [18]:

DF (t)

F0
~FSpike(t, FM , a, t0, tA, tT ), ð1Þ

where DF = F(t) – F0 is the fluorescence difference, F0 is the

baseline fluorescence, FSpike is the theoretical time course of the

spike, t is the time elapsed from the start of the voltage stimulus, t0
is the latency of the onset of calcium spike relative to the onset of

the voltage stimulus, FM is the maximal increase of F/F0 in the

absence of release termination, a is the fraction of the signal

contributed by calcium concentration build-up [2], and tA and tT

are the time constants of spike activation and termination,

respectively. The full format of Eq. 1 is given in the supplemental

data (Methods S1, Eq. S1). For simplicity, we have not considered

traces with two spikes in this work; nevertheless, the principle of

analysis would be the same [19].

Since the kinetic model of calcium spikes is phenomenological

and its parameters, except for latency (t0), may not have direct

mechanistic meaning [18], the spikes were characterized by t0 and

by the descriptors numerically determined from the theoretical

traces simulated with the fitted parameters (Figure 2), specifically:

peak amplitude (A), time to peak (TTP, the interval between the

onset and the peak of a spike), and full duration at half-maximum

(FDHM, the interval between time points for half-maximal

amplitudes at the ascending and the descending arm of a fitted

spike).

Simulation of Synthetic Calcium Spikes
Three dataset types of synthetic spikes were generated using Eq.

1 (Table S1 and Table S2 in File S1). The first type mimicked

experimental spikes for the indicators OG-5N and Fluo-3. The

spike parameters were varied randomly and independently around

their mean respective values published previously [18]. A

collection of 1000 spikes was generated for each indicator, and a

random instance of noise was added to each spike. These datasets

were used to find the optimal fitting algorithm, to test the

equivalence of the fitting procedure with the original interactive

procedure, and to test the validity of the results.

The second dataset type consisted of traces containing only pure

noise. A collection of 1000 traces was generated. This dataset was

used to test the fitting algorithms for their tendency to identify

false-positive spikes.

The third dataset type was created by combining one simulated

spike for each indicator with 1000 different instances of noise to

test the effect of noise on the accuracy and precision of parameter

determination. The parameters of Eq. 1 used for spike simulation

assumed the mean values for each indicator, taken from [18].

Seven datasets were generated for OG-5N with SNR of 1, 1.5, 2,

3, 5, 7 and 10; and nine datasets for Fluo-3 with SNR of 1.0, 1.5,

2.0, 3.0, 5.0, 7.0, 10, 15, and 20).

The noise consisted of normally distributed pseudorandom

numbers, generated using the Mersenne twister algorithm [20],

with the mean equal to zero and the standard deviation defined as:

SD~
A

SNR
, ð2Þ

where A is the mean peak amplitude of fluorescence increase taken

from [18] and SNR is the required signal-to-noise ratio.

Statistical Analysis
Statistical analysis was performed in Origin (Ver. 8 SR 6). The

significance of differences between fits was determined using the F-

test and p = 0.05 as criterion.

SpikeAnalyzer
To speed up and automate the analysis of large sets of confocal

x-t images, the SpikeAnalyzer software was developed as a

Windows standalone application built in the MATLAB Compiler

(Ver. 7.17 (R2012a), Mathworks, USA). The logical scheme of

data processing and the description of individual analysis steps are

given in Software Description S1. In brief, the analysis is

configured using the headers of the confocal image file (the Leica

TIFF file format) and of the corresponding electrophysiological

record file (the Axon ABF file format) or manually for

incompatible file formats. Individual calcium spikes are selected

by the user and fitted by Eq. 1. The best fits of all selected traces

are displayed for evaluation and eventual refitting of individual

traces if needed. The results of analysis are saved as an XLS

project for further use. The source code of the SpikeAnalyzer and

the compiled program are deposited under the Academic Free

License (http://opensource.org/licenses/AFL-3.0) at sourcefor-

ge.net (http://sourceforge.net/projects/spikeanalyzer/

?source = navbar).

Results

This study focuses on practical aspects of calcium spike

description. These include the correction of pixel acquisition time

for analysis of confocal laser scanning images, the selection of an

appropriate fitting algorithm, the analysis of the accuracy and

Figure 2. Description of calcium spikes. Voltage stimulus from
250 to 0 mV is shown in the top panel. The extracted time course of a
calcium spike (black dots) was fitted with the theoretical function (red
line, Eq. 1). The latency t0 was estimated by fitting, and the descriptors
were estimated numerically as illustrated. A – peak amplitude, t0–
latency, TTP – time to peak, FDHM – full duration at half maximum.
doi:10.1371/journal.pone.0064394.g002
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precision of calcium spike parameter estimation in large groups of

variable spikes such as those observed in experiments, and of the

effect of signal-to-noise ratio on the detectability of spikes and

estimation of their parameters.

Correction of Pixel Acquisition Time
Images generated by laser scanning confocal microscopes are

digital representations of the output signal of a single photo-

multiplier responding to the flux of photons collected by the

confocal microscope. The photons are emitted by fluorophores

excited by the laser beam that scans the sample. When the

fluorescence is not constant in time, as in the case of calcium

signals or moving objects, the scanning principle introduces

systematic errors, since the image pixels corresponding to different

positions are acquired at different times (Figure 3). Pixelization,

that is, digitization of the photomultiplier output, is synchronized

with the scanner running either in unidirectional or bidirectional

scanning mode. In either case, after scanning a line, the scanner

has to stop and reverse its sweep direction, which needs

considerable time. Depending on the scanning mode, the pixel

acquisition of the next line starts either in a reverse order relative

to the preceding line, or in the same order but only after another

reversal of the sweep direction (Figure 3). As a result, the neighbor

pixels within lines are separated by time intervals equal to the pixel

integration time, and the neighbor pixels in columns are separated

by a line acquisition time. The line acquisition time is incremented

regularly in the unidirectional mode and periodically varying in

the bidirectional mode. Taken together, the pixel acquisition time

in the image depends on the line frequency, the number of pixels

per line, and the scanning mode. This may introduce a substantial

error in estimation of kinetic parameters of time-variable processes

and has to be corrected in exact experiments.

To estimate the actual time of acquisition of a pixel we have

used a light emitting diode driven by TTL signals of the digitizer

(Axon Digidata 1440A, Axon Instruments, USA) and controlled

by the pClamp software (Ver. 10, Axon Instruments, USA). The

light pulses from the diode were recorded by the confocal

microscope in each scanning mode and their images were used for

exact determination of the pixel integration time. The results for x-

t scanning modes and 512 pixels per line at individual line

frequencies are given in Table 1.

The actual time of acquisition of individual pixels of the image

was expressed as a matrix with elements corresponding to the time

of individual pixels using Eq. 3 and Eq. 4 for the unidirectional

and bidirectional mode, respectively:

tij~
1

f
i{1ð Þztp j{1ð Þ

� �
i~1:::m
j~1:::n

, ð3Þ

and

tij~
1

f
i{1ð Þz tp

2
n{1z {1ð Þi nz1{2jð Þ
� �� �

i~1:::m
j~1:::n

, ð4Þ

where tij is the time value of an element in the ith row and the jth

column of the image matrix, f is the line scanning frequency, tp is

the pixel integration time, m is the number of lines per image, i is

the line number, n is the number of pixels per line, and j is the

pixel number in the line. It should be noted that in the

bidirectional mode the pixel acquisition time increase with j for

odd rows and decrease with j for even rows of the image (Eq. 4).

In the standard procedure without correction, the pixel

acquisition times of spikes, that is, positions of samples on the

time axis, were calculated using Eq. 5:

tif g~
2i{1

2f

� �
i~1:::m

, ð5Þ

where ti is the time of acquisition assigned to all pixels on the ith

scanning line, which corresponds to the time of acquisition of the

1st pixel in the line, f is the line scanning frequency, i is the line

number and m is the number of lines in the x-t image.

Figure 3. The temporal sequence of pixels in an image acquired in the x-t line scan mode. Panels A and B describe the unidirectional and
the bidirectional mode, respectively, as rendered in the confocal image, that is, each pixel in a line is assigned the same acquisition time. In fact, each
subsequent pixel is shifted along the time axis by the value of the pixel integration time, and each line is shifted by the scanner reversal time. Red
arrows indicate oscillations of the scanner. The squares represent the acquired pixels of the confocal image; tij is the time of acquisition of the pixel in
the ith column and jth row of the image (i = 1 … m, j = 1 … n), described by Eq. 3 or Eq. 4 for the unidirectional or the bidirectional mode.
doi:10.1371/journal.pone.0064394.g003
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The Effect of Sequential Sampling on Spike Parameter
Estimation

Sequential sampling of spatial pixels may introduce a significant

error in estimation of calcium spike timing that varies with the

position of spikes in the image. This error can be calculated if the

time of acquisition of individual pixels of the image is known.

When with the correction of pixel acquisition time the assigned

time of a pixel acquisition in line i at position j is tij (Eq. 3 or 4) and

without correction it is ti (Eq. 5), then the position time error is

tpte = tij – ti for unidirectional scanning and tpte = (tij+tij+1)/2–

(ti+ti+1)/2 for bidirectional scanning. However, in images obtained

by bidirectional scanning, an additional systematic temporal error

at a given spatial position arises due to the alternation of the

acquisition time increments (Figure 3), which varies with the

spatial position of a pixel.

The effect of the correction of pixel acquisition time on the

estimated values of spike parameters was determined using noise-

free simulated spikes with 10 different latencies (3.9–4.4 ms) that

spanned the whole interval of one line-scan sampling period. The

spikes were localized to the left-side, center, and right-side

positions of the image at i = 4, 256, and 509, respectively. These

positions allowed the standard 7-pixel averaging of fluorescence

signals and estimation of the extent of the position dependent time

error. The resulting 30 simulated spikes were sampled at pixel

acquisition times corresponding to 1000 Hz (unidirectional) or

2000 Hz (bidirectional) line frequency with and without correction

for pixel acquisition time. Each trace was fitted and the obtained

parameters were compared with their respective seeded values.

The comparison revealed that if the correction for pixel

acquisition time was applied, all spike parameters were determined

correctly for both scanning modes (not shown). Without the

correction, all parameters but the latency were also determined

correctly for both scanning modes (not shown). The error of

latency determination was independent of the spike onset relative

to the time of sampling (ANOVA, p = 0.38 for unidirectional and

p = 0.99 for bidirectional scanning). However, it was dependent on

the position of the spike on the spatial axis (Table 2).

The effect of the left to right position of the spike in the image

on the error in latency estimation can be characterized by the

difference between the pixel acquisition time estimated without (ti)

and with the correction (tij). The question is whether the same

difference in latency will be estimated by fitting the spikes. Analysis

of the fitting results for both scanning modes revealed that the

difference between the latency determined by fitting and the

seeded latency value, tfit - t0, was very close to the (ti - tij) values and

reached up to 26.4% of the line scanning period (Table 2). In the

case of bidirectional scanning, the position time error at odd lines

combined with the position time error at even lines, therefore, the

difference in fitted latencies was close to the average of the

respective pixel acquisition times at the given position on the

spatial axis (Table 2).

In our previous studies we used a 7-pixel averaging to reduce

the noise fluctuations. To determine the error introduced by

sequential sampling in the case of the 7-pixel averaging, we used

analogous procedure as that described above (note that no noise

was added in these simulations). We found that spike parameters,

including latency, estimated using 7-pixel averaging were not

significantly different from those estimated using only the central

pixel (not shown). In other words, the sequential error in the case

of spatial averaging was the same as if the signal occurred only at

the central pixel.

Testing of Fitting Algorithms and Procedures
The performance of MATLAB minimization algorithms in

estimation of calcium spike parameters was tested using the dataset

of the first type (see Methods) with a white noise level of 0.15

RMS. Each parameter value was randomly generated around a

mean value and with a standard deviation in correspondence to

those of experimental spikes recorded with the OG-5N indicator

(Table S1 in File S1).

The effects of minimization algorithm, robustness of method,

and constraining of the fitted parameters on the quality of spike

description were explored. Four minimization algorithms were

available in MATLAB: Nelder-Mead simplex, Trust-Region,

Levenberg-Marquardt and Gauss-Newton (Table S3 in File S1).

Of these, Trust-Region, Levenberg-Marquardt and Gauss-New-

ton could be used either without a robust method, or with the

LAR or Bisquare robust methods; The Levenberg-Marquardt and

Gauss-Newton algorithms did not handle constraints on fitted

parameters. In total, there were 14 possible combinations of

minimization algorithm, robustness of method, and constraining of

the fitted parameters, which were evaluated according to the

fraction of fits that provided either acceptable spike parameters,

that is, physically acceptable parameter values (Selection A: tA

$1 ms, tT $1 ms, FDHM ,40 ms, 0 ms # t0,80 ms, A $0.01

F/F0) or ‘‘detectable’’ amplitude (Selection B: A.SNR), or a

statistically acceptable fit, that is, a statistically significantly better

than the fit with a constant.

According to all criteria, the Trust Region and Simplex

algorithms with parameter constraining and without robust

method performed the best. For unconstrained parameters, the

performance of the algorithms was Simplex.Levenberg-Mar-

quardt.Trust Region.Gauss-Newton. All algorithms provided a

larger fraction of acceptable fits under constrained than under

unconstrained conditions (for the Trust Region: 95.1 vs. 77.5%;

for Simplex: 95.1 vs. 90.1%). The use of either LAR or Bisquare

Table 1. The measured pixel integration times at different scanning modes and frequencies (Leica TCS SP2 AOBS).

Scan speed Scanning mode Scanning frequency Pixel integration time

(Hz) f (Hz) tp (ms)

400 unidirectional 400 1.39

400 bidirectional 800

800 unidirectional 800 0.658

800 bidirectional 1600

1000 unidirectional 1000 0.515

1000 bidirectional 2000

doi:10.1371/journal.pone.0064394.t001
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robust methods reduced the fraction of acceptable fits substantially

and independent of constraints and algorithm.

The correlation between the fitted and the simulated param-

eters for spikes that passed the F-test was excellent in all cases.

Individual fitting procedures were ranked according to the average

correlation coefficient of the descriptors A, t0, TTP and FDHM in

Table S4 in File S1. The best correlations were achieved by the

Trust Region algorithm with constrained parameters (R = 0.986,

0.893, 0.869 and 0.942 for A, t0, TTP and FDHM, respectively).

With unconstrained parameters, the Levenberg-Marquardt algo-

rithm performed the best (R = 0.981, 0.891, 0.855 and 0.929 for

A, t0, TTP and FDHM, respectively). The algorithms using the

LAR robust method provided the worst correlations (R = 0.907–

0.935, 0.770–0.798, 0.728–0.775 and 0.843–0.887 for A, t0, TTP

and FDHM, respectively). For the latency, the correlation between

the simulated and fitted values was the best for the Simplex with

constrained parameters (R = 0.904), while the algorithms with the

LAR robust method were the worst (R = 0.770–0.798).

Individual fitting procedures were ranked according to the

fraction of outliers in any parameter. The fraction of outliers was

relatively small (#2%) and occurred mostly among estimates of A,

FDHM and TTP. The unconstrained Trust Region algorithm

provided the smallest fraction of outliers (0.52%). In the case of

latency all algorithms and methods provided very low fraction of

outliers (0–0.3%). The fraction of fitted parameter values outside

the range of their mean 63 6 S.D. is given in Table S5 in File S1.

For the purpose of automatic analysis, an optimal fitting

algorithm should provide a low probability of false positive spikes.

A dataset of the second type (see Methods) with a white noise level

of 0.15 RMS was analyzed, and when a putative spike was

detected by the algorithm, the validity of the result was tested. All

algorithms detected a significant number of false-positive spikes in

the pure noise data traces. When the constrained version of the

algorithms was used, false-positive spikes were detected in all

traces. None of the false-positive spikes for any algorithm and

constraints was accepted by the F-test (p = 0.05), that is, for each

trace a fit with a constant was better. Notably, a significant

proportion (up to ,60%) of these false spikes would be acceptable

on the basis of their parameter values (tA .1.0 ms, tT .1.0 ms,

FDHM ,40 ms, 0# t0,80 ms, A $0.01 F/F0) or ‘‘detectable’’

amplitude (A.SNR), see Table S6 in File S1.

In conclusion, the best results were obtained, i.e., the spike

parameter estimation process was optimal, when fitting was

performed with constraints on parameter values and the accep-

tance of spikes was based on the result of the F-test. Under these

settings, false positive detection of spikes was fully avoided. The

fitting algorithms that did not use robust parameter estimation

were clearly preferable. The constrained Trust Region algorithm

scored best in all tests of parameter estimation except for

correlation between simulated and fitted latency, in which it was

the second best after Simplex. However, since the relative error in

latency estimation was significantly smaller in the Trust Region

algorithm (0.0660.61% vs. 2.1360.61%; p = 0.02), it was selected

as the method of choice for further evaluations. The constrained

Simplex algorithm achieved the best correlation between simulat-

ed and fitted latency and performed the second best in the

remaining tests.

Test of the Equivalence between the Interactive and the
Automatic Fitting Procedures

To verify the equivalence between the interactive fitting

procedure using Origin, applied in our previous studies, and the

automatic MATLAB procedure applied in SpikeAnalyzer, we

used again the synthetic dataset simulating the OG-5N spikes used

previously for selecting the optimal fitting algorithm, since it offers

the most challenging task due to its low SNR. Simulated spikes

with noise were analyzed either by the constrained Trust-Region

algorithm in MATLAB (without any robust method) or by the

constrained Levenberg-Marquardt algorithm in ORIGIN (the

same constraints were used in both programs) since the

constrained fitting with the Levenberg-Marquardt algorithm used

in our previous studies was not implemented in MATLAB and the

Trust Region algorithm that performed best in MATLAB was not

implemented in Origin. The initialization vector was set to the

mean of the experimentally observed values ([18], Table S1 in File

S1). The lower and upper bounds were [0, t0, ‘, 0, FM,‘,

1, tA,‘, 1, tT,‘, 0, a ,1].

It turned out that regarding the fraction of accepted spikes, both

procedures provided similar results. The correlations between

input parameters and the results of fitting, as well as between the

results of SpikeAnalyzer and ORIGIN are shown in Figure 4 and

in Table S4 in File S1. Considering only the spikes that passed the

F-test, the SpikeAnalyzer procedure provided more precise

estimates of the amplitude, FDHM and TTP, while ORIGIN

provided a more precise estimate of the latency of spikes; however,

the differences were not substantial. The correlation between the

SpikeAnalyzer and ORIGIN parameter estimates was very good

for all spike parameters (R = 0.996, 0.972, 0.954 and 0.990 for the

values of A, t0, TTP and FDHM, respectively). In both, the

automatic and the interactive procedures, the estimated peak

amplitude values were marginally but systematically higher

(p,0.001) than the input values by 0.006 and 0.005 DF/F0 units

on average (a mean relative error of +0.7% and +0.6%,

respectively). Other parameters were not significantly different

from the input parameters.

Table 2. Errors of latency estimation without correction of pixel acquisition time.

Scanning method Spike position (pixel) predicted error ti - tij (ms) estimated error tfit - t0 (ms)

Odd lines Even lines

unidirectional 4 1.546 1.546 1.53360.007

256 131.442 131.442 132.57360.007

509 261.854 261.854 264.12560.006

bidirectional 4 1.546 261.854 140.1660.17

256 131.442 131.958 132.81160.0001

509 261.854 1.546 140.4360.17

doi:10.1371/journal.pone.0064394.t002
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In conclusion, the automatic procedure implemented in the

SpikeAnalyzer provides results equivalent to those of the original

interactive analysis procedure [18].

Accuracy of Spike Parameter Estimation
The adequacy of the theoretical spike fitting function (Eq. 1) for

description of the time course of calcium spike fluorescence was

demonstrated previously [18]. Nevertheless, the accuracy and

precision of the spike parameter estimation have not been

rigorously examined. Here we used a dataset of synthetic spikes

that emulated the experimental data obtained for OG-5N and

Fluo-3 indicators and the SpikeAnalyzer procedure. In other

words, the level of noise and the distribution of spike parameters

were the same as experimentally determined, thus giving rise to

the experimentally observed distribution of signal-to-noise ratios.

The synthetic dataset of 1000 spikes with OG-5N characteristics

was the same as the one used for testing the fitting procedures (see

above). Spike parameters had normal distributions with mean and

standard deviation taken from Zahradnikova et al. [18]. The

average and minimum values of the SNR for the synthetic datasets

were 5.3962.11 and 1.67, respectively, for OG-5N and

14.1965.60 and 1.85 for Fluo-3, respectively.

In the case of simulated OG-5N spikes the fitting procedure

succeeded in 95.1%; that is, the remaining 4.9% of fitted spikes did

not pass the F-test (see Table S3 in File S1). In the case of

simulated Fluo-3 spikes the fitting procedure succeeded in 99.6%

and 0.4% of fitted spikes did not pass the F-test. The fitted spikes

that did not pass the F-test were mostly those with low SNR

(,2.5). Two spikes with SNR of 2.7 and 3.5 were rejected despite

good accordance between the simulated and the fitted parameters;

thus, the probability of incorrect rejection of spikes by the F-test

(p = 0.05) was ,0.2%.

The correlations between the simulated and estimated param-

eters are shown in Figure 5A, C and the dependence of the

estimated parameter values on SNR is shown in Figure 5B, D. The

comparison of data points corresponding to spikes with the lowest

and the highest signal-to-noise ratio shown in Figure 5A, C

revealed that, first, the whole range of parameter values was

present in all SNR bands, and, second, that the quality of

correlation between the simulated and estimated parameters

decreased with decreasing SNR but remained acceptable even at

the lowest SNR (p,1026, F test). Despite considerable uncertain-

ties in estimation of spike parameters at small SNR, the overall

correlations between the simulated and estimated parameters were

excellent (p = 0, F-test). The distributions of the estimated

Figure 4. Comparison of the parameter values estimated by different fitting procedures. The Levenberg-Marquardt algorithm in Origin
and the Trust-Region algorithm implemented in MATLAB were used on a dataset of 1000 simulated spikes with white noise and normally distributed
parameter values. Top row – correlation between parameter values estimated by fitting simulated spikes in Origin and in MATLAB. Middle row –
comparison of the fitted parameter values obtained in MATLAB with the input parameter values used in simulations. Bottom row – comparison of the
fitted parameter values obtained in Origin with the input parameter values used in simulations. Red lines are linear fits (correlation coefficients are
given in Tables S4 in File S1. It should be noted that a majority of the data points lie exactly under the regression lines.
doi:10.1371/journal.pone.0064394.g004
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parameter values at individual SNR levels (circles with error bars)

are compared to the mean and standard deviation (black line and

red lines) of the parameters of the simulated noise-free spikes in

Figure 5B, D. In the whole examined range the distribution of the

estimated parameters followed the distribution of the simulated

parameters. This indicates that the quantitative uncertainties in

parameter estimation are caused by a random contribution of

noise to their exact values.

In conclusion, estimation of spike parameters based on the

mathematical model (Eq. 1) provides reliable results for both, OG-

5N and Fluo-3 spike data. Since only a small fraction of synthetic

spikes could not be detected and analyzed reliably (0.5% in the

case of Fluo-3 spikes and 5% in the case of OG-5N spikes), the

problem of missed spikes is not crucial in real experiments.

Figure 5. Determination of the accuracy and the precision of the estimated parameters of OG-5N (A, B) and Fluo-3 spikes (C, D). A,
C – correlation between the simulated and the fitted parameters (grey circles). Red line is the linear fit. Parameters of the spikes with the bottom 5%
of SNR values (2.3860.04 for OG-5N and 4.3360.15 for Fluo-3) and of spikes with the top 5% of SNR values (10.1160.12 for OG-5N and 26.6860.29 for
Fluo-3) are shown as black and blue circles, respectively. Pearson correlation coefficients between the parameters of simulated OG-5N calcium spikes
and parameters of their fits were 0.986, 0.893, 0.869 and 0.942 for the A, t0, TTP and FDHM values, respectively. Pearson correlation coefficients
between the parameters of simulated Fluo-3 calcium spikes and parameters of their fits were 0.999, 0.939, 0.962 and 0.993 for the A, t0, TTP and
FDHM values, respectively. B, D – mean 6 S.D. of the fitted parameter values grouped by the SNR values of the simulated spikes. Black lines are the
mean parameter values of the simulated spikes in the absence of noise. Red lines show mean+S.D. and mean - S.D. of parameter values of noise-free
simulated spikes.
doi:10.1371/journal.pone.0064394.g005
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Limitations of the Fitting Procedure at a Low Signal-to-
noise Ratio

The Trust Region fitting algorithm used in SpikeAnalyzer was

further validated by analyzing simulated synthetic spikes that

differed only in the level of noise. A dataset of 1000 spikes was

created by combining a simulated spike, one for Fluo-3 and one

for OG-5N, with 1000 different noise traces with defined values of

SNR. The parameters of the simulated spikes were assigned the

mean values found in real experiments (Table S1 and Table S2 in

File S1). We created seven datasets for OG-5N (SNR of 1, 1.5, 2,

3, 5, 7 and 10, respectively) and nine datasets for Fluo-3 (SNR of 1,

1.5, 2, 3, 5, 7, 10, 15, and 20, respectively). The initialization

vector for the fitting procedure was equal to the parameter values

used in simulations. The fits that did not pass F-test were not

accepted and further analyzed.

The results of analysis are summarized in Figure 6. It is

apparent that for the lowest SNR levels corresponding to those in

real experiments (SNR = 2 for OG-5N and SNR = 5 for Fluo-3,

see Figure 5), the differences in the mean parameter values caused

by the noise are comparable or lower than the experimental

dispersion of the parameters. For the average and high SNR levels,

the errors introduced by the noise are much lower than the

dispersion of the parameters. A significant fraction of undetected

spikes (.5%) occurred only at SNR #2.5 in both, OG-5N spikes

and Fluo3 spikes (Figure 6E). Based on the published statistics

([18], see Table S1 and Table S2 in File S1), such low values of

SNR occur in 8% of spikes in OG-5N and in 2% of spikes in Fluo-

3. Thus, the fraction of undetected spikes is low in the whole range

of SNR values pertinent to experiments. For both indicators, the

spike amplitudes were slightly overestimated at the lowest SNR

values (Figure 6A), for reasons not well understood.

Discussion

A well-recognized obstacle in the study of local calcium

signaling is the high noise of calcium spikes [17–19]. Therefore,

studies from other laboratories limited the analysis to character-

ization of the average fluorescence transient of calcium spikes

[2,3,21–23] and to estimation of the fraction of active junctions

[22,23], and only few analyzed peak amplitudes [21,22,24] and

durations at half maxima of individual spikes [24]. The estimation

of spike latency depends strongly on the detection method, which

were based either on the amplitude threshold or on fitting.

Therefore, the differences in latencies estimated under similar

conditions in different laboratories are much larger than the

differences observed upon experimental manipulation (cf. [17–19]

and [22]). Exact estimation of this parameter is crucial for

understanding the coupling between the L-type DHPR calcium

channels and the calcium-releasing RyR channels.

In the present study we have developed new semiautomatic

software for analysis of calcium spikes. In comparison with the

previous interactive method, an increase in the image analysis

throughput by an order of magnitude was achieved. Additionally,

the software obviates the manual data transfer between different

programs, which virtually eliminated mistakes in data handling

and greatly enhanced the data processing productivity.

Accuracy and Precision of Parameter Estimation
The control over the fitting routines in the MATLAB

environment enabled us to assess the accuracy and precision of

the descriptive parameters of calcium spikes. There were large

differences in the ability of individual algorithms and methods to

converge to valid solutions, which resulted in different fractions of

fitted spikes acceptable by thee F-test (Table S3 in File S1). When

converging, individual algorithms did not produce parameters

significantly different from the true ones, but differed slightly in the

accuracy and precision of parameter estimation. For adequate

performance at the experimentally achieved signal-to-noise ratios,

Figure 6. Tests of accuracy of the estimated parameters of OG-
5N and Fluo-3 spikes. A-D: Estimated parameters of OG-5N and Fluo-
3 spikes in the datasets with different SNR values. The values of spike
parameters obtained by fitting are plotted as mean 6 S.D. Red solid
lines are the parameter values used for simulation of spikes. Dashed
lines are the mean+S.D. and the mean – S.D. parameter values estimated
experimentally ([18]). Note the different scaling of y axes in A. The data
points for SNR of 1 in Fluo-3 column are without dispersions as they
represent a single detected spike. E: The fraction of undetected spikes.
Red solid lines are fits with the logistic curve y = 1/(1+ (x/S50)n) where S50

and n are 1.96 and 11.3, respectively, for OG-5N spikes, and to 1.75 and
11.7, respectively, for Fluo-3.
doi:10.1371/journal.pone.0064394.g006
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the algorithms should not employ the robust fitting methods, and

parameters should be constrained. The use of the F-test for

assessing the statistical significance of the fitting results proved

essential for avoiding detection of false positive spikes and for

correct acceptance of spikes at low SNR values.

The evaluation of the accuracy and precision of parameter

estimation at different levels of noise provided two important

insights: First, in simulated spikes with parameters distributed

according to the experimental data, the dispersion of fitted

parameters was comparable to the dispersion of input parameters.

Since the results of the new method were equivalent to those of the

old method, this indicates the reliability of parameter estimates

determined in previous studies [17–19]. Second, in simulated

spikes that had identical parameters but variable SNR, the

accuracy was relatively independent of SNR, and the relative error

of parameter estimation increased above 10% only at SNR values

below 2, which is rarely present in real experiments (0.5% of data

in Fluo-3 and 5.4% of data in OG-5N). Additionally, even at

SNR = 1.5 the dispersion of the fitted parameters was close to the

experimentally observed dispersion at higher SNR values

(Figure 6A–D).

Comparison with Alternative Procedures
Overall, procedures implemented in SpikeAnalyzer performed

reasonably well with respect to alternative procedures of calcium

signal analysis. For instance, 50% detectability (S50) of calcium

sparks was obtained for sparks with amplitude of 0.30 and a SNR

of 0.9 [7]. Similar detection efficiencies of S50 = 0.7–1.1 SNR were

obtained with other spark detection techniques [8–10]. This is

about a half of the value (twice the sensitivity) estimated in this

work (S50 = 1.7–2.0 SNR; Figure 6). It should be noted, however,

that the noise of the raw images in our study was reduced by a

factor of
ffiffiffi
7
p

< 2.65 by the 7-pixel averaging, i.e., the value of S50

analogous to that obtained in spark analysis would be 0.64–0.76 of

SNR before averaging.

The data obtained in this work provide evidence that the

amplitude distribution of Fluo-3 calcium spikes reported by

Zahradnikova et al. [18] and Janicek et al. [19] was not

significantly distorted by undetected events, since only 0.8% of

the recorded spikes had SNR ,2 [19], while 85% of events should

be detected at SNR = 2. This supports the claim of [19] that spike

amplitude distribution is not considerably distorted by the

presence of spikes below the detection limit. Calcium spikes

measured using the OG-5N indicator [18] might have been

incompletely detected due to the low SNR [17,18], but as we show

here (Table S3 in File S1), the fraction of undetected events was

not more than 5%.

The SpikeAnalyzer procedure outperforms the spark detection

algorithms in the rejection of false-positive events. At the SNR

level corresponding to the S50, most spark detection algorithms

yield a substantial proportion (10–50%) of false positive events [7–

10]. The procedure used in SpikeAnalyzer fully suppresses the

false positive detections on statistical grounds at a significance level

of 0.05.

The accuracy of the estimated amplitude of calcium spikes was

better than the corresponding accuracy of estimated amplitude of

sparks, which was shown to be overestimated by at least 10% [7]

or, in the case of events with low spatial width (FWHM ,2 mm),

underestimated by 24–52% [8]. In this study, the estimate of spike

amplitude was higher by only 0.7%.

Implications for Interpretation of Calcium Spikes
The limited precision of parameter estimation may be one of

the sources of the normal distribution of quantal amplitudes of

spikes [19] that was estimated to ,0.6 DF/F0 units with Fluo-3 as

the indicator at a SNR level of 5–10. Under similar conditions, the

S.D. of the amplitude estimate in the present study was 0.1–0.2

DF/F0 units. This means that only about 15–30% of the observed

dispersion in the quantal amplitudes of calcium spikes is due to the

limited precision of their estimation.

Conclusions
Although small and fast, calcium spikes can be well character-

ized by the fitting procedure scrutinized in this study that is

capable to extract their parameters properly. Statistical analysis

revealed that even when the spikes are barely visible the average

values of their descriptors are correct estimates of real values. Due

to their better spatial and temporal resolution, calcium spikes

outshine calcium sparks for in situ studies of ryanodine receptor

activity at individual calcium release sites down to the single

molecule level
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