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Vascular endothelial growth factor (VEGF) is the most studied family of soluble, secreted
mediators of endothelial cell migration, survival, and proliferation. VEGF exerts its function
by binding to specific tyrosine kinase receptors on the cell surface and transducing the
effect through downstream signaling. In order to study the influence of VEGF binding on
endothelial cell motion, we develop a hybrid model of VEGF-induced angiogenesis, based
on the theory of reinforced random walks.The model includes the chemotactic response of
endothelial cells to angiogenic factors bound to cell-surface receptors, rather than approxi-
mating this as a function of extracellular chemical concentrations.This allows us to capture
biologically observed phenomena such as activation and polarization of endothelial cells
in response to VEGF gradients across their lengths, as opposed to extracellular gradients
throughout the tissue.We also propose a novel and more biologically reasonable functional
form for the chemotactic sensitivity of endothelial cells, which is also governed by activated
cell-surface receptors. This model is able to predict the threshold level of VEGF required
to activate a cell to move in a directed fashion as well as an optimal VEGF concentration
for motion. Model validation is achieved by comparison of simulation results directly with
experimental data.
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1. INTRODUCTION
Motility – random, directed, and collective – is a fundamental
property of cells. Coordinated cellular motion leads to all physio-
logical tissue patterns, a consequence of integration across multi-
ple temporal and spatial scales. However, when this integration is
aberrant, the properties that emerge lead to a critical bifurcation
point in cancer progression: angiogenesis. Angiogenesis, the for-
mation of new blood vessels from pre-existing ones, provides the
necessary blood supply for the growth and nourishment of solid
tumors beyond a few millimeters in diameter (Hanahan and Wein-
berg, 2000; Augustin et al., 2009). Tumor angiogenesis is associated
with an extremely complex, yet well-ordered series of events at the
center of which is the enhanced replicative potential and motil-
ity of endothelial cells (ECs) that line the inner surface of blood
vessels (Folkman, 1985; Hanahan and Weinberg, 2000).

The multistep process associated with successful angiogenesis
can be summarized as EC degradation of the adjacent basement
membrane, migration (sprouting), proliferation, alignment, tube
formation, branching that increases near the tumor leading to a
brush-border, anastomosis (fusion of vessels), synthesis of new
basement membrane, recruitment of parenchymal cells, network
remodeling, and a return to quiescence (Folkman, 1985; Yan-
copoulos et al., 2000; Conway et al., 2001; Augustin et al., 2009).
Precise coordination and integration of molecular, cellular, and tis-
sue level interactions is required for angiogenesis to be successful
from initiation to stabilization of a functional vascular plexus.

Under conditions of hypoxia, tumor cells induce angiogenesis
by releasing a wide variety of polypeptide angiogenic factors that

stimulate EC activation, survival, proliferation, migration, and
maturation. Members of the vascular endothelial growth factor
(VEGF) family have been identified as the predominant amongst
these angiogenic factors that regulate EC phenotype (Yancopou-
los et al., 2000; Jain, 2002; Ferrara, 2004; Hicklin and Ellis, 2005).
VEGF has been implicated across a range of human cancer and
preclinical studies have shown that VEGF stimulates survival of
existing vessels, promotes new vessel growth, and contributes to
vascular abnormalities such as tortuousness and hyperperme-
ability. The angiogenic effects of the VEGF pathway are primar-
ily initiated through the interaction of VEGFA and its natural,
endothelial cell specific receptor, VEGFR2, which is up-regulated
during angiogenesis (Neufeld et al., 1999; McMahon, 2000; Con-
way et al., 2001). Dimerization and activation of VEGFR2 results
in mitogenic, chemotactic, and prosurvival signals (Nor et al.,
1999; Ferrara et al., 2003; Ferrara, 2004), which help to determine
endothelial cell phenotype.

The various steps of the angiogenic cascade require endothelial
cells to take on spatio-temporally varying phenotypes; that is, at
any given time and at any specific spatial location within a devel-
oping sprout, ECs can have a proliferative, migratory, or quiescent
phenotype. For example, tip cells are highly migratory and lead the
extending sprout through the extracellular matrix (ECM), whereas
stalk cells, which form the vessel lumen and recruit support cells,
can be either proliferative or quiescent. It has been shown that
endothelial cells compete for the tip cell position through relative
levels of VEGF-receptors (Jakobsson et al., 2010). While much is
known about the sequential morphogenetic processes required for
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angiogenesis and the growth factors that drive it, far less is known
about how cellular and molecular mechanisms are coordinated to
control cell motility decisions and phenotype choices. In order to
advance the understanding and manipulating of the processes that
occur during angiogenesis, it is critical to understand how indi-
vidual cells interpret the biochemical signals that come from their
unique microenvironment.

For decades, mathematical models have been employed to help
address some of the pressing questions associated with tumor
angiogenesis. As discussed in detail in Jackson and Zheng (2010),
Zheng et al. (2013), existing models of tumor-induced angio-
genesis can be characterized as continuous approaches (Balding
and McElwain, 1985; Byrne and Chaplain, 1995, 1996; Anderson
and Chaplain, 1998a,b; Holmes and Sleeman, 2000; Levine et al.,
2001; Arakelyan et al., 2002; Sleeman and Wallis, 2002; Manous-
saki, 2003; Plank and Sleeman, 2003, 2004; Plank et al., 2004;
Levine and Nilsen-Hamilton, 2006; Schugart et al., 2008; Billy
et al., 2009; Xue et al., 2009; Travasso et al., 2011), wherein cells
are assumed to have a continuous distribution; discrete or hybrid
models (Stokes and Lauffenburger, 1991; Anderson and Chap-
lain, 1998b; Tong and Yuan, 2001; Plank and Sleeman, 2003, 2004;
Sun et al., 2005; Bartha and Rieger, 2006; Gevertz and Torquato,
2006; Frieboes et al., 2007; Milde et al., 2008; Capasso and Morale,
2009; Owen et al., 2009; Perfahl et al., 2011), wherein cells are
modeled as individual agents and diffusible chemicals are mod-
eled as a continuum; and cell-based formulations (Peirce et al.,
2004; Bauer et al., 2007; Bentley et al., 2009; Qutub and Popel,
2009; Wcislo et al., 2009; Jackson and Zheng, 2010; Liu et al.,
2011) wherein explicit incorporation of different properties of
individual cells allows collective behavior of cell clusters to be
predicted from the behavior and interactions of individual cells.
Reviews of these models that appeared in or before 2009 can be
found in Mantzaris et al. (2004), Peirce (2008), Qutub et al. (2009).
However, these models suffer from the following limitations. Con-
tinuum descriptions of biological motion such as chemotaxis are
derived by averaging quantities such as cellular and vascular den-
sities, and therefore apply to the macroscopic behavior of a large
number of cells. However, the initial stages of new capillary devel-
opment requires only a small number of cells in a highly discrete
arrangement, which is better described by treating cells as indi-
vidual agents. Further, even when a hybrid or cell-based approach
has been adopted, endothelial cell movement, and/or microvessel
formation speed and direction is typically assumed to depend on
extracellular chemokine concentrations, whereas it is known that
cells integrate the chemical signal via receptors on their surfaces in
order to make behavioral decisions (Nor et al., 1999; Ferrara et al.,
2003; Ferrara, 2004).

In order to study the influence of VEGF binding on EC motion,
we develop here a hybrid model of VEGF-induced angiogenesis
that is based on the theory of reinforced random walks. We will
include in our model, the chemotactic response of endothelial
cells to angiogenic factors bound to cell-surface receptors, rather
than approximating this as a function of extracellular chemical
concentrations. This will allow us to capture biologically observed
phenomena such as the activation and polarization of endothelial
cells in response to VEGF gradients across their lengths. We will
also propose a novel and more biologically reasonable functional

form for the chemotactic sensitivity of cells, which is also governed
by activated cell-surface receptors.

In the sections that follow, we will first develop a model to
describe the motion of a single EC that has a tip cell phenotype.
The motion of an EC across a 1 mm2 domain will be simulated,and
average time taken by the cell to reach the tumor (VEGF source)
computed as a function of source strength. We will then extend
this model to study the early stages of blood vessel formation
and sprout extension. In particular, we will capture the follow-
ing growth pattern of developing sprouts, typically observed in
experiments. Sprouts arising from parent vessels are observed to
grow parallel to each other initially (Paweletz and Knierim, 1989),
with anastomoses between tip cells and stalk cells, or between
two tip cells observed to occur a certain distance into the stroma.
As the developing vessels near the source of chemoattractants,
new sprouts emerge in a process called sprout branching, which
increases with proximity to the source. This has been described
as a “brush-border” effect (Muthukkaruppan et al., 1982; Sholley
et al., 1984). We will also investigate the effect on vascular develop-
ment of the source strength of VEGF. Model validation will follow
from a qualitative comparison of simulations with experimental
data on neovascularization of the rat cornea taken from Sholley
et al. (1984).

2. MATERIALS AND METHODS
2.1. MODEL DEVELOPMENT: SINGLE CELL MOTION UNDER THE

INFLUENCE OF VEGF
A vital characteristic of all cells is their ability to sense their envi-
ronment and respond to it, such as motion toward or away from an
external, chemical stimulus. The response of endothelial cells to a
chemokine like VEGF involves the following two major steps that
a mathematical description of this process needs to account for: (i)
detection of the signal (via gradient of bound VEGF to cell-surface
receptors) and (ii) transduction of the external signal into an inter-
nal signal that controls the pattern of movement (Mantzaris et al.,
2004). The theory of reinforced random walks, where a master
equation governing cell movement is derived directly from the
governing biology, as opposed to discretizing a continuous equa-
tion of macroscopic motion, provides a natural framework for
modeling the movement of individual endothelial cells that initi-
ate vascular sprout development. We remark that for simplicity, the
effects of the extracellular matrix on EC motion are not explicitly
considered at this time so that the cell is assumed to migrate on a
homogeneous and isotropic medium. Further, on the time-scale of
interest, cell proliferation, and death are assumed to be negligible.

We begin our model development by first simulating a single
EC moving under the influence of VEGF. The EC is interpreted as
a (biased) random walker that adapts its motility decisions under
the influence of activated VEGF-receptors on its surface. We con-
sider a 2-dimensional spatial domain,with a tumor located at x = 1
serving as the source of VEGF, and a parent vessel located at x = 0
providing individual ECs to begin sprout development, as shown
in Figure 1A. The tumor secretes VEGF under the condition of
hypoxia, which diffuses toward the parent vessel. VEGF is taken up
by cells lining the parent vessel, transforming them into sprout tip
cells. These migrate up its chemical gradient, pulling behind them
the developing capillaries. The principal dynamics that we wish to
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FIGURE 1 | (A) Geometry of the model domain. A source of VEGF (e.g., a
tumor) is situated at x =1. VEGF diffuses toward a parent vessel located at
x =0, and is taken up by endothelial cells lining it. The activated cells
migrate up gradients of VEGF, elongating behind them capillaries. (B–D)
Motion of a cell on a 2-d lattice in response to VEGF stimulus. The cell

begins at position (n, m) in (B). VEGF molecules are shown in red. The
number of activated VEGF-receptors is greatest on the cell surface at
lattice site (n+1/ 2, m), and the probability of motion in this direction is the
greatest. Consequently, the cell is likely to move from site (n, m) to (n+ 2,
m), as shown in (C,D).

capture with the model are the binding and uptake of VEGF by the
sprout tip cells, the subsequent activation of cell-surface receptors,
and the chemotactic response of the cells to this stimulation. To our
knowledge, this level of molecular detail has not been implemented
previously in a model of tumor-induced angiogenesis.

The cell is located initially at spatial position x = 0, y = 0.5, and
will move in response to a local, cellular gradient of VEGF, which
has its source at x = 1. A schematic of this process is shown in
Figures 1B–D. Following Plank et al. (Plank and Sleeman, 2003;
Plank et al., 2003, 2004), we base our spatial discretization on
purely biological considerations. As per the approach developed
in Plank and Sleeman (2003), Plank et al. (2003), Plank et al.
(2004), Othmer and Stevens (1997), the following master equa-
tion is used to describe a biased random walk (in two dimensions)
of the endothelial cell, moving under the influence of VEGF in its
local environment:

∂pn,m

∂t
= T̂ H+

n−1,m (W ) pn−1,m + T̂ H−
n+1,m (W ) pn+1,m

+ T̂ V+
n,m−1 (W ) pn,m−1 + T̂ V−

n,m+1 (W ) pn,m+1

−

(
T̂ H+

n,m (W )+ T̂ H−
n,m (W )+ T̂ V+

n,m (W )

+T̂ V−
n,m (W )

)
pn,m .

(1)

Here, pn,m(t ) describes the probability that a cell is at site (n,

m), at time t. T̂ H±
n,m (·) , and T̂ V±

n,m (·) are the transition probabil-
ities per unit time for a one step horizontal jump to (n± 1, m),
or a one step vertical jump to (n, m± 1) respectively. The vector
W gives the concentration of the chemoattractant C, at the lattice
sites. In order for the master equation to translate to the standard
diffusion-chemotaxis equation for cell movement in the contin-
uum limit, it is assumed that the dependence of transition rates at
lattice site (n, m) is localized to chemoattractant concentration at
sites (n± 1/ 2, m) and (n, m± 1/ 2). This is reasonable, since we
may think of a cell present at lattice site (n, m), with its bound-
aries extending to half the lattice length. The cell can therefore
sense the chemical concentrations at these half-lattice sites, and
make a decision where to move, as illustrated in Figures 1B–D.
Under these assumptions,W = (. . .,C−n−1/2,m ,C−n,m ,C−n+1/2,m ,
C−n+1,m , . . .).

The mean waiting time at the (n, m)th site is given

by 1/
(
T̂ H+

n,m (W )+ T̂ H−
n,m (W )+ T̂ V+

n,m (W )+ T̂ V−
n,m (W )

)
. We

make the assumption that the decision of where to move in
space is independent of the decision when to move in time.
Mathematically, this is equivalent to setting

T̂ H+
n,m (W ) + T̂ H−

n,m (W )+ T̂ V+
n,m (W )+ T̂ V−

n,m (W ) = k. (2)
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That is to say, the cell makes a decision to move (or to stay
still) after a constant amount of time, k. One way to satisfy these
assumptions is the following choice of transition probabilities, as
made by Othmer and Stevens (1997)):

T H±
n,m =

1

k

τ
(
Cn±1/2,m

)
τ
(
Cn+1/2,m

)
+ τ

(
Cn−1/2,m

)
+τ

(
Cn,m+1/2

)
+ τ

(
Cn,m−1/2

) ,

T V±
n,m =

1

k

τ
(
Cn,m±1/2

)
τ
(
Cn+1/2,m

)
+ τ

(
Cn−1/2,m

)
+τ

(
Cn,m+1/2

)
+ τ

(
Cn,m−1/2

) ,

(3)

for some function τ (C) of the chemoattractant. The choice of the
functional form for τ (C) is based on the particular form of the
chemotactic sensitivity desired, and is explained in the following
section. A grid of mesh size h is chosen, thereby fixing x = nh.
Passing to the continuum limit h→ 0 and 1/4k→∞ such that
h2/4k=Dp, where Dp is the diffusion coefficient of ECs, Othmer
and Stevens (1997) show that the master equation (1) translates to
the familiar diffusion-chemotaxis equation (4), for cell motion.

∂p

∂t
= Dp1p −∇ ·

(
pχ (C) ∇C

)
, (4)

where the chemotactic sensitivity χ(C)=Dp(ln τ (C))’. To get a
completely discretized model of the motion of the cell, the time
derivative of p in equation (1) is approximated by a simple forward
difference scheme, with k as the time step, given by

k =
h2

4Dp
. (5)

A diagrammatic representation of the motion of the cell is
shown in Figure 1. The cell starts out at time t at the lattice site
(n, m) (Figure 1B). Endothelial cells are large enough to detect
gradients of chemoattractants across their length, which is typi-
cally 20µm (Vadapalli et al., 2000). In contrast to existing models
of cellular chemotaxis, in which cells typically respond to free,
extracellular chemokine concentrations, or their gradients in the
surrounding tissue, the model developed here will capture the
response of ECs to VEGF that is bound to cell-surface receptors.
VEGF-VEGFR2 binding is known to be the signal that initi-
ates endothelial motility, therefore incorporating this molecular
response is important for a realistic description of cell motion.

The cell detects bio-available VEGF by taking it up at the half-
lattice sites (Figure 1B). The model will thus make the crucial
distinction between VEGF that is free to bind to the cell, versus
VEGF that might be sequestered in the underlying extracellular
matrix, unavailable to the cell. Based on the numbers of activated
receptors at its four sides, the cell becomes polarized and attains a
bias in a particular direction. It correspondingly elongates in this
direction (Figure 1C). Finally, the rear of the cell detaches from
the underlying matrix and contracts, and the cell has now moved
to the site (n+ 1, m) (Figure 1D). We remark that it has been
observed experimentally that ECs may respond to chemoattrac-
tant concentration differences of as small as 2% across their length,

frequently at concentrations at which molecular fluctuations are
significant (Mantzaris et al., 2004). In our model, fluctuations of
the order of 100 molecules of VEGF per cell are significant enough
to alter its polarization, and hence its direction of motion.

2.2. A NOVEL CHEMOTACTIC SENSITIVITY FUNCTION
An important difference that sets this model apart from those
preceding it, is the choice of the chemotactic sensitivity function
χ(C). Various choices have been proposed thus far in the modeling
literature for χ(C), for a review of the most commonly used func-
tional forms (see Ford and Lauffenburger, 1991). The simplest
choice is to assume that the chemotactic sensitivity is constant,
χ(C)=χ0 (Keller and Segel, 1971a,b). However, this implies that
the chemotactic sensitivity is unchanging in the presence of the
chemoattractant, and does not account for the desensitization of
cells which has been experimentally observed to occur in regions
of high chemokine concentrations (Kuppuswamy and Pike, 1989;
Wang et al., 2000; Kurt et al., 2001). To overcome this, Lapidus and
Schiller (1976), and later Murray (2003) used the functional form
χ(C)=χ0/(K +C)2, also known as the receptor-kinetic law. This
has the advantage that it is able to account for the desensitization of
receptors when c is large. Yet another popular phenomenological
choice isχ(C)=χ0/(K +C), where K is the dissociation constant
of the chemokine binding to the receptors (Balding and McElwain,
1985; Anderson and Chaplain, 1998b; Plank et al., 2003).

Although the choices mentioned above have been widely used
in the angiogenesis literature, there are a few biological issues that
these choices do not address. Firstly, they indicate that when no
chemokine is present at a site, the chemotactic sensitivity is the
greatest, and that the sensitivity decreases as chemokine concen-
trations increase. However, there is experimental evidence which
points toward the existence of a minimum threshold level of chem-
ical stimulus required for the cell-surface receptors to become
activated, and for the cell to start moving in a directed fashion
(Favier et al., 2006; Liu et al., 2006). This threshold has been incor-
porated in the cell-based model of tumor angiogenesis by Bauer
et al. (2007). Secondly, the above functions do not account for the
fact that the amount of chemokine required to desensitize cells
depends on the concentration of cells present at the lattice site.
For instance, while 10 fg of VEGF is enough to desensitize a single
EC, it is not enough for 10 cells. Finally, for an external chem-
ical signal to elicit a chemotactic response from a cell, it needs
to be detected by the cell, and transduced into an internal signal
controlling cell motion. Neutrophils have been shown to sense
chemical gradients of 1% across their lengths, under optimal con-
ditions (Wang et al., 2004; Levine et al., 2006), while this number
can be as low as 0.1% for axons (Wang et al., 2004). In general,
eukaryotic cells are reported to be able to polarize and migrate in
a directed fashion in alignment with chemical gradients of about
2% across their lengths (Franz et al., 2002). It is therefore biolog-
ically more reasonable to assume that the chemotactic response
of cells is dependent on the gradients of activated receptor com-
plexes formed on the cell surface when the chemokine binds to its
receptors, rather than gradients of free chemokine concentration
throughout the tissue.

To address these concerns, we propose that the chemotactic
sensitivity function should in fact be a function of the activated
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receptor concentration, A. In this case, equation (4) for the motion
of a cell in 2 dimensions transforms to the following:

∂p

∂t
= Dp1p −∇ ·

(
χ (A) p∇A

)
. (6)

Correspondingly, the transition probabilities in equation (1)
will now be functions of concentration of activated receptor
complexes on the cell surface a and not extracellular VEGF. That is,

T H±
n,m =

1

k

τ(An±1/2,m)

τ (An+1/2,m)+ τ(An−1/2,m)

+τ(An,m+1/2)+ τ(An,m−1/2)

,

T V±
n,m =

1

k

τ(An,m±1/2)

τ (An+1/2,m)+ τ(An−1/2,m)

+τ(An,m+1/2)+ τ(An,m−1/2)

.

(7)

We have to add equations for the binding of chemokine to their
cell-surface receptors, which will need to be solved wherever a cell
is present (see Section 2.3). Biologically, the chemotactic sensitiv-
ity χ(A)5A can be interpreted by breaking it down as follows: a
velocity χ(A) imparted to the cell due to the presence of bound
chemokine on its surface, and a gradient 5A which governs the
direction of motion. This gradient simply means that the cell is
able to sense the amount of chemokine bound to its various faces,
and is correspondingly able to align itself for motion in this direc-
tion. Therefore, a is in fact taken to be the amount of activated
receptors per cell face. We choose a velocity function that satisfies
the requirements that there can be no chemotaxis in the absence
of a signal, and that the cell gets desensitized in the presence of
excess signal. One such functional form is:

χ (A) = χ0 Ae−A/K . (8)

The maximum of this function occurs at A=K, while its max-
imum value is given by χ0Ke−1. In order for this choice to be
consistent with the discrete formulation, the function τ (A), from
equation (3) must be taken as follows;

τ (A) = exp

[
χ0 K

Dp

(
K − (K + A) e−A/K )] . (9)

The parameters χ0 and K are unknown in our model for-
mulation, and would ideally be determined from experimental
observations. K specifies the fractional occupancy of the receptors
on the cell surface at which its chemotactic response is the greatest,
while χ0 determines the maximum value of this response. Here,
values of these parameters are chosen to produce biologically real-
istic simulation results. Figure 2B plots the chemotactic sensitivity
equations (8) as a function of the fraction of activated receptors on
a cell face, for a particular choice of K and χ0. We can see that at
zero fractional activation, the cell remains inactive. The sensitivity
peaks at 5% fractional activation of receptors, and decays there-
after. Also shown for comparison are the receptor-kinetic law, and
constant chemotactic sensitivity.

2.3. VEGF-VEGFR2 BINDING DYNAMICS
We now describe the equations governing the rates of change of
the concentrations of free VEGF (C), free VEGFR2 (R), VEGF-
VERFR2 monomers (M ), and activated VEGF-VEGFR2 dimer
complexes (A). Beginning with free VEGF, we assume that the
processes of diffusion and natural decay dominate the dynamics,
which are represented by the reaction-diffusion equation:

∂C

∂t
= Dc1C − αc C − f

(
p
)

C . (10)

Here, Dc is the diffusion coefficient of VEGF, and αc is its rate
of decay in tissue. The uptake of VEGF by the migrating EC has
also been accounted for via the term f(p)C, which is derived in
the following discussion. As in Anderson and Chaplain (1998b), a
line source of tumor cells is assumed at x = 1 that produces VEGF
at a constant rate, so that C(1, y, t )=C0. At each of the remain-
ing domain boundaries x = 0 and y = 0, 1, a no-flux condition is
imposed on free VEGF. Figure 2A shows the distribution of VEGF,
expressed in non-dimensional terms, as determined by equation
(10) across the domain.

At each half-lattice site surrounding a site occupied by an EC,
free extracellular VEGF (C) binds to free cell-surface receptors,
VEGFR2 (R), to form activated dimerized receptor complexes (A).
Following Jain et al. (2008), we assume ligand-induced dimeriza-
tion to be the dominant mechanism by which VEGF activates
VEGFR2, as represented by the following chemical reactions:

C + R
kf 1


kr1

M

M + R
kf 2


kr2

A

A
kp
→ 2R

the rates of forward reactions are indicated above the reaction
arrows, while those of reverse reactions are indicated below the
reaction arrow.

This reaction diagram can be converted to the following system
of differential equations using principles of mass balance:

dC

dt
= −2η1 kf 1 C R + η2 kr1 M , (11)

dR

dt
= −2kf 1 C R + η3 kr1 M − kf 2 M R + 2η4 kr2 A + 2η4 kp A,

(12)

dM

dt
= 2η5 kf 1 C R + kr1 M − η5 kf 2 M R + 2η6 kr2 A, (13)

dA

dt
= η7 kf 2 M R − 2kr2 A − kp A. (14)

The multiplicative factor 2 in some of the equations accounts
for the possibility that there may be two ways for that product
to form. The constants ηi represent the ratios of weights of dif-
ferent molecules and have been introduced to express chemical
concentrations in units of pg/mm3. The values of these constants
are given in Table 1 and have been estimated from Ferrara et al.
(2003), Stewart et al. (2003).
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FIGURE 2 | (A) Typical profile of unbound VEGF, the source of which is
located at x =1. (B) Various choices for the chemotactic sensitivity of an
endothelial cell to VEGF bound to its surface receptors, as a function of the
fraction of activated VEGFR2 per cell face. (C–F) Average migration times
(in hours) for a single cell to travel across a 1 mm×1 mm domain as a
function of increasing the maximum free VEGF concentration at a lattice
site, for various choices of the chemotactic sensitivity function. Cells are

assumed to respond to activated VEGFR2 on their surfaces, with
chemotactic sensitivity taken as: (C) as proposed in equation (8); (D) cells
are assumed to respond to free VEGF with chemotactic sensitivity as
defined in equation (8) with activated receptor concentration A replaced by
free VEGF concentration C ; (E) receptor-kinetic law, for which
τ (A)=eχ0A/ (KDp(K+A)), χ 0 =0.4416 (pg/mm3) mm2/h, K =2 pg/mm3; and (F)
constant, χ 0 =0.0046 mm2/(pg/mm3)/h.

Since EC migration and sprout elongation occurs on a time-
scale of several hours to days, and the biochemical reactions
equations (11–14) occur on a time-scale of several scones to min-
utes, we assume that the VEGF-receptor complex concentrations
M and A are at quasi steady state. This is equivalent to setting
the left hand sides of equations (13) and (14) to zero, and solving
for M and A. Further, by conservation of total receptor number,
we have R+ η3M + 2η4A=RfN, where Rf is the total number of
receptors per EC face and N is the number of ECs (N = 1 in the
case of single cell migration, and N = the total number of tip cells
in the case of capillary formation). We therefore deduce that at
quasi steady state,

A =

−2αδ − γ + θ β

+

√
(2αδ + γ − θ β)2 + 4αβ(η4 + δ)(θ − α)

2β(η4 + δ)
, (15)

where,

α =
kr1 Rf

2kf 1 C + kr1
, β =

η4
(
kp − 2kr1

)
2kf 1 C + kr1

,

γ =
2kr2 + kp

η5η7 kf 2
δ = η4 + β, θ = Rf N . (16)

In all that follows, equation (15) will be used to estimate the
concentration of activated VEGF-VEGFR2 dimers in the domain.
Adding equations (12) and (14) and substituting in equation (11)
gives the following equation for the uptake of VEGF by ECs:

dC

dt
= −η0 kp A. (17)

Therefore, in equation (10) the cellular uptake function
f(p)C =−η0kpAI (p), where I (p) is an indicator function that has
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Table 1 | Parameter values relating to the molecular weights of VEGF

and VEGFR2.

Parameter Value Units

η0 0.1101 pg VEGF per pg VEGFR2-VEGF-VEGFR2

η1 0.2250 pg VEGF per pg VEGFR2

η2 0.1837 pg VEGF per pg VEGFR2-VEGF

η3 0.8163 pg VEGFR2 per pg VEGFR2-VEGF

η4 0.4494 pg VEGFR2 per pg VEGFR2-VEGF-VEGFR2

η5 1.2250 pg VEGFR2-VEGF per pg VEGFR2

η6 0.5506 pg VEGFR2-VEGF per pg VEGFR2-VEGF-VEGFR2

η7 2.2250 pg VEGFR2-VEGF-VEGFR2 per pg VEGFR2

a value of 1 at half-lattice sites where EC boundaries are present
and is zero otherwise. Observing that η0kp�αC (see parame-
ter values in Table 2), we make a final simplifying assumption that
due to the constant production and rapid diffusion of extracellular
VEGF, cellular uptake will not significantly effect its concentration,
that is, f(p)C is neglected. Thus, the equation governing free VEGF
dynamics is taken to be

∂C

∂t
= Dc1C − αc C . (18)

2.3.1. Summary of model equations
The principle variables in our model are: p(n, m, t ), the proba-
bility that a cell occupies lattice site (n, m) at time t ; C(x, y, t ),
the concentration of free VEGF at position (x, y) and at time t
in pg per lattice site volume, where each lattice site has a height
of 1 mm and a base equal to the surface area of a cell; R(i, j, t ),
the concentration of free VEGFR2 at half-lattice sites (i, j) and at
time t in pg per lattice site volume; M (i, j, t ), the concentration of
VEGF-VEGFR2 monomers at half-lattice sites (i, j) and at time t
in pg per lattice site volume; and A(i, j, t ), the concentration of free
activated VEGFR2-VEGF-VEGFR2 dimers at half-lattice sites (i, j)
and at time t in pg per lattice site volume. We remark that R, M,
and A can only take positive values at neighboring half-lattice sites
where a cell is present, and are 0 otherwise. Equations (1), (7), and
(9) that describe the biased random walk of a cell under the influ-
ence of activated VEGF-receptors have already been discussed. The
following conditions are imposed on the transition probabilities
for cell motion as described by equation (1) to ensure that no cell
exits the domain:

T H−
1,m (·) = T H+

Ns+1,m (·) = T V−
n,1 (·) = T V+

n,Ns+1 (·) = 0. (19)

Here, Ns= 1/h, h being the lattice size so that 1≤ n, m≤Ns+ 1.

2.4. PARAMETER ESTIMATION
A list of parameter values and sources is given in Table 2. The ran-
dom motility coefficient of endothelial cells has been estimated
to lie within the range 7.2× 10−4–7.2× 10−3 mm2/h (Ander-
son and Chaplain, 1998b). Consequently, intermediate value of
1.44× 10−4 mm2/h is assumed. The rates kr1 and kf1 are chosen to
ensure that the equilibrium disassociation constant kD= kr1/kf1

has a value of 30.375 pg/mm3 (Wang et al., 2002). VEGF bind-
ing is known to induce receptor aggregation; therefore, as in Jain
et al. (2008) we assume that the rate of formation of a dimerized
VEGF-VEGFR2 complex is greater than the rate of formation of
a monomer VEGF-VEGFR2 (that is, kf2 ( kf1). Further, because
the dimerized complex A is the signaling form of VEGFR2, it is
reasonable to assume that A is more stable than the monomer
complex M, that is, kr2= kr1. The size h of the lattice on which
the cell moves is taken to be 20µm, since typical microvascular
endothelial cell volume is about 400µm (Vadapalli et al., 2000),
while its thickness is about 1µm (Levine et al., 2002). Finally, the
parameters χ0 and K relating to chemotactic sensitivity are cho-
sen to reproduce cell motion and capillary formation profiles that
are biologically realistic.

2.5. METHOD OF SIMULATION
The time interval over which the movement of the cell is simu-
lated, is divided into subintervals of length k, given by the mean
waiting time of the cell at any lattice site. The cell moves on a lattice
of step-size h. Activated VEGFR2 concentrations are calculated at
half-lattice sites, neighboring a site where the cell is currently sit-
uated. The method of simulation of cell movement is based on
that described in Plank et al. (2003). Briefly, at each time step, the
movement of the cell is simulated according to the master equa-
tion (1), with the probabilities of moving up, down, left, and right
calculated according to equation (3). Equation (9) quantifies the
dependence of the transition probabilities on the levels of acti-
vated VEGFR2 on each cell face as given by equation (15). The full
interval [0, 1] is divided into five subintervals, each of length pro-
portional to the probabilities of moving or staying still. A random
number q lying within this interval is generated, and depending on
the sub-interval in which it lies, the cell either executes a motion
in the corresponding direction or stays stationary. Thus, the cell
moves left if q ∈ [0,T H−

n,m ), moves right if q ∈ [,T H−
n,m + T H+

n,m ),
and so on.

The results of the single cell motion model are discussed in
Section 3.1.

2.6. ADAPTATION OF SINGLE CELL MOTION MODEL TO SIMULATE
CAPILLARY FORMATION

To simulate capillary formation in response to a VEGF stimulus
from a tumor source, we modify the single cell motion model
described above as follows. As mentioned earlier, we motivate our
model of capillary formation by the experiments of Sholley et al.
(1984) wherein inflammatory neovascularization of the rat cornea
was induced by cauterization using silver nitrate and levels of EC
proliferation and degree of vascular profusion measured periodi-
cally. From these experiments, the average rate of sprout extension
into the cornea is estimated to be 0.26 mm/day or 0.78 mm in
3 days. In our model, we do not account for vessel maturation; a
process that typically occurs after 3 days of vessel formation. Con-
sequently, we simulate vessel growth for lengths ≤0.78 mm. With
this constraint, a parent vessel, from which sprout tips will migrate
toward the tumor, is assumed at x = 0.22 mm. As in the single cell
model, a line of tumor cells is assumed at x = 1, providing a con-
stant source of VEGF. For ease of computations, the domain size
is reduced to 0.5 mm in the y-direction, and initially 4 sprouts are
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Table 2 | List of parameter values for single cell motion.

Parameter Value Units Reference

Dp 1.44×10−4 mm2/h See text

Dc 3.60×10−1 mm2/h Mac Gabhann and Popel (2005)

αc 0.65 Per hour Serini et al. (2003)

kf1 1.69 Per (pg VEGF/mm3)/h Wang et al. (2002)

kr1 0.02 Per hour Wang et al. (2002)

kf2 kf1×100 Per (pg VEGF-VEGFR2/mm3)/h See text

kr2 kr1/ 100 Per hour See text

kp 0.6667 Per hour Wang et al. (2002)

Rf 0.02 pg receptors per cell face Stewart et al. (2003), Mac Gabhann and Popel (2004)

h 0.02 mm Vadapalli et al. (2000), Levine et al. (2002)

k 0.07 Hours See equation (5)

χ0 0.05 mm2 per hour per (pg/mm3)−1 See text

K 2.00 pg/mm3 See text

assumed to have formed along the parent vessel at y = 0.1, 0.2, 0.3,
and 0.4 mm.

It is known that specialized ECs situated at the tips of the
sprouts, called tip cells, are activated by, and respond to VEGF,
by chemotactic migration (Hangai et al., 2002; Gerhardt et al.,
2003). We therefore keep track of these leading cells in our simu-
lations. As a tip cells moves, it pulls behind it a developing vessel.
Hence, receptors on its tail are made unavailable for binding VEGF
at any given time. This eliminates the possibility for the tip cell to
back-track. By keeping track of all the lattice sites a tip cell visits,
we know the location of the newly formed vessel behind it.

The processes of branch formation and anastomoses forma-
tion of loops by capillary sprouts are also included explicitly in
our model. At each time step, as the tip cells migrate under the
influence of VEGF, probabilities of motion to adjacent lattice sites
are calculated. Anastomoses between the tip cell and a sprout may
occur if a sprout is present at a site which the tip cell wants to move
to. We assume that the probability of tip cell loss as a result of such
an event is 1%. Likewise, as in Anderson and Chaplain (1998b), it
is assumed that if another tip cell is encountered at a site, only one
of these cells continues to grow (with a probability 99%), while
the rest of the time, a loop is created with the loss of both cells.

Sholley et al. (1984) have demonstrated that sprout extension
cannot occur in the absence of mitosis. While we do not explicitly
model cell division, the dependence of capillary extension on it is
accounted for in the processes of capillary elongation and branch
formation as follows. The proliferation of cells is known to be
regulated by total concentration of activated cell-surface receptors
(Gerhardt et al., 2003). Thus, in our model, the tip cell integrates
the totalVEGF bound to it and sprout extension via tip cell motion,
and branch formation is only possible if there are enough acti-
vated VEGFR2 on its surface. The effect of proliferation on tip cell
motion is simulated by introducing a scaling factor of Pm(At) that
multiplies the movement probabilities of each cell, where At is the
total concentration of activated VEGFR2 on the cell. Pm is assumed
to be a positive, increasing, and saturating function of At, with a
saturating value of 1. Thus, for small values of At, the probability of
capillary extension will be ∼ 0 due to an insufficient proliferation

stimulus. Here, we take Pm(At)= 1/ (1+µme−At ) which is plotted
as a function of the fraction of total activated VEGFR2 per tip cell
in Figure 5D.

We further assume that the generation of new sprouts occurs
only from existing sprout tips. This is in keeping with the fact
that there is a region of proliferating cells just behind the tip cell
(Sholley et al., 1984), which could give rise to new branches. As
in the case for Pm, the branching probability Pb is also taken to
be an increasing and saturating function of At. This will result in
the creation of the brush-border effect. Similar rules for branching
have been applied previously by Anderson and Chaplain (1998b).
Here, we take Pb(At)= 1/ (µb1+ e−µb2(At −A0)) which is plotted
as a function of the fraction of total activated VEGFR2 per tip cell
in Figure 5D.

2.6.1. Parameter estimation for capillary formation model
A list of parameter values that are different or new in the capillary
formation model is given in Table 3. For consistency with the sin-
gle cell model, we keep the time step-size k unchanged at 0.07 h.
Further, the diffusion rate of a tip cell, say Dt, has been estimated
to be much smaller than the diffusion rate Dp of an individual EC
(Anderson and Chaplain, 1998b; Levine et al., 2001). Therefore, the
lattice size h for the capillary model needs to be altered accordingly.
Equation (5) is used to estimate h =

√
4kDt ≈ 0.001mm. Finally,

the parameters µm, µb1, µb2, and A0 relating to the movement
probability and branching probability are chosen to reproduce
capillary formation profiles that are biologically realistic.

2.6.2. Simulation methodology for capillary formation model
The simulation methodology is similar to that of single cell motion
described in section 2.5, with the additional computation of
accounting for branching and anastomoses for each tip cell, and at
each time step. Briefly, in addition to generating a random number
q, which is used to determine the direction of tip cell motion, two
further random numbers are generated (qa and qb) by uniformly
sampling the interval [0, 1]. We use qa to determine whether or
not anastomoses occurs, and qb is used to determine whether a
new branch forms, in accordance with the rules described above.
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Table 3 | List of parameter values for capillary formation.

Parameter Value Units Reference

Dt 3.60×

10−6

mm2/h (Levine

et al., 2001)

h 0.001 mm See text

k 0.07 Hours See text

µm 300 Dimensionless See text

µb1 30 Dimensionless See text

µb2 0.25 per pg VEGFR2-VEGF-VEGFR2/mm3 See text

A0 40 pg VEGFR2-VEGF-VEGFR2/mm3 See text

The results of the capillary formation simulation are discussed
in Section 3.2.

3. RESULTS
3.1. SINGLE CELL MOTION
Simulations of the system governing a single endothelial cell
migrating up a gradient of VEGF, as described by equations (1),
(7), (9), and (15), were run in two dimensions, with unbound
VEGF profile described by equation (18). The average time in
hours it takes for the cell to travel across the domain is plotted
in Figures 2C–F, as a function of C0, the maximum free VEGF
concentration at a lattice site, for various possible choices of the
chemotactic sensitivity function χ(·). Standard deviations and
average times are computed over 500 runs of the model.

Figures 2C,E,F depict the cases when χ(·) is assumed to be a
function of activated VEGFR2 on the cell surface. When χ(·) is as
defined in equation (8), the model captures the existence of a min-
imum level of VEGF stimulus required for directed cell motion,
as well as desensitization of VEGFR2 at high VEGF concentra-
tions (see Figure 2C). As C0 increases from 0.002 pg/mm3, the
average EC migration time is observed to first decrease and then
increase, attaining a minimum of 8.23 h at C0= 0.015 pg/mm3.
A typical cellular trajectory is plotted in Figure 3C for this opti-
mal value of C0, and the corresponding movement probabilities
at any lattice site are plotted in Figure 3D. Note that since the
VEGF profile is invariant along the y-direction, the movement
probabilities are also invariant along this axis – they only vary as
x varies. The probabilities show a large bias toward stepping to
the right, while steps to the left are very unlikely to occur. This is
because: (i) the chemokine gradient across the cell length has an
average value of 1.32%, over the entire domain, which lies within
the reported value of 1–2% at which eukaryotic cells become polar-
ized; and (ii) the fraction of activated receptors on any cell face is
sufficiently large, with an average value of 9%, over the entire
domain.

As C0 is decreased below 0.015, the average migration
time is predicted to increase exponentially. For instance, when
C0= 0.002 pg/mm3, the average migration time is predicted to
be 37.46 h, and the cell exhibits a high degree of randomness in
its motion, as evident from a typical cellular trajectory shown in
Figure 3A. The corresponding movement probabilities at any lat-
tice site plotted in Figure 3B show that a definite bias is apparent
for motion to the right only close to x = 1. This is because the
fraction of activated VEGFR2 on any cell face is very low, with a

maximum of < 2%, even though the chemokine gradient across
the cell length has an average value of 1.46%. Thus, the model is
able to account for the fact that if chemokine concentrations are
too low, cell-surface receptors do not achieve a sufficient degree of
activation.

As C0 is increased beyond its optimal value of 0.015–
0.08 pg/mm3, the model replicates the desensitization effect which
has been observed to occur when receptors are over-exposed to
chemokines. It now takes the cell an average of 35.77 h to migrate
across the domain. From Figure 3E, we observe that typical cell tra-
jectories exhibit a large degree of random motion. Now, activated
receptor gradients across the cell have an average value of only
1%. Further, the fraction of activated receptors that vary between
18 and 34% across the domain so that the negative exponential in
equation (8) dominates resulting in a very slight bias of movement
to the right (see Figure 3F).

For comparison, we also consider the cases where
χ(A)=χ0/(K +A)2 or the receptor-kinetic law and when
χ(A)= constant=χ0. As can be seen from Figure 2E, while the
receptor-kinetic law captures the desensitization of VEGFR2 at
high concentrations of VEGF, the cell still displays a high degree
of directed motion for very low values of C0. For instance, when
C0= 0.002 pg/mm3 the average migration time is as low as 16.08 h
as compared to 37.46 h in the earlier case. In contrast, the exis-
tence of a minimum activation threshold for VEGF is predicted
by assuming χ(A)=χ0, as evident from Figure 2F. However, this
model is unable to capture receptor desensitization at high val-
ues of C0, and in fact, the average migration time is predicted to
decrease monotonically with C0.

Finally, for illustration purposes, we also consider the case when
χ(·) has the same qualitative properties as in equation (8), but the
cell now responds to free VEGF rather than activated VEGFR2,
that is, χ(C)=χ0Ce

−C/K (see Figure 2D). While the graph is
qualitatively similar to Figure 2C, the fastest migration of the EC
across the domain is occurs at C0= 7.5 pg/mm3. This is biologi-
cally implausible since for such high receptor activation levels, the
fraction of activated VEGFR2 on any cell face > 0.97 throughout
the domain, and the cell should be completely desensitized to the
chemical gradient around it.

3.1.1. Effect of receptor expression level on cell migration
An important parameter in our simulations of EC migration is
RT, the expression level of VEGFR2 per cell. This is known to
be highly variable across cell lines, and it is even possible to find
different values for RT for the same cell line. We therefore con-
duct a sensitivity analysis on the migration times of an EC across
the domain as RT is varied, the results of which are graphed in
Figure 4. For the baseline simulations discussed earlier, a value of
RT= 230,000 receptors per cell or 0.08 pg/cell (Stewart et al., 2003;
Mac Gabhann and Popel, 2004) was used (see Figures 2 and 3). We
now simulate the effect on cell migration of increasing RT from
a minimum of 46,000 to a maximum of 1,115,000 receptors per
cell for various values of C0, the maximum free VEGF concen-
tration at a lattice site. For each of the cases when RT= 115,000
(Figure 4B), RT= 230,000 (Figure 2C), RT= 460,000 (Figure 4C),
and RT= 1,150,000 (Figure 4D), the average migration time of
the EC is predicted to first decrease and then increase, as C0
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FIGURE 3 | (A,C,E) Typical trajectories of a cell migrating across a
2-dimensional domain under the influence of VEGF. Here, A represents the
concentration of activated VEGFR2 per cell face and Amax represents the
maximum value A can take so that A/Amax is the fraction of activated VEGFR2

per cell face expressed here as a percentage, and <Agrad> represents the
gradient of A across a cell length, averaged over the entire domain. (B,D,F)
Corresponding movement probabilities for various values of maximum VEGF
concentration.

is increases. Thus, for a large range of values of RT, the model
captures the existence of an activation threshold of VEGFR2, and
their desensitization when exposed to high VEGF concentrations.
However, when RT is very low (46,000/cell, Figure 4A), receptor
desensitization is not predicted. This is possibly due to a high value
of the parameter K, which is held fixed in all our simulations. As
can be seen from equation (8), K determines the concentration of
activated VEGFR2 per cell face at which the chemotactic sensitivity
χ(A) is maximum.

Next, as can be seen from a plot of fastest migration times
versus receptor expression in Figure 4E, the EC migrates more
rapidly across the domain as RT increases. The fastest migration
time is predicted to be 8.25 h, for RT≥ 460,000/cell. Interestingly,
the maximum free VEGF concentration at which EC migration
is fastest decreases with increasing RT (Figure 4F). Thus recep-
tor over-expression is predicted to lower the activation threshold

for ECs, possibly because gradients of activated VEGFR2 become
more pronounced across the cell.

3.2. CAPILLARY FORMATION
Simulations of the system governing capillary network formation
under the influence of VEGF, described in section 2.6, were run in
two dimensions. Averages and standard deviations of all observed
quantities were calculated from 100 runs of the model.

The first case considered is when the sprout tips move across
the domain in the least amount of time. This occurs when the
maximum concentration of unbound VEGF C0= 0.015 pg/mm3,
as deduced from the single cell simulations. The results from a typ-
ical simulation are shown in Figure 5A. We begin with 4 initially
formed sprout tips at x = 0.22 mm. As the tip cells migrate across
the domain, they lay down behind them capillary sprouts. As the
vascular network penetrates deeper into the stroma, branching is
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FIGURE 4 | (A–D) Average migration times (in hours) for a single cell to
travel across a 1 mm×1 mm domain as a function of increasing the
maximum free VEGF concentration at a lattice site, for different values of
RT, the total number of VEGFR2 per cell. Baseline simulations correspond
to RT =230,000/cell, and are shown in Figure 2C. (E) Minimum migration

time for a single cell to cross the domain as a function of increasing RT,
solid triangle corresponds to baseline simulations. (F) The maximum free
VEGF concentration at a lattice site (C0) at which cell migration is fastest,
as a function of increasing RT, solid triangle corresponds to baseline
simulations.

observed to occur leading to the brush-border effect. The model
predicts that it takes on average 1170± 27 steps or 3.38± 0.08 days
for the vasculature to reach the tumor source at x = 1 mm. Our
model is validated by the experiments in Sholley et al. (1984) where
the vascular sprouts traveled the same distance in 3 days. Further
validation follows by observing that the vascular networks gener-
ated by our model are qualitatively similar to those observed by
Sholley et al. (1984).

Next, the effects of low (0.005 pg/mm3) and high
(0.030 pg/mm3) maximum VEGF concentrations on vascular for-
mation are investigated. As remarked earlier, we do not model
vessel maturation, which is typically observed after ∼3 days of
vessel formation. Model simulations are run for a maximum of
1170 time steps and the average degree of vascular penetration
into the stroma, along with the fraction of sprouts that remain

viable (that is, have at least one active tip cell) at the end of this
time is computed. When C0= 0.005 pg/mm3, the average lengths
of sprouts formed is predicted to be 0.2± 0.1 mm, with only 40%
of the initial sprouts still viable after 1170 time steps. Sprouts
that remain viable after 1170 time steps extend a greater distance
(0.4± 0.03 mm) into the stroma. However, these display virtually
no branching, with the average number of branches per sprout
only 1.1± 0.4. Figure 5B shows the results of a typical simulation.
As can be seen, there has been no branching and all but the first
sprout have anastomosed with themselves to form closed loops.
This is due to an insufficient bias to move forwards, coupled with
a low value of the scaling factor Pm (see section 2.6).

Finally, when C0= 0.030 pg/mm3, the average lengths of
sprouts formed after 1170 time steps is predicted to be
0.6± 0.1 mm. As can be seen from a typical simulation shown
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FIGURE 5 | (A–C) Typical vascular networks formed by 4 initial sprouts located
along x = 0.22 at positions y =0.1, 0.2, 0.3, 0.4; x being plotted along the
abscissa and y along the ordinate – migrating across a 2-dimensional domain
under the influence of VEGF for various values of C0, the maximum VEGF
concentration per lattice site. (A) Optimal VEGF concentration,
C0 =0.015 pg/lattice volume. The bias of movement is overwhelmingly in the
forward direction. Branching and anastomoses are observed to occur as the
vasculature penetrates deeper into the stroma. The resulting networks are
qualitatively similar to those observed experimentally in Sholley et al. (1984).
(B) C0 =0.005 pg/lattice volume. The amount of VEGF is too low to induce

proliferation or polarization of the tip cell, leading to a poorly developed and
stunted vasculature that does not reach the VEGF source within the time
frame of simulations (3 days). (C) C0 =0.030 pg/lattice volume. Due to a high
VEGF concentration, over-stimulation of endothelial cells occurs, and
extensive branching, anastomoses and lateral movement of the tip cell is
observed. Due to excessive lateral movement, the vasculature that does not
reach the VEGF source within the time frame of simulations (3 days). (D)
Assumed branching probability Pb of the migrating tip cell (black curve), and
assumed extension probability Pm of the capillary (blue curve), expressed as
functions of total fraction of activated VEGFR2 per cell.

in Figure 5C, extensive branching and anastomoses are observed.
Given the density of vessel branches, it is reasonable to expect that
several of these may fuse into one another resulting in thicker and
more dilated vessels, which is a morphology consistent with vas-
cular hyperplasia, as seen in Lee et al. (2005). The higher VEGF
concentration implies that the vessels have a weaker bias for for-
ward motion, and lateral movement of vessels as well as movement
against the gradient of VEGF are observed to occur. These phe-
nomenon have been observed in vivo, and have been numerically
simulated previously (Anderson and Chaplain, 1998b; Plank and
Sleeman, 2004; Sun et al., 2005; Zheng et al., 2013).

4. CONCLUSION
We have developed a hybrid model of cellular chemotaxis and
capillary formation under the influence of VEGF. The migrat-
ing cell, whether by itself or as the tip cell “pulling” behind it
a developing sprout, was treated as an agent. Its movement was
simulated stochastically with movement probabilities based on
the theory of biased random walks. On the other hand, due to
its fast diffusion coefficient, VEGF dynamics were governed by a
continuum reaction-diffusion equation. Using this approach, we
first simulated the motion of a single cell on a two-dimensional
grid, following the gradient of VEGF laid down by a constant
source. Next, our model was adapted to simulate the formation
of new vessels from pre-formed sprouts along a parent vessel,
also under the influence of a constant source of VEGF, such

as a tumor. Events such as branching and anastomoses, which
are observed to occur in vivo, were incorporated explicitly in
the model. The rate of vessel formation closely matched that
observed experimentally (Sholley et al., 1984) under an optimal
VEGF concentration. Additionally, as the forming vessels neared
the VEGF source, a brush-border effect due to increased branch-
ing was predicted, thus proving both quantitative and qualitative
validation of our approach. Using this framework, we also tested
the effects of excessive as well as low levels of VEGF signaling
on vascular development. Insufficient chemotactic and mitotic
cues from VEGF resulted in stunted and solitary vessels, while an
over-stimulation induced a high degree of branching and lateral
movement.

An important difference that sets our model apart from similar
hybrid models of chemotaxis is the inclusion of a molecular level
detail of interaction between VEGF and its cell-surface receptor
VEGFR2, the activation of which polarizes the cell and induces
directed motion. This has been observed experimentally as well –
endothelial cells respond to gradients of chemokines across their
lengths, rather than to free chemokine concentrations. These gra-
dients have been shown to be between 1 and 2%, which was seen
in the numerical simulations as well, thus validating our model.
Crucially, a chemotaxis sensitivity function was proposed that
incorporated biological detail hitherto ignored by commonly used
sensitivity functions currently. The model could thus capture real-
istic dynamics, such as the requirement of a minimum activation
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level of cell-surface receptors and receptor desensitization in high
concentrations of VEGF.

Angiogenesis, both physiological and pathological, is a highly
complex process, and understanding its mechanisms can lead to
significant breakthroughs in the treatment of diseases such as
cancer that depend on it. To this end, it is vital that modeling
efforts keep up with current advances in experimentation. Our
model provides such a framework, in which it is easy to build
in biochemical and biomechanical forces guiding vessel forma-
tion. In fact, a number of highly detailed and complex hybrid
models of vascular tumor growth have recently been proposed
(Frieboes et al., 2007; Owen et al., 2009; Perfahl et al., 2011)
and a significant strength of our model is that it can easily be
incorporated into these. The inclusion of greater biological detail
would only increase confidence in the predictive power of such
models.

In addition, a number of refinements of the model proposed
here are under active consideration. For instance, EC response
to cell-surface bound VEGF has already been explicitly included.
However, for the ease of computation, certain simplifying assump-
tions were made. Most notably, activated VEGFR2 were assumed
to be in quasi steady state. Further, only the tip cell was tracked,
while VEGF uptake by stalk cells was ignored. Cell death was
also omitted, while the processes of cell proliferation, branching,
and anastomoses were included phenomenologically. We plan to

extend this model by relaxing some of these assumptions. Lattice-
based models of angiogenesis face the criticism that the capillary
networks generated by them are artificial to a certain extent, as
they are forced to follow the lattice used to discretize the model.
A first step would therefore be to develop a lattice-free version of
our model of capillary formation, in which the ECs move without
geometric constraints. Such models have been applied to capillary
formation previously (Plank and Sleeman, 2004; Frieboes et al.,
2007).

Other model refinements include incorporation of the relation
between extra cellular matrix or ECM and vascular morphology.
ECs require the ECM to gain traction in order to move. To facil-
itate their migration, ECs also secrete proteolytic enzymes such
as matrix metalloproteinases (MMPs), that degrade collagen and
elastin and clear a path for the ECs to follow. As ECs interact with
the matrix, they also cause the release of matrix bound angiogenic
factors such as VEGF, which are then available to induce further
pro-angiogenic activity (Mantzaris et al., 2004). Further, pericytes,
macrophages, and angiopoietins are also important determinants
of developing vascular morphology and maturation (Levine et al.,
2000; Plank and Sleeman, 2003), and need to be considered explic-
itly. The framework presented here is highly flexible, and would
allow for the inclusion of the above processes, grounding it further
in biology, and enhancing its usefulness as a tool to understanding
the process of angiogenesis.
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