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Abstract

Identifying genetic factors responsible for serious adverse drug reaction (SADR) is of critical importance to personalized
medicine. However, genome-wide association studies are hampered due to the lack of case-control samples, and the
selection of candidate genes is limited by the lack of understanding of the underlying mechanisms of SADRs. We
hypothesize that drugs causing the same type of SADR might share a common mechanism by targeting unexpectedly the
same SADR-mediating protein. Hence we propose an approach of identifying the common SADR-targets through
constructing and mining an in silico chemical-protein interactome (CPI), a matrix of binding strengths among 162 drug
molecules known to cause at least one type of SADR and 845 proteins. Drugs sharing the same SADR outcome were also
found to possess similarities in their CPI profiles towards this 845 protein set. This methodology identified the candidate
gene of sulfonamide-induced toxic epidermal necrolysis (TEN): all nine sulfonamides that cause TEN were found to bind
strongly to MHC I (Cw*4), whereas none of the 17 control drugs that do not cause TEN were found to bind to it. Through an
insight into the CPI, we found the Y116S substitution of MHC I (B*5703) enhances the unexpected binding of abacavir to its
antigen presentation groove, which explains why B*5701, not B*5703, is the risk allele of abacavir-induced hypersensitivity.
In conclusion, SADR targets and the patient-specific off-targets could be identified through a systematic investigation of the
CPI, generating important hypotheses for prospective experimental validation of the candidate genes.
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Introduction

Identifying genetic risk factors responsible for serious adverse

drug reactions (SADRs) is one of the priorities in pharmacoge-

netics [1]. As it is not practical to perform genome-wide

association study due to the lack of samples [2], candidate gene

selection has been an important strategy. Challenges arise when

the primary mechanisms for many SADRs are unclear. Conse-

quently, the candidate genes selected are generally limited to those

coding therapeutic targets [3], transporters or metabolic enzymes

[4]. We named this strategy as the ‘‘known interaction driven

selection’’, for it is driven by the known interactions between drugs

and proteins. However, the drug-protein interactions at this level

cannot explain why an SADR is only induced by certain

medications but never caused by other drugs. For example,

Stevens-Johnson syndrome (SJS) is often caused by diclofenac,

didanosine and tenoxicam but never caused by propoxyphene. It

is undisputed that direct interaction between a chemical and a

protein, for example, noncovalent binding of a drug to the active

center of an enzyme, is a fundamental step in drug effect. Hence,

we hypothesized that drugs causing the same type of SADR might

share a common mechanism by targeting unexpectedly on the

same SADR-mediating protein. But questions still arise as why

after strict assessment before the drugs came to the market,

SADRs still and only happen to some certain individuals,

especially the type B or idiosyncratic SADR [5]. Evidences

showed that some rare polymorphisms within these SADR targets

made them more sensitive to the drug. For example, oseltamivir

(Tamiflu), an anti-flu drug, whose active form binds to the active

site of human cytosolic sialidase. A rare polymorphism near the

binding pocket may enhance this unexpected binding and might

increase susceptibility to oseltamivir-induced neuropsychiatric

disorders [6]. Another case concerns the A1555G mutation in

mitochondrion DNA, which enhances the unwanted binding of

aminoglycosides to human 12s rRNA, mediating the susceptibility

of aminoglycosides-induced deafness [7]. Thus, the candidate gene

selection of SADR genetics can be tackled by exploring the

unexpected chemical-protein bindings. To harvest them at high

throughput, we established the first chemical-protein interactome

(CPI) in the form of the interaction strength among FDA-

approved drugs and human proteins. Each of the drugs was

reported to cause at least one of the four major SADRs including

SJS/TEN, cholestasis, rhabdomyolysis and deafness. We designed

a data-mining strategy against the CPI to explore whether the
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common SADR targets existed. In brief, if different drugs that

share the common outcome of SADR ‘‘S’’ all interact with a

particular protein ‘‘P’’, whereas drugs that do not cause the ‘‘S’’

outcome do not interact with it, then the common target ‘‘P’’ can

be considered as a mediator of ‘‘S’’ and prioritized for association

studies and mechanism investigations.

Results

Reliability of the DOCK program based CPI in assessing
the chemical-protein interaction

Several techniques such as BIACORE biosensors [8] and drug

affinity pull-down [9] can be used to assess the chemical-protein

interactions and to identify the unexpected chemical-protein

bindings. However, in order to test the utilities of CPI in a low

cost and high throughput manner, we intended to choose a mature

technique. Dock programs [10] appeared to be a good option. The

DOCK [11] has been under development and improvement for

over 20 years and is widely used to evaluate the interaction

strength between drug candidates and proteins targets. Particu-

larly, it has previously been used to identify the unexpected

binding. A classical case is haloperidol, an anti-psychiatric drug,

which was found to bind unexpectedly to HIV protease and had

become a template for developing anti-HIV drugs [12]. The

discovery was made with DOCK, whose later version [13] was

applied in our research reported here.

Since human knowledge of the four SADRs is limited, neither

did we know any of the unintended drug-protein interactions in

them nor did we not know how many protein targets should be

enough to cover the mechanism space of them without bias. So we

selected targets from literature and third-party targetable protein

database [14–17] and then applied quality control steps as

described in the methods. Considering our productivity of pockets

preparation and the urgency of solving the SADR problem, a set

of 845 proteins (Table S1) finally passed the quality control.

Although the protein set was incompetent to cover the whole

SADR targets, if some unexpected and valuable information could

be mined from it, the methodology of CPI would enlighten the

following research and thus lead to the construction of a large scale

target set. We constructed a test CPI to test the feasibility of using

DOCK in evaluating the interactions. In our protein set, there

were 12 proteins which had been the therapeutic targets as they

were listed in DrugBank [18]. We extracted the known direct

interactions with the 12 proteins reported in DrugBank or the

literature for a total of 46 drugs. We then ran the DOCK for

466891 times, resulting in a docking score matrix with 466891

elements. The matrix was then shrunk to 466845 elements before

we converted the matrix into the Z-score [19] matrix, where

binding affinities for each drug across the 891 binding pockets

were normalized to a mean of zero and standard deviation of one,

since it has been reported that the normalization of the docking

score matrix can improve the hit ratio [20]. Docking score

distribution is dependent on sizes, charges and other characters of

the drug. The normalization could address this inconsistency

among drugs. Each drug-protein interaction was classified into one

of the two categories, depending on whether (group 1) or not

(group 2) the interaction was previously reported in DrugBank or

in the literature. Statistical test of Z-score showed that the two

groups belonged to different population (Table S2). The area

under ROC curve was 0.74 (95% CI: 0.68–0.80, Figure S1),

indicating that the Z-score was valuable in measuring true

bindings. The 50th percentile of Z-score in group 1 interactions

was 21.240 while the 50th percentile of group 2 was only 20.47.

We thus set a Z-score threshold of 21.2 in order to distinguish the

known bindings (group 1) from the unidentified bindings (group 2).

Note that some of the unidentified bindings might exist per se,

which would reduce the difference between two groups. However,

this misclassification of unidentified interactions into known

bindings did not affect the specificity of highlighting the true

bindings from the unidentified ones. So we concluded that Z-score

could tell whether a binding will occur at the interval of high

absolute value.

Based on the reliability of the dock program and the data

processing strategy that effectively separate known bindings from

unidentified ones, we introduce the first release of CPI in the form

of a Z-score matrix. The chemicals selected here were FDA-

approved drugs, each of which was reported to cause at least one

of the four major well-known SADRs mentioned above. The

derivatives of these drugs, such as the known major metabolites

and their known isomers were also included. In summary, the CPI

consists of the binding affinity data between 162 chemicals and

891 binding pockets. The interaction strengths were converted

into a Z-score matrix. We did not choose SADRs like

hepatotoxicity, for it is a relatively big concept compared with

cholestasis and can be induced by almost every drug. The four

SADRs included in this research were not only the major SADRs

usually reported in the FDA’s Adverse Event Reporting System

(AERS), but each of which was also appeared to be triggered by a

particular set of medications. This type of SADR allowed us to

identify ‘‘case’’ and ‘‘control’’ drugs from which clear differences

in the pattern of binding to many proteins were observed from the

CPI. In the following section, we used the SJS/TEN SADR as an

example to illustrate the construction and utilities of the CPI.

Identification of candidate genes of serious cutaneous
reactions through mining the CPI

The SJS and TEN are two forms of the same life-threatening

cutaneous reactions that cause rash, skin peeling, and sores on the

mucous membranes triggered by particular types of medications

[21] with primary mechanism unknown. No significant association

was observed between the metabolite enzyme genes and the SJS/

TEN [22], implying that ‘‘known interaction driven’’ genes might

Author Summary

Why do tragedies caused by Vioxx or Avandia only happen
to certain individuals? The unexpected bindings among
drugs and human proteins might play important roles in
such serious adverse drug reactions (SADRs). To mine
these unexpected chemical-protein interactions, 162 drug
molecules known to cause SADRs are ‘hybridized’ onto 845
proteins to construct a chemical-protein interaction matrix,
from which two aspects of the information, the binding
strength and the binding conformation, are disclosed.
Followed by the data-mining strategies, the unexpected
bindings that mediate SADRs are identified. For example,
abacavir is found to bind to the antigen presentation
groove of MHC I molecule in patients carrying the B*5701
allele but not B*5703, which explains why HLA-B*5701, not
B*5703, is the risk allele of abacavir hypersensitivity. This
research could explain to the public that SADR happens
when some of the innocent proteins are attacked by drugs
unexpectedly, and variances in certain people’s genome
make their proteins more sensitive to the drug. By pre-
therapy screening, the susceptible people could be
protected. Furthermore, new drugs or modified drugs will
be designed to avoid these patient-specific unintended
bindings, in a step toward realizing personalized medicine.

Chemical-Protein Interactome Adverse Drug Reaction

PLoS Computational Biology | www.ploscompbiol.org 2 July 2009 | Volume 5 | Issue 7 | e1000441



not be the fundamental element. We first selected drugs that were

reported to be associated with this SADR in peer-reviewed

publications. All of the drug-SJS/TEN relationships were

confirmed in the FDA’s AERS. In total, 32 drugs along with

their 21 major derivatives served as the case group, whereas 17

drugs were verified to be unrelated to SJS/TEN in both

publications and AERS and served as the control group, which

did not contain the derivatives. To avoid biases in the following

assessment, we also confirmed that they did not share the same

chemical features.

After docking all 70 molecules into all 891 binding pockets of

our set of 845 proteins (step 1 of Figure 1), we obtained a Z-score

matrix of the binding affinities. We then split it into the case

matrix (536845 relations) and the control matrix (176845

relations). We performed a hierarchical clustering [23] on the

resulting zero-floored Z-score matrix, and found that three sub-

groups of case drugs clearly interacted selectively with three

different sub-groups of proteins (step 2 Figure 1), implying that the

three different sub-groups of case drugs might trigger the SJS/

TEN through three different mechanisms. Then we divided the

case matrix into three sub-CPIs, and performed a trimming

procedure to exclude the redundant case chemicals if multiple

forms of a drug were clustered into the same sub-CPI. To identify

proteins preferentially interacting with the case drugs, we

performed Fisher’s exact tests followed by false discovery rate

(FDR) corrections [24] for every sub-CPI in comparison to the

control group. This non-parameter test only required binding

information in a binomial pattern, which could be specifically

measured by Z-score. In sub-CPI 1 (step 3 of Figure 1), p and q

values [24] for each proteins were calculated. As a result, HLA-

Cw*4 heavy chain (1QQD) together with other proteins were

highlighted. In sub-CPI2 and sub-CPI3, leukotriene A4 hydrolase

(1HS6), CD26 (2G5P) and Fab9 fragment of IgG (1DBJ) together

with other proteins were identified (step 4, 5 of Figure 1).

Identification of biological processes from the SJS/TEN-
oriented gene co-citation network

We further enriched the biological process (BP) terms of Gene

Ontology (GO) from the gene co-citation network (GCCN) [25].

We downloaded 18566 SJS/TEN-related PubMed entries,

calculated the citation rates for each of the human genes in

SJS/TEN related and nonrelated PubMed entries. Genes cited

more specifically in the SJS/TEN topic were defined as core

genes. Two genes were connected if they were co-cited in a

PubMed entry (step 6 of Figure 1). To retrieve a more delicacy set

of GO BP terms for SJS/TEN, we extended the core gene set

through indexing their neighbors in GCCN. For example, LTA

was one of the neighbors of the core gene HLA-C [26]. Though

had not been investigated in SJS/TEN, LTA was co-cited with

HLA-C [27], implying a putative functional linkage of this gene to

SJS/TEN through HLA-C. Both the extended and the core genes

were used in the enrichment analysis of BP terms [28]. As shown

in step 6 of Figure 1, genes annotated with ‘‘immune response’’

(p = 8.32E-07), ‘‘inflammatory response’’ (p = 2.48E-18) and ‘‘T

cell activation’’ (p = 1.02E-41) tended to occur more frequently in

SJS/TEN-oriented GCCN than random selection at a significance

level of 0.01.

Highlighting the candidate genes for serious cutaneous
reactions

Finally, the BP terms were assigned manually to proteins

highlighted from sub-CPIs. Proteins were defined as the class I

candidates if they shared the same BP terms enriched from

GCCN. Otherwise they were defined as class II candidate. Class I

candidates were involved in the known biological processes of

SJS/TEN while class II proteins did not. However, it does not

mean that class II candidates are less important since human

knowledge on SJS/TEN is still limited. MHC I protein heavy

chain Cw*4 (1QQD) showed the lowest p value in the candidate

list. It is assigned as a class I candidate, as it was annotated with

the BP terms ‘‘immune response’’ (GO:0006955) and ‘‘antigen

processing’’ (GO:0019882), which were highlighted from the

GCCN. When investigated the interaction strength among all

case-control drugs and HLA-Cw*4 (Table S3), we found that 85%

(11 of 13) case drugs including 9 sulfonamides bind strongly to it.

Table S4 showed significant differences between case and control

interactions with HLA-Cw*4 either in docking scores or in Z-

scores. By visualizing the binding conformations at the lowest

energy, we found that all sulfonamides tended to ‘‘root’’ at MHC

I’s antigen presentation groove through the hydrogen bond

interaction of sulfuryls to the two arginine residues (Figure 2B).

This identification of HLA-C (w*4) as the mediator of sulfameth-

oxazole (SMX)-induced TEN was validated by other studies, as it

was confirmed that the immune response and the TEN will only

be triggered by SMX in presence of MHC I (Cw*4) [26,29].

Following the same data-mining and text-mining pipeline, we

identified candidate genes from the other two sub-CPIs (Table 1).

Two representative proteins highlighted were leukotriene A4

hydrolase (1HS6) and Fab fragment of IgG (1DBJ). The former is

the rate-limiting enzyme in formation of leukotriene, which

transduces the signal of inflammation in skin reactions [30]. Case

drugs tend to bind to its peptidase active center and might

interfere the suicide regulation [31] of the enzyme itself when the

enzyme is over-expressed. Case drugs in sub-CPI 3 tend to bind to

the variable region of a certain IgG. We could not deduce the

downstream events of this binding, but it has been known that the

binding of antigens to the IgG induces the release of leukotriene,

activate alexin system and the type III hypersensitivity.

Identification of the candidate risk alleles of serious
cutaneous reactions through insight into the CPI

The CPI would not only tell which protein to mediate the

SADR, but would also tell which allele of this protein would be

more sensitive to the unexpected drug attack. To our knowledge,

HLA-B*57 is the only reliable susceptibility gene of SADRs

[32,33] of which structures with both risk and non-risk alleles are

available. We constructed an interactome including interaction

strength among abacavir, allopurinol and four structures of risk

and non-risk alleles of abacavir-induced hypersensitivity (Table 2).

No specificity of allopurinol to any of the proteins was found. This

result was in coordination with the fact that none of these alleles

was the risk allele of allopurinol-induced hypersensitivity, In

contrast, abacavir did not accommodate the binding site of

B*5703, but appeared to have the high affinity with B*5701. The

major difference between the two alleles lay in two polymorphisms

(N114D, Y116S) from B*5703 to B*5701. When Y116S

substitution appeared in B*5703, a better compatibility of

geometry shape between drug and binding pocket as well as

several hydrogen bonds were formed. As a result, abacavir

molecule fixed deeply into the antigen presentation groove of

HLA-B*57 (Figure 3, Video S2). Comparatively, the N114D

seemed to be less important for the substitution of a nitrogen atom

to an oxygen atom would neither affect the steric hindrance nor

did the buildup of hydrogen bonds. Given the premise that direct

binding of drug to HLA-B*57 protein mediates abacavir-induced

hypersensitivity, we deduced that B*5701 tended to be the risk

allele compared to B*5703. The discovery of the fact that abacavir

Chemical-Protein Interactome Adverse Drug Reaction
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interacts directly with the 114th and 116th residues of MHC I B*57

which mediates SJS is consistent with the genetic evidences [32–

35]. This newly identified molecular mechanism has also been

validated at the cell biology level [36]. In the presence of abacavir

and MHC I (B*5703), the percentage of responding IFNg+ CD8+
T cells was only 1.34%, and the percentage remained unchanged

when N114D mutation was introduced. However, this percentage

suddenly rose to 28.4% when another mutation Y116S, which

formed the risk allele B*5701, was introduced. The result fit the

drug-MHC I direct binding model for that Y116S was essential to

the binding of abacavir, and N114D tended to be less important.

Identification of candidate genes associated with
cholestasis, rhabdomyolysis and deafness

A systematic insight into the CPI led to the identification of the

SADR targets common to case drugs, and the risk alleles of them

as well. We thus explored SADR targets for three other SADRs

using the same methodology (Table 1). The relationships among

drugs, SADR outcome and the corresponding sub-CPI were listed

in Table S5. Vasopressin receptor was highlighted from

cholestasis-related CPI. Being the native ligand, administration

of vasopressin could result in a reduction in bile flow and then

induce cholestasis [37]. Troponin T and PAK1 protein kinase

were harvested as well. The former regulates muscle contraction

while the latter, inhibited by most statin drugs in the rhabdomy-

olysis-oriented CPI, takes a vital part in the polymerization and

depolymerization of actin. Energy dysfunction plays an important

role in pathogenesis of hearing loss [38]. We found that, compared

with other SADRs, deafness is significantly associated with

proteins contributing to energy metabolism (see note of Table 1).

The consistently higher than random recall rates of proteins

known to be related to SADRs indicates that all these results could

not have been achieved by chance.

CPI profile of a drug reflects its interacting character
towards multi-protein set

Network pharmacology [39] pointed out that many drug effects

are mediated by the chemical-protein interactions of drugs

towards multi-protein set. The SADR might also be triggered by

the combination effect of drug-SADR target interactions. So we

hypothesized that drugs causing the same SADR not only share

the same SADR targets, but might also possess the similar binding

strength profile towards multi-protein set. If this similarity can be

detected, we may infer that the CPI not only represent the binding

situation of a drug to a protein, but also reflect the interacting

character of it towards multi-protein set. Here we utilized support

vector machine (SVM) model to see whether drugs could be

correctly classified as case or control drugs based on their binding

profile vector against 845 proteins. If they could be, there was a

similarity in high-dimensional space among case drugs or control

drugs towards 845 protein set. The effectiveness of the classifier

was measured by the binary classification accuracy using cross

validation. For each SADR, categorical attributes of case or

control drugs were labeled as ‘‘1’’ or ‘‘0’’. Z-score of a drug

towards 845 proteins was used as the attribute vector. The cross

validation accuracy (CVA) varied from 85% to 91% among four

SADRs (Table 3). To evaluate whether such CVAs were achieved

by chance, we permutated the position of the case and control

drugs randomly for 100 runs, and recalculated the mean CVAs.

The mean CVAs of permutated data turned out to be much lower

(Table 3). So we concluded that there were similarities among

drugs with the same outcome of an SADR, which were found in

the CPI profile of them towards multi-protein set.

Discussion

The basic hypothesis of the CPI
The hypothesis that drugs with similar phenotypic effects tend

to interact with same targets is similar to a recent study done by

Campillos et al [40]. However, the target spaces and the aims of

the two studies are different. The work of Campillos et al managed

to construct new connections among drugs and known therapeutic

targets, which are a small portion of protein spaces whose

functional information is clearly identified. Our research tried to

construct new connections among drugs and human proteins,

which is a step into a larger protein space whose function needs

further exploration. However, our methodology is hampered by

the lack of the structurome information of the human proteins.

The aim of the former research is to explore the off-targets. For

our research, the major aim of finding the off-targets is to figure

out the key interacting residues and the risk allele for each

individual.

Unexpected drug-protein interaction is the vital step in

pathogenesis of SADRs. Although drug response is a complex

trait [1] mediated by multiple genes and their interactions, some

well-known cases of polymorphism within a gene have pro-

nounced effects on drug response. To our knowledge, all of these

polymorphisms alter the pattern of direct chemical-protein

interactions. Examples include the T790M mutation in the

gefitinib binding pocket of EGFR [41]; the T164I mutation

within the epinephrine binding pocket of b2-adrenergic receptor

[42]; and the polymorphism within binding pocket of STI-571 to

c-Abl [43]. Although multiple genes take part in immune response

only the HLA genotypes are significantly associated with SJS

[22,32,33,44,45]. Such a strong linkage suggests that a direct

binding of SADR-causing drugs to MHC I may be the primary

event. In the case of HLA-Cw*4, all sulfonamides bind to the

antigen presentation groove. Several ‘‘wet’’ observations support

Figure 1. Strategy of identifying candidate genes for SADR through data-mining against the CPI and text-mining. Step (1) Drugs
retrieved from adverse events reporting system of FDA were docked into the active sites of proteins. Shown here are the binding conformations of
the four forms of fluoxetine (FXT1: the parent drug; FXT2: the major metabolite norfluoxetine; FXT3 and FXT4: nitrogen-atom positively charged of
FXT1 and FXT2 respectively) to the bioactive sites of the five proteins. Step (2) Visualization of clustering results against the case matrix of binding
affinity between 53 drugs (columns) and 845 proteins (rows). All case drugs were known to cause SJS/TEN. A Z-score greater or less than 21.2 were
represented as white or black squares respectively. Step (3) A local CPI. Interactions of 13 case drugs in the sub-CPI1 and 17 control drugs with five
proteins were shown here. For each of the proteins, the number of case drugs that interact with it with a Z-score,21.2 (dark blue square) or with Z-
score.21.2 (black) were denoted as a and c, whereas the number of control drugs that interact with it with a Z-score,21.2 (light blue) or with a Z-
score.21.2 (gray) were denoted as b and d, respectively. Step (4) & (5) Representative proteins highlighted from sub-CPI2 and sub-CPI3. The
number of case or control drugs varied because of the missing values. Step (6) A local SJS/TEN-oriented GCCN. Yellow diamonds and white circles
represent the core genes and extended genes respectively. One PubMed entry [26] (yellow bolded) referring to HLA-C mainly deals with TEN. Another
entry [27] (red bolded) describes the relationship between HLA-C and LTA (red line). Genes that are annotated with GO term ‘‘inflammatory response’’
(in purple rectangle), ‘‘T cell activation’’ (blue) and in ‘‘immune response’’ (red) tend to be cited more specifically in this GCCN. Step (7) If a protein
highlighted from the CPI share the GO terms enriched from GCCN, its symbol is presented in the corresponding color of the GO terms in step (6).
doi:10.1371/journal.pcbi.1000441.g001
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Figure 2. The interaction of sulfonamides to MHC I (Cw4). (A) Interaction strength among case drug molecules of SJS/TEN and MHC I (Cw*4).
Drug names followed by the numbers represent the derivatives of this drug. In sub-CPI 1, 15 molecules interact strongly with MHC I (Cw*4). After
trimming procedure, 13 case drugs including 9 sulfonamides (listed in C) were found binding to MHC I (Cw*4). (B) The lowest energy conformations
of four sulfonamides’ binding to the antigen presentation groove of MHC I (Cw*4) through hydrogen bonds between the oxygen atoms in sulfuryls
to the nitrogen atoms in the two arginine residues (R97 and R156). Residues in the two a-helixes also contribute to the binding. The four
sulfonamides shown here are bumetanide, celecoxib, sulfadoxine and sulfamethoxazole. See Figure S2 for the binding conformations of other
sulfonamides. (C) The nine sulfonamides have different structures, but they all bind to the two stretched arginine residues through their sulfuryls as
the ‘root’. Molecular structures of the 17 control drugs which do not tend to interact with MHC I (Cw*4) were shown in Figure S3.
doi:10.1371/journal.pcbi.1000441.g002
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this direct binding model. Firstly, the presentation of the

sulfamethoxazole (SMX) parent drug displayed a direct, non-

covalent binding fashion to the MHC–peptide complex [46].

Secondly, the antigen peptide within the MHC I groove does not

appear to be essential, since the elution of the peptide did not

affect the presentation of SMX [47], thus there might be

competitive binding between the drugs and the peptide to the

groove. Thirdly, von Greyerz et al [29] found that most T cell

clones showed a ‘‘MHC-allele restricted drug-specific recognition’’

that was stimulated by the parent drug rather than its derivatives.

Fourthly, Nassif [26] discovered that blister fluid T lymphocytes,

which were derived from a patient suffering SMX-induced TEN,

were cytotoxic only when SMX is present and the cells share

HLA-Cw*4. This HLA allele-drug specific cytotoxicity was

confirmed in another study [48], and can be abrogated with the

change of a single residue in the groove. Finally, the S116Y within

HLA-B*5701 was shown to hamper completely the presentation of

abacavir [36], suggesting that the drug itself, or a metabolite,

might be accommodated in the groove and the residue is essential

for this binding. All these facts corroborate the direct drug-protein

interaction model in which the strong MHC allele-drug specificity

could be best explained by a steric complementarity together with

other strong non-covalent interactions between the drug molecule

and the antigen presentation groove. The groove contains a

variable region where MHC I molecules coded by thousands of

HLA alleles differ and the antigen peptide-MHC I recognition

takes place. In our model, a similar drug-MHC I recognition

occurs when the drug binds to its specific ‘‘port’’ of a particular

MHC allele at the variant region. This specificity could also be

found at the genetic level. For example, severe cutaneous adverse

Table 1. Candidate proteins mediating the four SADRs.

SADR PDB Protein Name GO ID GO Term p qa a b c d
sub-
CPI Class

SJS/TEN 1QQD HLA-Cw*4(Heavy Chain) GO:0019882 antigen processing and
presentation

2.15E-05 2.98E-05 11 0 2 17 1 I

SJS/TEN 2G5P CD26 (DPP4) GO:0042110 T cell activation 9.39E-04 0.0124 7 3 1 16 2 I

SJS/TEN 1HS6 Leukotriene A4 hydrolase GO:0006954 inflammatory response 0.0202 0.0280 7 8 0 10 2 I

SJS/TEN 1DBJ Fab9 Fragment of IgG N/A N/A 0.000439 0.00889 12 7 0 12 3 II

rhabdomyolysis 1B09 C-reactive protein GO:0006953 acute-phase response 0.000135 0.00622 7 3 0 17 2 I

rhabdomyolysis 1DTL Troponin T, Cardiac Muscle Isoforms GO:0006937 regulation of muscle contraction 0.000182 0.00622 7 3 0 16 2 I

rhabdomyolysis 1F3M PAK-1 protein kinase GO:0008154 actin polymerization and/or
depolymerization

0.00342 0.0177 4 0 4 20 1 I

rhabdomyolysis 2DDH Acyl CoA oxidase 2 GO:0006629 lipid metabolic process 0.0235 0.0472 5 4 2 16 2 I

deafness 1BQS Mucosal Addressin Cell Adhesion
Molecule 1

GO:0007155 cell adhesion 5.93E-05 0.000597 10 2 3 21 2 I

deafness 1P4M Riboflavin Kinase* GO:0009231 riboflavin biosynthetic process 0.000322 0.00204 8 1 5 22 2 I

deafness 1IG3 Thiamin Pyrophosphokinase* GO:0006772 thiamin metabolic process 0.000411 0.00236 9 2 4 20 2 I

deafness 1JJC Phenylalanyl tRNA Synthetase GO:0006412 translation 0.000434 0.00244 12 7 1 16 2 I

deafness 1JKL Death-Associated Protein Kinase GO:0006915 apoptosis 0.000920 0.00415 10 4 3 19 2 I

deafness 1BU5 Flavodoxin* GO:0006810 transport 0.00636 0.0171 8 3 5 20 2 I

deafness 1EFR Mitochondrial F1-ATPase* GO:0006754 ATP biosynthetic process 0.00573 0.0206 7 5 2 18 1 I

cholestasis 1HN4 Prophospholipase A2 GO:0006633 fatty acid biosynthetic process 0.000347 0.0131 6 1 1 16 1 I

cholestasis 1HN5 Prophospholipase A3 GO:0050482 arachidonic acid secretion 0.000939 0.000939 7 1 3 16 2 I

cholestasis 1YTV Vasopressin V1a receptor GO:0006810 transport 0.000171 0.00531 11 4 1 15 3 I

See Table S5 for the full list of other class I and class II candidates.
*Proteins contributing to energy metabolism specifically appeared in the protein set prioritized from deafness-oriented CPI (p = 0.0050, Chi-square test, two-tailed).
aThe q value was calculated using the FDR correction algorithm [24].
doi:10.1371/journal.pcbi.1000441.t001

Table 2. Interactome among abacavir, allopurinol and four HLA-B*57 molecules.

PDB ID Allele Dock Scorea Z-score Is Risk Allele Dock Scoreb Z-score Is Risk Allele

2BVO B*5703 233.73 0.460 No 226.95 1.77 No

2BVQ B*5703 234.07 0.416 No 228.56 0.141 No

2BVP B*5703 232.52 0.618 No 226.88 1.84 No

2RFX B*5701 248.71 21.49 Yes 228.69 0.00565 No

aDocking score for drug abacavir.
bDocking score for drug allopurinol.
doi:10.1371/journal.pcbi.1000441.t002
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reactions are found to be triggered by allopurinol in the presence

of B*5801 [44]; abacavir-induced skin reaction requires the

parallel genotype of B*5701 [32]; and carbamazepin-induced SJS

is linked to B*1502, but not to HLA-A*1101 [45]. All these

markers have a pronounced predictive capability of SADRs,

leading the U.S. FDA’s recommendation for their implementation

for personalized medicine. The growing body of evidence suggests

that the direct chemical-protein binding may enable the

identification of more promising markers for SADR genetics,

especially for predicting the specific HLA alleles that may be

responsible for other drug-induced hypersensitivity, and finally, for

a better design of new drugs or the modification of existing drugs

to prevent these unintended interactions.

Availability and limitations of the CPI related techniques
Unexpected drug-protein interactions should be explored with

any available technologies such as drug affinity pull-down [9] or

compare the similarities of pocket shapes between known drug

target and the off-target [49]. However, in a drug affinity pull-

down experiment, it remains a challenging task to prioritize the

candidate proteins and to explain the biological significance when

hundreds of proteins are identified to be compatible to the drug.

The CPI methodology of finding the common SADR target could

enlighten the design of these ‘‘wet’’ experiments. For example, a

pull-down through a mixture of resins immobilized by different

case drugs might help to enrich the common targets, while the

follow-up pull-down using resins immobilized by control drugs

might exclude the false positives. Though DOCK could tell true

bindings from the unidentified ones, no strict assessment had been

put forward as to the resolving power of its scoring functions to

evaluate the degree of the interaction strength of CPI. The lack of

human protein structures is another problem. An ideal chemical-

protein interactome would include the 3D structures of all human

proteins whose structural flexibility can be effectively handled by

more advanced docking programs so that the binding affinity can

be better estimated. This would lead to a whole structurome-wide

study with more unexpected interactions to be identified. Because

of the biases in the structural and functional coverage in PDB and

our pocket preparing criteria, the 845 proteins might not be

representative, some of which were even redundant. The lack of

randomization might introduce biases in the statistical model.

Instead, preparing a reference protein set from other structural

databases, e.g., choosing one representative structure for each

SCOP super family [50], might improve the model. However, our

pocket preparing criteria could guarantee all the proteins were

targetable. Preserving the redundancy also enabled us to disclose

more flexibility information of the protein cavities. Although this

protein set needed improvement, with these structures, we were

still able to i) highlight the true bindings from the unidentified

bindings; ii) identify the susceptibility gene (HLA-Cw*4) for the

SMX-induced TEN without any prior knowledge of the

underlying mechanism; iii) identify the candidate risk allele of

the susceptibility gene (HLA-B*5701) based on the direct drug-

MHC I interaction model which had never been proposed in all

drug-induced hypersensitivity models. In addition, many candi-

date SADR targets prioritized from the CPI tended to be linked to

Table 3. Comparison of the cross-validation accuracy (CVA) between the original dataset and the randomly permutated dataset.

SADR Total Sample # # of Case Drugs # of Control Drugs CVA (%)a Mean CVA (%) of permutations

SJS 82 53 29 90.8 62.3

cholestasis 87 57 30 85.2 59.1

deafness 88 48 40 87.5 59.8

rhabdomyolysis 90 49 41 91.4 54.3

aPrediction models of the four SADRs shown here were validated by 5-fold cross validation.
Both case and control drug group contain the derivatives.
doi:10.1371/journal.pcbi.1000441.t003

Figure 3. Models of abacavir’s interactions with the binding site of HLA-B*5703 and HLA-B*5701. (A) The abacavir could not bind to the
antigen presentation groove of MHC I (B*5703, PDB ID: 2BVP). No non-covalent interaction could be formed with N114 in the presence of Y116 due to
the steric hindrance (Video S1). (B) The steric hindrance of the binding disappeared when Y116S was introduced. The binding score between abacavir
and MHC I (B*5701) was much lower than with (B*5703) because of I) better compatibility of geometry shape to the binding pocket; II) hydrogen
bonds (yellow dashed) were formed with three essential AA residues (D114, S116 and T143) within the antigen presentation groove (Video S2).
doi:10.1371/journal.pcbi.1000441.g003
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the known SADR mechanisms compared with the random

selection. As ‘‘wet’’ techniques for building up the CPI is not

mature, the in silico approach appears to be the only means feasible

to apply the CPI at the prescreening level, considering the urgency

of the global SADR problem. Though false positive candidate

genes might also be proposed, they can be controlled in different

data transformation steps. Firstly, if one ligand tends to give low

docking scores, it is usually caused by the ligand factor which could

be eliminated in the normalization steps. Secondly, if one target

tends to give low docking scores, it could raise low score for both

case and control drugs. So this target cannot achieve a low p value

in Fisher’s exact test, and cannot be highlighted in the CPI.

Thirdly, the false positive given by p value judgment could be

controlled by the FDR correction. Lastly, they can be eliminated

through association studies of the SADR patients or the functional

studies of the SADR mechanisms, just as the docking procedure

for identifying drug candidates is always followed by the binding

affinity experiments.

One limitation of our SVM classification model is the number

of control samples in SJS/TEN group. We did not managed to

find enough SJS- drugs to construct a sample set with case-control

ratio at 1:1. SJS seems to be particular that only a few drugs do not

linked with it. We could not find enough independent validation

set either due to our strict criteria of the sample selection. This is

the first try of using CPI profile to predict ADR outcome of a drug,

the prediction performance of the CPI thus needs further

validation and the model needs to be optimized. However, the

permutation result added some reliability to the classification

model. Compared with the permutation result, the classification

result showed there were similarities in the CPI profiles of the case

drugs, which provided hint for the construction of the prediction

model based on this methodology.

Comparison with other techniques
Although case drug molecules in Fig. 2B shared some structure

similarity, the high-dimension information provided by CPI

extends beyond simple structural comparison. Take fluoxetine 4

and fluoxetine in Fig. 2A for example, only a simple change in the

ionization state between the two molecules will give different CPI

profiles, with the distance between the two molecules far on the

clustering tree. The chemical-protein interactomic analysis might

also be complementary to trascriptomics in toxicogenomics. The

latter provides a rich description of cell status [51], whereas the

CPI strategy seems to provide more direct and interpretable

biological understandings. The primary interactions of a drug to

proteins are the causes of biological events, whereas the

trascriptome strategy only detects the resulting phenotypes.

Knowing which proteins’ function are disabled and which alleles

tend to be disabled by the drugs are vital, for they might lay a

direct solution to SADR at the source.

Perspectives
Usually we could only access ‘‘wild-type’’ protein structures, and

it is not only possible but also necessary to simulate genetic

variability in 3D structures and thereby discover patient-specific

off-targets so that we can predict one’s SADR or drug effect from

their ‘‘structypes’’. However, we cannot construct a CPI that only

uses the modeled ‘‘structypes’’, since the type I error might

accumulate significantly. So our strategy is to find proteins tend to

be highlighted in a CPI containing ‘‘wild-type’’ structures, and

then investigate whether the allele of the highlighted ones could

constitute a risk allele.

The SADR genetics requires worldwide collaboration [52,53].

At a time when samples are rare and the primary mechanisms are

unclear, both the sample information and the hypothesized

candidate genes should be shared by the community for

prospective experimental validation. Thus, in anticipation of this

global collaboration, we made the statistically significant candidate

genes highlighted from CPI (Table S6) publicly available for

SADR consortia’s consideration, verification and the improve-

ment of CPI methodology. We expect that the perfection of CPI

will eventually benefit the public by understanding, minimizing

and predicting the occurrence of SADRs.

Methods

Preparation of the protein pocket set and the ligand set
We selected targets from literature and from third-party

targetable protein databases [14–17]. Every pocket had been

examined manually and was screened according to the criteria

pre-defined: I) In order to identify unexpected drug-protein

interactions, the target space should not be confined to the narrow

space of the targets for the marketed drugs, which are merely a

small portion of all protein spaces. II) To utilize the structure space

to the max, the species of the protein should not be confined to

Homo Sapiens, and the homolog protein can be considered.

Targets with greater than 30% in protein sequence similarity to

the corresponding human protein at the bioactive site could be

chosen. III) The PDB structure should contain the co-crystallized

ligand to define the bioactive site and to indicate the protein is

targetable, PDB entries whose ligand is at the surface of the

protein are not acceptable. IV) The ligand embedded in the PDB

structure should achieve certain rigidity and some specificity

towards the target, e.g., compounds with a large portion of

rotatable bonds were not acceptable. V) No missing residue should

be around the bioactive site. Residues within 10 Å departed from

the ligand were defined as the bioactive pocket of the protein, and

balls with radius ranging from 1.1–1.4 Å were generated to fill in

the pocket. Grid box was made 3–5 Å departed from the ‘cloud’ of

the balls.

The SMILES information of the small molecules was retrieved

from PubChem. The minimal energy conformations of chemicals

were generated with CORINA. All structures of proteins and

chemicals were prepared using Chimera [54] and PyMOL. All the

above procedures were performed manually with a strict quality

control.

Construction of the test CPI
An intersection operation was performed between all drug

targets in DrugBank and the proteins in our pocket set using PDB

id or Uniprot id as the identifier. We confirmed that each of the

proteins in intersection had at least two FDA-approved drugs bind

directly to them with a clear pharmacology to insure that they

were credible drug targets. The running of the DOCK program

and the extraction of the results were controlled by Perl or shell

scripts on a UbuntuTM Linux cluster. The docking score was

calculated as the sum of intramolecular and intermolecular energy.

A docking score greater than zero was treated as a missing value.

There were a total of 845 proteins with 891 pockets in our pocket

set. When a protein has multiple pockets to bind with, only the

lowest docking score was chosen as the reference score, so the

docking score matrix was shrunk to 466845 elements. Here Xij

represents the docking score of drug j to protein i. The Z-score is

calculated as:

Zij~
Xij{Xj

SDXj

,
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where

Xj~

P
i~1,Nj

Xij

Nj

,

SDXj
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i~1,Nj

Xij{Xj

� �2

Nj{1

vuut
,

where Nj equals 845 minus the number of missing docking value of

drug j to the protein set. So a Z-score matrix of 466845 elements

was generated. All direct bindings verified in literature or in the

‘‘description, indication, pharmacology and mechanism_of_ac-

tion’’ fields of DrugBank database were defined as group 1,

whereas other unidentified bindings were designated as group 2.

The nonparametric Mann-Whitney test was performed on the Z-

scores.

Construction of a SADR oriented-CPI
All accessible AERS raw data from Jan 2004 to Mar 2008 were

downloaded from FDA website and then deposited into a

relational database (MySQL 5.1.22). In an SADR report, only

the primary or the secondary suspected drugs were regarded as

linked to the reported SADR. Drugs reported in the literature to

have caused a SADR were further examined in AERS; only those

reported in the AERS more than three times were considered as

case drugs. The candidates for control drugs were collected on

condition that they had never been co-cited with this SADR in the

literature. They were classified into control group only if the report

number was zero or less than 5% of its total reports when jointly

used with the case drugs. The Z-score matrix was generated using

the same pipeline as described above. However, for the SADR

oriented-CPI, the Z-score matrix was further trimmed using the

formula:

Z0ij~
Zij(Zijv{1:2)

0(Zijw{1:2)

�
,

where Zij was the interaction strength between drug j and protein

i. The Pearson correlation coefficient r between the two columns of

binding affinity for drug j1 Z01j1
,Z02j1

,:::,Z0ij1

n o
and drug j2

Z01j2
,Z02j2

,:::,Z0ij2

n o
was measured as:

r~
1

N

X
i~1,N

(
Z0ij1{Z0j1

SDZ0
j1

)(
Z0ij2 {Z0j2

SDZ0
j2

),

where N represents the number of Z9 value pairs of drug j1 and

drug j2 with no missing value. Z0j1 and Z0j2 are the average Z9-score

of drug j1 and j2, whereas SDZ0
j1

and SDZ0
j2

are standard

derivation of Z9-score of the two drugs. The hierarchical clustering

was then performed based on the r values between each pair of

drugs. In the trimming procedure within each sub-CPI after

clustering, only molecule with the lowest mean Z-score was chosen

when multiple forms of a drug were clustered into the same sub-

CPI. For protein i, ai, bi, ci, di values, representing the number of

binding (ai or bi) and non-binding (ci or di) by case drugs or control

drugs respectively, were counted and the relative risk (RR) value

was calculated as follows:

RRi~
ai

aizbi

� �
cizdi

ci

� �
:

Protein targets with a RR value exceeding 1 were chosen for

Fisher’s exact test, as the expected values in any of the ai, bi, ci, di

value sometimes is below 10. The p values were then corrected

using fdrtool package [55] of R to control the false positives.

Construction of SADR-oriented GCCN and enrichment
analysis of GO terms

Although a more reliable network might be constructed using

the STRING server [56], it is still uncertain that whether its

physical and functional relationships can denote the true situation

in SADR pathology. However, it could be more certain that a

gene is involved in an SADR if it is cited specifically in this SADR

related literature. So we only chose GCCN to organize the SADR

related knowledge in a gene-oriented fashion. Four sets of PubMed

entries were retrieved through the following four querying terms:

Cholestasis; Deafness OR ‘‘hearing loss’’; rhabdomyolysis OR

myalgia OR myopathy OR myositis; rash OR Stevens-Johnson

syndrome OR toxic epidermal necrolysis. The records were

downloaded in XML format through the eSearch and eFetch

APIs, and were deposited into a MySQL database. The index file

of human genes to PubMed entries was downloaded from the

Entrez Gene ftp site. A core gene of SADR ‘‘S’’ must meet one of

the two criteria: the citation rate of this gene in this ‘‘S’’-related

corpus must exceed its citation rate in corpus under other topics;

the number of citation must exceed four. A connection between

two genes was established in GCCN if they were co-cited in more

than two PubMed entries. Both core genes and extended genes of

‘‘S’’ were included in enrichment analysis of biological process

(BP) GO terms using EASE [57]. The p value generated from

Bonferroni correction was used as a measure in choosing the

significant BP terms. The GO terms of each candidate proteins

highlighted from CPI were assigned through querying the Gene

Ontology Annotation database [58] with their UniProt ID as the

identifier. Attributes of candidate class (I or II) were assigned

manually depending on whether the candidate targets had shared

the BP terms enriched from the GCCN.

Construction of the binary classification model using the
CPI profile

For each SADR, categorical attribute of a drug was labeled as

‘‘1’’ or ‘‘0’’ if it could (SADR+) or could not (SADR2) trigger this

SADR. Z-scores were chosen as a measure of the interaction

strength. Then for each protein, Z-scores were linearly scaled to

the range of [21, 1]. We chose a nonlinear RBF kernel function to

build the model, because the relations between class labels and

interactome attributes are nonlinear, and this kernel function,

K(Xi,Xj)~e({cjjXi{Xj jj2),cw0,

could map vectors onto a higher dimensional space nonlinearly.

Here C and c were two essential parameters for RBF function, but

it was not known beforehand that which C and c fitted best for our

model. We performed the exhaustive searching for the best (C, c)

pair each time we performed the 5-fold cross-validation test.

Supporting Information

Figure S1 ROC curve of the Z-score and the dock score in

identifying the true bindings.
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Found at: doi:10.1371/journal.pcbi.1000441.s001 (0.03 MB

DOC)

Figure S2 The lowest energy conformations of five sulfon-

amides’ binding to the antigen presentation groove of MHC I

(Cw*4). These five sulfonamides are piroxicam, sulfasalazine,

tenoxicam, valdecoxib and tolbutamide. See Fig. 2C for the

molecular structures of these drugs.

Found at: doi:10.1371/journal.pcbi.1000441.s002 (0.44 MB

DOC)

Figure S3 Molecular structures of the 17 control drugs which do

not tend to interact with MHC I (Cw*4).

Found at: doi:10.1371/journal.pcbi.1000441.s003 (0.16 MB

DOC)

Table S1 Target set of the CPI.

Found at: doi:10.1371/journal.pcbi.1000441.s004 (0.03 MB

TXT)

Table S2 Mann-Whitney test of true positive bindings to the

unidentified bindings on their Z-scores.

Found at: doi:10.1371/journal.pcbi.1000441.s005 (0.03 MB

DOC)

Table S3 The interaction strength among case-control drugs

and HLA-Cw*4.

Found at: doi:10.1371/journal.pcbi.1000441.s006 (0.06 MB

DOC)

Table S4 T-test for equality of means on dock score and Z-score

of HLA-Cw*4-oriented interactions between case drugs and

control drugs.

Found at: doi:10.1371/journal.pcbi.1000441.s007 (0.04 MB

DOC)

Table S5 Drug molecules within each sub-CPIs after the

trimming procedure.

Found at: doi:10.1371/journal.pcbi.1000441.s008 (0.12 MB

DOC)

Table S6 Candidate proteins for the four SADRs.

Found at: doi:10.1371/journal.pcbi.1000441.s009 (0.35 MB

DOC)

Video S1 Binding model of abacavir-MHC I B*5703.

Found at: doi:10.1371/journal.pcbi.1000441.s010 (7.40 MB

MOV)

Video S2 Binding model of abacavir-MHC I B*5701.

Found at: doi:10.1371/journal.pcbi.1000441.s011 (7.43 MB

MOV)
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