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Abstract: Metal–organic frameworks (MOFs), as a class of crystalline hybrid architectures, consist of
metal ions and organic ligands and have displayed great potential in luminescent sensing applications
due to their tunable structures and unique photophysical properties. Until now, many studies have
been reported on the development of MOF-based luminescent sensors, which can be classified into
two major categories: MOF chemosensors based on reversible host–guest interactions and MOF
chemodosimeters based on the irreversible reactions between targets with a probe. In this review,
we summarize the recently developed luminescent MOF-based chemodosimeters for various analytes,
including H2S, HClO, biothiols, fluoride ions, redox-active biomolecules, Hg2+, and CN−. In addition,
some remaining challenges and future perspectives in this area are also discussed.
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1. Introduction

Metal–organic frameworks (MOFs), constructed by metal ions (or clusters) with organic ligands,
are a subclass of coordination polymers with highly crystalline structures [1,2]. In the past two decades,
enormous progress has been made in the synthesis and application of MOFs [3–5]. Because of their
remarkable structural features, such as high porosity and large surface area, as well as their exceptional
physicochemical properties, MOFs possess versatile applications in gas storage and separation [6–11],
heterogeneous catalysis [12–15], drug delivery and chemotherapy [16,17], and sensing [18,19]. As new
types of promising functional materials, luminescent MOFs especially have great potential as alternative
phosphors in lighting devices and luminescent sensors [20–23].

Due to the versatile building blocks of MOFs (inorganic ions and organic ligand molecules), as well
as their structural diversity, the photoluminescence of MOFs can arise from a variety of possibilities [20]:
(i) luminescence from organic linkers, which are normally extended π-conjugation systems with rigid
structures, such as pyrene, anthracene, and their derivatives; (ii) metal-based emissions, e.g., MOFs
with metal centers of lanthanoid; (iii) a metal–to–ligand charge transfer (MLCT), e.g., d10 Cu(I)- and
Ag(I)-based MOFs; (iv) a ligand–to–metal charge transfer (LMCT), e.g., Zn(II)/Cd(II) and carboxylate
ligand based MOFs; (v) antennae effects; and (vi) sensitization, e.g., MOFs with absorbing ligands
and emitting lanthanoid ions (Figure 1). In the past, the competent luminescence features of MOFs
have been extensively studied and exploited in fluorescence imaging and sensing applications [24].
These developed MOF-based luminescent probes can be classified into two types according to the
recognition mechanism between the probe with the target analyte: (1) an MOF-based chemosensor,
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in which the analyte coordinates or interacts with the probe in a reversible manner, such as via
physical/electrostatic interaction; (2) an MOF-based chemodosimeter, in which the target analyte can
irreversibly react with a probe to yield a product that is chemically different from the starting probe via
target-induced oxidation, hydrolysis, and nucleophilic processes.
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MOF-based luminescent chemosensors have shown great potential in the detection of various analytes,
including volatile organic compounds [25–27], ions (especially for metal cations) [28–31], gases [32–35],
as well as for monitoring pH [36–42], humidity [43–45], and temperature [46–48]. Compared to the
relatively well-developed fluorescent MOFs chemosensors, MOF-based chemodosimeters are expected
to be more efficient in terms of selectivity, as they exploit the specific reactivities of certain target
analytes [24]. Moreover, numerous MOF-based luminescent chemodosimeters can be afforded by
introducing various recognition moieties for different analytes into building blocks. In the past
several years, considerable effort has been expended in this field, and research interest is still growing.
In spite of this interest, to date, the studies concerning MOF-based chemodosimeters have not yet
been comprehensively addressed. To fill this gap, in the present review, we will make an effort
to summarize recent progress in the development of MOF-based chemodosimeters. Moreover, the
promising prospects and remaining challenges for future research in the field will also be discussed.

2. MOF-Based Luminescent Chemodosimeters for Sulfur Compounds

2.1. MOF-Based Chemodosimeters for H2S

Hydrogen sulfide (H2S), the smallest sulfhydryl compound, exists as a typical rotten egg smelling
gas in the air or as a hydrosulfide ion while being dissolved in an aqueous solution under neutral
pH conditions. Traditionally, H2S was simply considered to be an environmentally toxic species.
In recent years, H2S has been discovered to be an essential biological molecule that can function as a
cytoprotectant and gasotransmitter in organisms [49,50]. Moreover, the metabolism of H2S is closely
related to various physiological and pathological events in the human body [51,52]. In this context,
the development of new methods for sensing H2S and studying its biological roles has attracted
tremendous attention [53–55]. Fluorescence technology is particularly promising for such purposes,
as it enables monitoring of the target with superior temporal and spatial resolution [56–59], especially
for in vivo applications. By exploiting its unique characteristics, such as strong nucleophilicity and
ability to reduce potency, various small-molecule fluorescent probes have been developed for detecting
and imaging H2S. These probes can be mainly categorized into three types according to their sensing
strategy: (i) sensors based on the H2S-mediated reduction of an azide/nitro group to the amine [60–63];
(ii) sensors based on the H2S-participated nucleophilic reaction [64–67]; and (iii) sensors based on the
binding reaction between sulfide and Cu2+ [68,69]. By exploiting the similar sensing strategies and
carefully employing post-synthetic modification approaches, a number of MOF-based fluorescent H2S
probes (Table 1) were successfully constructed in the last few years [70].
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Table 1. List of MOF-based luminescent chemodosimeters for H2S.

MOF Formula λex/λem (nm) Dynamic Range LOD 1 RT 2 Media Real Sampe Ref.

Zr6O4(OH)4(BDC-N3)6 334/436 0–4 mM 117 µM 180 s HEPES buffer (10 mM, pH 7.4) Live cells [71]

Zr6O4(OH)4(BDC-NO2)6 334/436 0–4 mM 188 µM 460 s HEPES buffer (10 mM, pH 7.4) – [72]

Zn4O(OH)4(BDC-N3)3 395/455 0–0.5 mM 28.3 µM 90 s HEPES ethanol buffer (10 mM, pH 7.4) – [73]

Ce6O4(OH)4(BDC-N3)6 334/429 0–3.5 mM 12.2 µM 760 s HEPES buffer (10 mM, pH 7.4) – [74]

Ce6O4(OH)4(BDC-NO2)6 334/429 0–3.5 mM 34.8 µM 480 s HEPES buffer (10 mM, pH 7.4) – [74]

Al(OH)(IPA-N3) 330/405 0–0.06 mM 2.65 µM 420 s HEPES buffer (10 mM, pH 7.4) Live cells [75]

Zr6O4(OH)4((NDC-(NO2)2)6 390/474 0.1–0.7 mM 20 µM 50 min HEPES buffer (10 mM, pH 7.4) Live cells [76]

Al(OH)(BDC-N3) 315/425 0.2–1.6 µM 90.47 nM 60 s HEPES buffer (10 mM, pH 7.4) Live cells [77]

Al3O4(OH)4(BDC-(NO2)2)6 345/527 0.1–0.6 mM 14.14 µM 40 min HEPES buffer (10 mM, pH 7.4) Live cells [78]

Al3(O)(OH)(BDC-N3)3 343/460, 565 0.1–120 µM 100 nM – Hank’s balanced salt solution Cell sample [79]

Al(OH)(BDC-NO2)/poly(vinylidene fluoride) 396/466 0–0.1 mM 92.31 nM – PVDF membrane Lake water [80]

Cu(TCPP)[AlOH]2 419/602, 650 0–10 µM 16 nM instant BBS buffer (20 mM, pH 7.4) Live cells [81]

CuO@TO@UiO-66 510/~560 0–100 µM 0.51 µM instant Tris-HCl butter (20 mM, pH 7.4) Live cells [82]

Eu3+/Cu2+@UiO-66-(COOH)2 305/393, 615 0–625 µM 5.45 µM 30 s HEPES buffer (10 mM, pH 7.4) – [83]

Eu3+/Ag+@UiO-66-(COOH)2 305/615 0–2.5 mM 23.53 µM 30 s HEPES buffer (10 mM, pH 7.4) Serum [84]

Tb3+@[Cu(CPOC)2] 280/390, 544 0–1.6 mM 13.25 µM 2 min HEPES buffer (10 mM, pH 7.4) – [85]

UiO-66-CH = CH2 Zr6O4(OH)4(BDC-CH = CH2)6 328/382 0–0.05 mM 6.46 µM 10 s HEPES buffer (10 mM, pH 7.4) Live cells [86]

FeIII-MIL-88-NH2 333/~440 60–100 µM 10 µM 5 min Aqueous solution – [87]
1 LOD means limit of detection. 2 RT means reaction time.
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2.1.1. Based on the H2S-Mediated Reduction of Azide/Nitro Group to Amine

Ghosh et al. first reported a Zr-based MOF, Zr6O4(OH)4(BDC-N3)6 (UiO-66@N3), bearing an
azide group for sensing H2S [71]. The MOF-based chemodosimeter UiO-66@N3 was prepared via post
modification of the amine functionalized UiO-66@NH2 using an azidation agent. UiO-66@N3 is highly
stable in an aqueous solution and fluoresces very weakly due to the presence of an electron-deficient
azide group (Figure 2). Treating UiO-66@N3 with Na2S in an HEPES (4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid) aqueous buffer (10 mM, pH 7.4) creates a strong emission (16-fold
enhancement), which can be ascribed to the target-mediated reduction of azide to amine, which
produces the luminescent UiO-66@NH2. This conversion process is characterized by FTIR (Fourier
Transform infrared spectroscopy) and NMR (Nuclear Magnetic Resonance Spectroscopy) studies.
UiO-66@N3 can respond rapidly to H2S (less than 180 s) with high selectivity over other interferences,
including most abundant biothiols (Cys and GSH). Moreover, UiO-66@N3 also displays low cell
viability and has been applied to live cell imaging studies. The same research group subsequently
prepared a nitro-functionalized Zr-MOF (UiO-66@NO2) for the fluorescence turn-on detection of H2S,
in which UiO-66@NO2 can be facilely obtained in a single synthetic step by using 2-nitroterephthalic
acid as the ligand [72]. Incorporation of the azide/nitro group onto other MOFs scaffolds has afforded
a variety of luminescent H2S chemodosimeters. Qian et al. reported an azide-appended Zn-MOF
for the fluorescent turn-on detection of H2S [73]. In a HEPES ethanol buffer, the probe displayed
excellent selectivity and a rapid response time for H2S. By directly reacting the cerium(IV) nitrate
with an azide/nitro-substituted 1,4-benzenedicarboxylate (BDC), Biswas et al. synthesized two
Ce-MOFs (Ce-UiO-66@N3, Ce-UiO-66@NO2) for sensing H2S [74]. Since then, the Biswas group
has developed a number of reaction-based luminescent H2S sensors, including Al(OH)(IPA-N3) [75],
Zr6O4(OH)4((NDC-(NO2)2)6 [76], Al(OH)(BDC-N3) [77], and Zr6O4(OH)4(BDC-(NO2)2)6 [78]. Further,
Al(OH)(BDC-N3) was also employed as a turn-off fluorimetric sensor for detecting Fe(III) in an aqueous
solution [77].
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Figure 2. The synthetic route and sensing mechanism of UiO-66@N3 for H2S. Reproduced with
permission from [71]. Copyright Nature Publishing Group, 2014.

Canivet et al. reported an Al-MOF, Al3(O)(OH)(BDC-N3)3 (Al-MIL-101-N3, Figure 3a) based
sensing system for H2S [79]. It is worth noting that the use of a femtosecond (fs)-pulse laser
excitation can significantly improve the emission features as well as the analytical performances
of this MOF-based luminescent assay. All these investigated BDC-based MOFs (Al-MIL-101-NH2,
In-MIL-68-NH2, and Zr-UiO-66-NH2) displayed characteristic emissions at about 460 nm (Figure 3b)
under UV-lamp excitation at 343 nm. While under fs-pulse laser excitation, Al-MIL-101-NH2 revealed
another predominent emission band centered at 565 nm, which may have resulted from an increase
of the luminescence center in the electronic excited state and the redistribution of the photoexcited
charge carriers (Figure 3c,d). The spectral behaviors of Al-MIL-101-N3 for H2S were studied in DMSO
(dimethyl sulfoxide) as well as in HBSS (Hank’s balanced salt solution). In the biological media of
HBSS, Al-MIL-101-N3 displayed a wide dynamic range of 0.1–120 µM and a low LOD of 100 nM for
H2S (Figure 3e,f). Moreover, Al-MIL-101-N3 was applied to detect sulfide from an exogenous small
molecule releaser (GYY4137) and endogenous H2S produced by 3T3L1 cells (Figure 3g,h).
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Figure 3. (a) Azido-MOFs for H2S sensing. (b,c) Emission spectra of dry MOF samples, Al-MIL-101-NH2

(blue), In-MIL-68-NH2 (red), Zr-UiO-66-NH2 (black), Al-MIL-101-N3 (green) under UV-lamp excitation
(b) or fs-pulse laser excitation (c) at 343 nm. (d) Proposed schematic mechanisms of charges
recombination underpinning the observed switch in emission channels. (e) Emission spectra of
Al-MIL-101-N3 in the presence of different concentrations of sodium sulfide (excited at 343 nm with
a fs-pulse laser). (f) Reversed cubic fit of sodium sulfide concentration vs. measured intensity of
the 565 nm band in emission spectra. (g) Detection of H2S released from GYY4137. (h) Exposure of
Al-MIL-101-N3 to a sample of culture medium for cells with endogenously produced H2S. Reproduced
with permission from [79]. Copyright Wiley-VCH, 2016.

By integrating Al-MOF (Al(OH)(BDC-NO2), Al-MIL-53-NO2), and poly(vinylidene fluoride)
(PVDF), Qian et al. developed a novel MMM (MOF-polymer mixed-matrix membrane) for the
fluorescence turn-on detection of H2S [80]. The Al-MIL-53-NO2@PVDF MMM can be readily prepared
with a high loading of the MOF probes (70 wt%), following the procedures as depicted in Figure 4a.
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The obtained Al-MIL-53-NO2 MMM is mechanically robust and flexible and can be easily handled.
The Al-MIL-53-NO2 MMM can be effectively applied to the flow-through detection of H2S, which
exhibited remarkably high sensitivity with an LOD of 92.31 nM (Figure 4b,c).
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Figure 4. (a) Fabrication process for Al-MIL-53-NO2@PVDF MOF-polymer mixed-matrix membranes
(MMMs). (b) Fluorescence spectra of Al-MIL-53-NO2@PVDF MMMs (70 wt%) with different
concentrations of H2S (excited at 396 nm). (c) Fluorescence response of Al-MIL-53-NO2 MMMs at
466 nm toward various analytes. Reproduced with permission from [80]. Copyright Wiley-VCH, 2016.

Furthermore, the constructed Al-MIL-53-NO2 MMM was also used to detect H2S in real water samples.

2.1.2. Based on the Binding Reaction between S2− and Cu2+

Tang et al. firstly reported a Cu(II)-metalated MOF, Cu(TCPP)[AlOH]2 (TCPP: meso-tetrakis(4-
carboxylphenyl)porphyrin), for luminescent sensing of H2S [81]. Cu(TCPP)[AlOH]2 was obtained
via Cu(II) metalation of the porphyrin ring-contained parent MOF TCPP[AlOH]2(DMF)3(H2O)2.
The paramagnetic Cu(II) ions can quench the ligand-based (porphyrin) fluorescence of Cu(TCPP)[AlOH]2.
Upon the addition of H2S, the Cu(II) ion can be taken from the porphyrin center via the formation
of a CuS precipitate, thereby leading to the recovery of porphyrin-based emissions in the MOF
system (Figure 5a). The fluorescence response of Cu(TCPP)[AlOH]2 to H2S can occur instantaneously
with high sensitivity (LOD: 16 nM) and excellent selectivity as other analytes did not generate any
fluorescence enhancement. Luminescence imaging studies also demonstrated that Cu(TCPP)[AlOH]2

can be employed for monitoring both exogenous and endogenic H2S in liver hepatocellular (HepG2)
cells (Figure 5b). The Tang group recently developed a CuO NPs functionalized NMOF (Nanoscale
metal–organic frameworks) hybrid nanoprobe, CuO@TO@UiO-66, for the sensing and imaging of
H2S [82]. Due to the energy transfer process from TO@UiO-66 to CuO NPs, the nanoprobe is weakly
emissive. Sulfide can react with CuO to release the luminescent TO@UiO-66, thereby achieving a
sensitive turn-on fluorescence response to H2S.
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Figure 5. (a) The proposed strategy for the fluorescent variation of Cu(TCPP)[AlOH]2 for H2S.
(b) Confocal fluorescence images in living cells: (1) image of HepG2 cells incubated with 10 µM
Cu(TCPP)[AlOH]2; (2) bright-field image of (1); (3) image of HepG2 cells incubated with 10 µM
Cu(TCPP)[AlOH]2 and 50 µM NaHS; (4) bright-field image of (3); (5) image of A549 cells incubated
with 500 µM SNP and 10 µM Cu(TCPP)[AlOH]2; (6) bright-field image of (5); (7) image of A549 cells
incubated with 250 mg·L−1 dl-propargylglycine (PPG) and 10 µM Cu(TCPP)[AlOH]2; (8) bright-field
image of (7). Reproduced with permission from [81]. Copyright American Chemical Society, 2014.

Qian et al. prepared a nano MOF Eu3+/Cu2+@UiO-66-(COOH)2 system for the ratiometric
luminescent sensing of H2S by the post-modification of UiO-66-(COOH)2 with Eu3+ and Cu2+ ions [83].
This MOF system displayed two distinct emissions, a sharp Eu3+ emission at 615 nm and a broad
ligand-based emission at 393 nm. Due to the decreased antenna efficiency of the H4btec ligands to
Eu3+ in the presence of Cu2+, Eu3+/Cu2+@UiO-66-(COOH)2 exhibited a weak Eu3+ emission and a
relatively enhanced ligand-based emission. While the target sulfide can effectively snatch the copper
ion from the MOF probe and result in a significant enhancement in the fluorescence intensity ratio
(I615/I393), thus achieving a ratiometric fluorescence response for H2S (Figure 6). Other advantageous
features of this MOF sensor include excellent compatibility with aqueous media and instant response.
However, it should be noted that other sulfhydryl compounds (i.e., GSH, Hcy, and Cys) also generated
a certain degree of fluorescence response, which may be ascribed to the moderate binding affinity of
H4btec to Cu2+, and these interferences also competitively bind to Cu2+. The same research group
consequently developed a fluorescent MOF-based logic platform Eu3+/Ag+@UiO-66-(COOH)2 for H2S
detection [84].

Yang et al. reported a luminescent composite Tb3+@Cu-MOF for the turn-on ratiometric sensing
of H2S [85]. The synthesis process for Tb3+@Cu-MOF and the sensing mechanism for H2S are shown
in Figure 7a. The Cu-MOF, [Cu(CPOC)2] was firstly prepared by reacting copper salt with an organic
ligand (CPOC: 5-(4′-carboxyphenoxy) nicotinic acid). SC-XRD (single crystal X-ray diffraction) analysis
indicated that [Cu(CPOC)2] belongs to the monoclinic system (P21/c), with a half crystallographically
independent metal center and one ligand per asymmetric unit (Figure 7b). The probe Tb3+@Cu-MOF
can be readily obtained via post-grafting modification with Tb3+. [Cu(CPOC)2] displayed an emission
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band at about 390 nm. Tb3+@Cu-MOF showed additional emissions of the Tb3+ ion (at 489, 544, 585,
and 620 nm) but with relatively weak intensities because the Cu2+ with an unsaturated electronic
state (3d9) has a tendency to gain electrons and thus quench the fluorescence. With the addtion of
sulfide, Cu2+ can be bounded and, as a consequence its quenching effect, can be hindered, leading to a
significant and selective increase in the characteristic emissions of Tb3+ (Figure 7c). Noticeably, the
Tb3+@Cu-MOF well retained its crystalline structure after being incubated with Na2S.
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Figure 7. (a) Synthetic route for Tb3+@Cu-MOF and its sensing mechanism for H2S. (b) Crystalline
structure of [Cu(CPOC)2], (1) 2D layers of Cu1; (2) 2D layers of Cu1 viewed along the c axis; (3) 1D channel
in the 3D framework; (4) 3D supramolecular framework of [Cu(CPOC)2] through O–H···O interactions;
(5) topological representation of the 3D structure. (c) Fluorescence response of Tb3+@[Cu(CPOC)2]
towards sulfide and other analytes. Reproduced with permission from [85]. Copyright the Royal
Society of Chemistry, 2017.

2.1.3. Other MOF-Based Chemodosimeters for H2S

Cui et al. designed a vinyl-functionalized Zr-MOF (UiO-66-CH = CH2) for detecting H2S by using
2-vinylterephthalic acid as the linker ligand [86]. UiO-66-CH = CH2 showed a turn-off fluorescence
response toward H2S with high sensitivity and selectivity. This probe also featured low toxicity and
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good water stability, but the sensing mechanism is not discussed in this study. Wang et al. reported a
novel turn-on fluorescent assay for H2S based on the target-mediated collapse of an MOF structure
(Fe3O(OH2)3(BDC-NH2)3, FeIII-MIL-88-NH2) (Figure 8) [87]. Due to the paramagnetic nature of Fe(III),
FeIII-MIL-88-NH2 is non-emissive. Mixing the FeIII-MIL-88-NH2 suspension with a NaHS solution can
lead to the breakdown of the MOFs and a release of the luminescent ligand of 2-aminoterephthalic acid.
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2.2. MOF-Based Chemodosimeters for Biothiols

Biothiols such as Cys (cysteine), Hcy (homocysteine), and GSH (glutathione) play vital roles in
various physiological and pathological processes [88–91]. During the past decade, a huge number
of fluorescent probes have been developed for sensing and imaging biothiols by exploiting the
specific reactivities of sulfhydryl group and/or amino group [92–98], including nucleophilic addition to
electron-deficient unsaturated bonds, conjugate addition−cyclization reaction, cleavage of sulfonamide
and sulfonate ester, cleavage of disulfide, and displacement of coordination to the metal complex.
MOF-based Chemodosimeters for fluorescent sensing biothiols have emerged in the last two years.

Ghosh et al. reported a turn-on fluorescent probe, UiO-66-DNS, for selective sensing of
biothiols [99]. UiO-66-DNS was prepared by post-grafting 2,4-dinitrosulfonyl moiety (DNS) to
the chemically stable UiO-66-NH2 MOF. UiO-66-DNS exhibited weak fluorescence due to the
PET (photoinduced electron transfer) from the ligand of 2-aminoterephthalic acid to the highly
electron-withdrawing functional group of DNP (Figure 9a). After the addition of Cys to a UiO-66-DNS
dispersed water solution (Figure 9b), a significant enhancement (ca. ∼48-fold) in luminescent intensity
at 432 nm was obtained, which can be ascribed to the thiol-mediated cleavage of the DNS moiety and
the release of UiO-66-NH2. Compared with Cys, UiO-66-DNS displayed slower response toward GSH
because of its intrinsic bulkier feature for diffusing and interacting with the probe. Other amino acids
did not generate any obvious enhancement in the emission intensity of the probe (Figure 9c), which
demonstrated that the UiO-66-DNS is highly specific to biothiol.
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Figure 9. (a) The fluorescence detection mechanism of UiO-66-DNS for biothiols. (b) The fluorescence
responses of UiO-66-DNS after addition of different amount of Cys. (c) Relative changes in the
fluorescence intensity of UiO-66-DNS upon treatment with various amino acids. Reproduced with
permission from [99]. Copyright American Chemical Society, 2016.

Wu et al. developed a novel aldehyde-functionalized MOF, Cd–PPCA (Figure 10a), for selective
sensing of Hcy [100]. The Cd–PPCA consisted of a Cd(II) metal center and two types of ligands,
H3tca (4,4′,4′′-tricarboxyltriphenylamine) and ppca (1H-pyrrolo-[2,3-b] pyridine-2-carbaldehyde).
XRD (X-ray diffraction) results indicated that Cd–PPCA crystallized in the orthorhombic space group
Pbnm with a = 25.500(5), b = 20.600(4), c = 13.700(3) Å (Figure 10b). Each unit building of trinuclear
[Cd3(COO)8] contained one ppca ligand, with a nitrogen atom to coordinate with Cd and a desired
aldehyde functional group for the specific recognition of the target Hcy. Suspended in a HEPES
(pH = 7.4) buffer solution, Cd–PPCA showed a weakened fluorescence emission at about 450 nm
compared with similar MOFs comprised of H3tca ligands and Cd2+ nods, which can be attributed to
the PET from the triphenylamine groups to the electron withdrawing aldehyde moieties of the ppca
ligand. With the addition of Hcy, the emission intensity of the assay showed a significant enhancement
(Figure 10c), which can be ascribed to the selective reaction of the aldehyde moiety with Hcy and thus
the inhibition of the PET process. This fluorescent response was also observed to be very fast (60 s) and
sensitive (LOD: 40 nM). Moreover, the probe Cd–PPCA exhibited excellent specificity for Hcy over
other species, including Cys (Figure 10d).
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Figure 10. (a) The fluorescence detection mechanism of Cd–PPCA for Hcy. (b) the coordinated
environment of the Cd2+ in Cd–PPCA (Top); a two-dimensional double-layer structure composed of
Cd2+ and ligands of ppca and H3tca (bottom-left); the Connolly surface of the framework of Cd–PPCA
(bottom-right). (c) The fluorescence spectra of Cd–PPCA upon addition of different amounts of Hcy.
(d) Results for selectivity and competition tests. Reproduced with permission from [100]. Copyright
the Royal Society of Chemistry, 2018.

Wang and Zhang et al. developed a novel Zr-MOF based fluorescent PET switch/sensor,
UiO-68-An/Ma [101]. The probe contains two kinds of ligands, one embedded with the anthracene
unit serving as the luminophore and the other appended with a maleimide moiety as the PET acceptor
(Figure 11a). The multivariate UiO-68-An/Ma favors a pseudo-PET process and only shows very
weak fluorescence with an absolute PLQY (photoluminescence quantum yield) of 1.1%. Notably, the
fluorescence behavior of UiO-68-An/Ma can be tuned by altering the acceptor moiety and thus the
PET process. The authors firstly confirmed the tunable fluorescence response of UiO-68-An/Ma via a
reversible D–A reaction with 3-furanmethanol. Furthermore, UiO-68-An/Ma was applied for sensing
biothiols based on the well-established maleimide–thiol addition reaction. As a solid-state fluorescent
turn-on sensor, UiO-68-An/Ma can sensitively response to biothiols (Cys, Hcy, and GSH) as low as
50 µM (Figure 11b).
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NH2-MIL-68(In)@CHO, for the monitoring of bisulfite [103]. The probe was prepared by the post 
synthetic approach via condensation of NH2-MIL-68(In) (In(OH)(bdc-NH2)) with glyoxal (Figure 13). 
The introduced aldehyde moiety can react with bisulfite to generate an OH group, which is 
available to form an intramolecular hydrogen bond and thus resulted in the inhibition of the C = N 
isomerization and the recovery of the fuorescence of the probe. Cui and Qian et al. prepared a 
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3. MOF-Based Chemodosimeters for Other Redox-Active Biomolecules 

Figure 11. (a) Synthesis of UiO-68-An/Ma and tuning the fluorescent photoinduced electron transfer
(PET) in the MOF through a reversible D–A reaction or thiol-ene reaction. (b) Bright-field and
photoluminescence single-crystal images of UiO-68-An/Ma treated with different concentrations of
Cys, Hcy, and GSH for 5 min. Reproduced with permission from [101]. Copyright Wiley-VCH, 2016.

With the in-situ encapsulation of rhodamine B (RhB) into Cu-BTC, Gao and Huang et al. reported a
turn-on fluorescent assay (RhB@Cu-BTC MOFs) for sensing Cys [102]. The fluorescence of RhB@Cu-BTC
was very weak because the embedded RhB was adjacent to the paramagnetic copper center. In the
presence of Cys, the Cu-BTC framework collapsed, which resulted the release of RhB and thus a
turn-on fluorescence response (Figure 12).
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The MOF based fluorescent probe has also been exploited for sensing sulfur dioxide (SO2) or
sulfite/bisulfite, another kind of important sulfur-containing specie on both biological and environmental
aspects. Ghosh et al. constructed a MOF based luminescent probe, NH2-MIL-68(In)@CHO, for the
monitoring of bisulfite [103]. The probe was prepared by the post synthetic approach via condensation
of NH2-MIL-68(In) (In(OH)(bdc-NH2)) with glyoxal (Figure 13). The introduced aldehyde moiety can
react with bisulfite to generate an OH group, which is available to form an intramolecular hydrogen
bond and thus resulted in the inhibition of the C = N isomerization and the recovery of the fuorescence
of the probe. Cui and Qian et al. prepared a Eu-BDC-NH2 film on the UiO-66-NH2 modified glass
through an in situ secondary growth and successfully applied this functional film for sensing gaseous
sulfur dioxide [104].
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3. MOF-Based Chemodosimeters for Other Redox-Active Biomolecules

3.1. MOF-Based Chemodosimeters for HClO

Hypochlorous acid (HClO) is an important chemical reagent with wide application in various areas
of organic synthesis, the cosmetics industry, food service, water treatment, etc. In living organisms,
HClO is a kind of essential reactive oxygen species (ROS), which is normally produced in phagosomes
via the reaction between hydrogen peroxide and chloride ions catalyzed by myeloperoxidase [105].
As a powerful oxidizer, the endogenous HClO can act as effective microbicidal agent when the host is
being invaded by microbials [106]. On ther hand, HClO can also react with functioning biomolecules,
such as proteins, nucleic acid, and fatty acids, which would produce adverse effects for organisms
and correlate to numerous human diseases, such as kidney disease, cardiovascular diseases, and even
cancers [107]. Therefore, the development of reliable analytical methods for monitoring HClO has
attracted a great deal of attention [108,109]. Based on the unique characteristics of HClO, acting as
both a potent oxidant and a good chlorination agent, various reaction-based organic fluorescent probes
has been reported for selective sensing of HClO [110–117]. Until now, several examples of MOF-based
chemodosimeters for luminescent detection of HClO have been presented.

Ma and Wang et al. developed the first MOF-based chemodosimetric probe for sensing
HClO [118]. The designing strategy for the probe, UiO-Eu-L1 (L1: dimethyl 4-(carbaldehyde oxime)
pyridine-2,6-dicarboxylate), is depicted in Figure 14. Uio-Eu-L1 was obtained by successively treating
the Zr-MOF UiO-67 (Zr6O4(OH)4(BPDC)6) with europium ions and the functional ligand L1. Due to
the efficient C = N isomerization-induced fluorescence quenching, UiO-Eu-L1 displayed very weak
red emissions derived from europium ions. In the presence of HClO, the hydroxylamine moiety can
be converted to aldehyde, which, in turn, leads to the inhibition of the C = N isomerization and thus
the turn-on fluorescence response of the probe system. Ascribed to the long-lived phosphorescence
of the Uio-Eu based MOF, this luminescent assay can efficiently eliminate the background signals
and auto-fluorescence effects by the use of time-gated measurements. Uio-Eu-L1 also exhibited high
sensitivity for HClO with a dynamic range of 0.1–5 µM and a detection limit of 16 nM.
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Gu et al. presented a novel luminophore integrated MOF system, AF@MOF-801, for specific
detection of HClO [119]. The composite AF@MOF-801 can be readily prepared via a one-step process
by using 5-aminofluorescein (AF) as a co-reactant in the synthesis of MOF-801 (Figure 15a). AF can
serve as a sensitive turn-off fluorescent HClO probe, as HClO can react with AF to produce chlorinated
products. However, other coexistent biological molecules (such as dopamine, DA) also can lead to the
similar fluorescent changes of AF. In the constructed sensory platform of AF@MOF-801, AF can be
confined in the cages of the framework and the target HClO can diffuse into the framework to react with
the probe AF, while the ultra-small aperture can block the entry of large-sized interferents. Due to this
size-selective effect, AF@MOF-801 displayed excellent specificity for HClO. Only ClO− produced the
significant luminescence response of AF@MOF-801 (Figure 15b), while both ClO− and DA generated
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strong fluorescence quenching for the free AF probe (Figure 15c). The feasibility of AF@MOF-801 for
monitoring intracellular HClO was also demonstrated by MTT assay and flow cytometry analysis
(FCA), as well as confocal laser scanning microscopy (CLSM) measurements (Figure 15d).
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Figure 15. (a) Schematic illustration of the synthetic procedure for AF@MOF-801 and the size-selective
sensing mechanism toward targe analyte of ClO−. (b) The luminescence responses of free AF for
various analytes. (c) The luminescence responses of AF@MOF-801 for various analytes. (d) The confocal
laser scanning microscopy images of SMMC-7721 cells incubated with AF@MOF-801 and with various
concentrations of ClO−. Reproduced with permission from [119]. Copyright the Royal Society of
Chemistry, 2019.

Chen et al. constructed a fluorophores@MOF (F1-Rubpy@ZnMOF74) nanocomposite-based
ratiometric fluorescent probe for HClO by simultaneously encapsulating two fluorophores, fluorescein
o-acrylate (F1) and tris(2,2′-bipyridyl)-dichroruthe-nium(II) hexahydrate (Rubpy), into ZnMOF74 [120].
F1-Rubpy@ZnMOF74 displayed two distinct emissions at 512 nm and 600 nm, corresponding to F1 and
Rubpy, respectively. In the presence of HClO, the fluorescence of the target-responsive fluorophore
F1 can be quenched, while the reference signal that originated from Rubpy remained unchanged,
thus achieving a ratiometric response for HClO. In an aqueous HEPES buffer (pH = 7.5) solution, the



Nanomaterials 2019, 9, 974 15 of 29

fluorescence intensity ratio (I512/I600) of the F1-Rubpy@ZnMOF74 was found to be linearly correlated
with the concentration of ClO− with a dynamic range of 3.6 nM-100 µM.

3.2. MOF-Based Chemodosimeters for Ascorbic Acid

Chen and Qian et. al. developed a Ce-MOF sensor ZJU-136-Ce, (Me2NH2)0.6{[CeIV(TPTC)]0.4-
[CeIII(TPTC)]0.6}(H2O)2(H4TPTC = 1,1′:4′,1′′-terphenyl-2′,4,4′′,5′-tetracarboxylic acid) for sensing
ascorbic acid (AA) [121]. CeIV in the probe ZJU-136-Ce can react with the AA to generate CeIII and
oxidized AA (DHA, dehydroascorbic acid). ZJU-136-Ce displays a luminescence band at 380 nm with
a lifetime of 0.84 ns, which corresponds to the emissions of the Ce ion (Figure 16a). After reacting
with AA, the probe system shows an increased emission band at about 400 nm (Figure 16b), which
corresponds to the emission of the ligand. This fluorescence spectral response can be ascribed to the
enhanced conjugation effect of the oxidized product DHA and thus the inhabited PET process from the
TPTC ligand to the Ce ion. Subsequently, by introducing the Eu ions into the MOFs ZJU-136-Ce, the
Qian group constructed a dual-emissive MOFs, ZJU-136-Ce1−xEux (x = 0.24, 0.36), which can serve as
an efficient ratiometric probe for monitoring AA [122]. The same research group also reported a new
Zn-MOF, ZnL(H2O) (ZJU-137, H2L = 4,4′-(1H-pyrazole-1,3-diyl)dibenzoic acid, for the fluorescence
“turn-off” detection of AA [123].
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3.3. MOF-Based Chemodosimeter for 5-Hydroxytryptamine

Shi and Cheng et al. presented a Ln-MOF, Ln-MOF 1: {[Eu(TDA)(H2BTEC)0.5(H2O)3]·H2O}n

(H2TDA = thiazolidine 2,4-dicaboxylic acid, H4btec = 1,2,4,5-benzenetetracarboxylic acid), for sensing
5-hydroxytryptamine (HT) and 5-hydroxyindole-3-acetic acid (HIAA), which was synthesized by
reacting Eu3+ with mixed ligands of H2TDA and H4BTEC [124]. Ln-MOF 1 is crystallized in the
monoclinic space group P21/c, in which each Eu3+ ion is nine-coordinates in a spherical capped square
antiprism coordination geometry (Figure 17a). Due to the conjugated π system and the pronounced
antenna effect of the ligand BTEC, Ln-MOF 1 displays intense characteristic emissions of the Eu3+

emitter with a maximum peak located at 616 nm, which is ascribed to the 5D0→
7F2 transition of Eu3+

ion. In the presence of HT or HIAA, the luminescence of the Ln-MOF 1 can be effectively quenched
(Figure 17b,c). This process was attributed to the competitive absorption of excitation light by the
analyte and the ligand. Ln-MOF 1 displayed several favorable features for HT and HIAA sensing,
including high stability over a wide pH range and long-term storage, excellent sensitivity, and fast
response time.
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3.4. MOF-Based Chemodosimeter for H2O2

The hydrogen peroxide (H2O2) mediated conversion of arylboronates to phenols has been widely
exploited for the development of fluorescent H2O2 probes [125]. On the basis of this unique chemical
reaction, Biswas et al. developed a Zr-MOF based probe, Zr-UiO-66-B(OH)2, for sensing H2O2 [126].
Zr-UiO-66-B(OH)2, which can be can be easily prepared by reacting ZrOCl2·8H2O with the linker
of BDC-B(OH)2 (2-boronobenzene-1,4-dicarboxylic acid) (Figure 18). Zr-UiO-66-B(OH)2 can act as
a sensitive and selective off−on luminescent chemodosimeter for H2O2 with a 4-fold increment in
the fluorescence intensity upon the addition of an excess amount of the target. Moreover, the probe
Zr-UiO-66-B(OH)2 was successfully applied to image H2O2 in MDAMB-231 cells.
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4. MOF-Based Chemodosimeters for Ions

4.1. MOF-Based Chemodosimeters for Fluoride Ions

The fluoride ion, F−, as a typical hard Lewis base with the smallest ionic radius and highest
charge density, has attracted much interest due to its association with various biological, medical, and
technological processes. Commonly, fluoride is considered to be a critical component for preventing
dental caries as fluoride can promote the formation of enamel-strengthening fluorapatite [127–129].
However, the over intake of fluoride can lead to excess mineralization within oganisms and cause gastric
and kidney problems. Various analytical techniques have been developed for sensing fluoride [130],
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including the well-established electrochemical method [131,132], chromatography [133,134], and
colorimetric and fluorogenic assays [135]. In the past decades, numerous fluorescent probes have been
developed for fluoride based on different fluoride-participated processes, such as fluoride-induced Si−O
or Si−C bond cleavage, H−F hydrogen bonding formation, and Lewis acid−base interactions [136–138].
By exploiting these special reactivities of fluoride, several MOF-based luminesscent probes have
recently been developed for its detection [139,140].

Yin et al. reported a reaction-based MOF probe (Eu-bop, Eu2(isp)3(H2O)2) for fluoride ions [141].
Eu-bop was prepared by using Eu3+ as the metal node and 5-bop (5-boronoisophthalic acid) as the
ligand that contains a recognition moiety of a boric acid group for the target F−. The substituted boric
acid group also can tune the electronic structure of the ligand and resulted in an incomplete energy
transfer from the ligand to Eu3+ emitter in the probe Eu-bop. Therefore, the Eu-bop displayed two
emission bands: 366 nm, corresponding to the ligand of 5-bop; and 570–750 nm, corresponding to
Eu3+. Upon the addition of fluoride ions, the emission intensity at 366 nm was significant increased
with a concomitant decrease in emissions at 625 nm (Figure 19a). The fluorescence response can be
ascribed to the OH/F exchange reaction on the boron atom, which changed the hybridization state
of boron from sp2 (−B(OH)2) to sp3 (−BF3), and thus disrupted the pπ−π conjugation of the 5-bop
and the decreased intersystem crossing efficiency (Figure 19b), as well as the antenna effect of the
ligand. The fluorescence intensity ratio (I625/I366) of the probe system was found to vary linearly with
the concentration of fluoride in a range of 4–80 µM. The probe was also applied to detect fluoride in
real samples of river and underground water.
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Recently, Stylianou et al. developed a luminescent lanthanide MOF, ([Eu(tctb)(H2O)]·2DMF),
referred to as SION-105 for the recognition of fluoride ion [142]. SION-105 consisted of tris
(p-carboxylic acid) tridurylborane ligand (tctb3−) and an EuIII metal center. The ligand tctb3−

contains a three-coordinate B acting as the recognition site for F− and the surrounding duryl groups
offering size-selective steric protection from other interferences (Figure 20a). SION-105 displayed a
strong characteristic EuIII luminescent emission due to the efficient antenna effect of the ligand tctb3−

(Figure 20d). Upon the addition of F−, the emissions of the probe can be quenched due to the specific
interaction of F− with the B Lewis acid site. A linear luminescence quenching response of SION-105
towards the F− ion was observed in a range of 0.5 to 2.0 ppm (Figure 20b). A Stern−Volmer plot of
quenching with the F− concentration indicates the occurrence of both static and dynamic quenching
(Figure 20c).
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Reproduced with permission from [142]. Copyright American Chemical Society, 2019.

4.2. MOF-Based Chemodosimeter for Hg2+

Mercury is one of the most toxic heavy metals in the environment. In aqueous media, mercury can
be transformed into methylmercury, a powerful neurotoxin, which can be accumulated and ingested
by humans through the food chain [143–145]. In the human body, methylmercury can lead to serious
symptoms, such as cognitive and motor disorders, neurological impairments, brain damage, and even
death [146–148]. These environmental and biological problems have prompted the rapid development
of techniques for sensing mercury [149–153]. Until present, many reaction-based fluorescent probes
for Hg2+ have been developed based on various Hg2+-induced chemical processes [154–156], such as
desulfation or deselenization processes, desulfation and cyclization processes, thiol elimination process,
and the oxymercuration−elimination of vinyl/alkyne ether. Recently, Ghosh reported a MOF probe
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(UiO-66@Butyne) for the reaction-based detection of Hg2+ [157]. UiO-66@Butyne was prepared from Zr
ion and a ligand of 2,5-bis (but-3-yn-1-yloxy) terephthalic acid, which contained a butyne moiety acting
as the recognition site for Hg2+ (Figure 21a). The prepared UiO-66@Butyne retained the crystalline
structure of MOF UiO-66 and showed a strong green emission (λem,max = 537 nm). Addition of Hg2+ to
the aqueous solution of UiO-66@Butyne can result in fluorescent quenching of the system (Figure 21b),
which can be attributed to the target-induced conversion of UiO-66@Butyne to the less fluorescent
product of UiO-66@OH through the process of oxymercuration−elimination of ethynyl ether. As this
MOF-based chemodosimeter exploited the specific reactivity of the target, UiO-66@OH exhibited
excellent selectivity for Hg2+.
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4.3. MOF-Based Chemodosimeter for CN−

The cyanide ion is an extremely poisonous chemical with widespread applications in industries
such as metal mining, electroplating, and plastic and fertilizer manufacturing [158,159]. Various
methods have been developed for the quantitative analysis of CN−, including the titration method,
electrochemical assays [160], chromatography [161], as well as the colorimetric and fluorogenic
method [162]. Among these methods, the design and use of fluorescent probes for sensing CN−

have received considerable attention [163–165]. The chemososimeters for CN− monitoring are
normally associated, with several typical chemical reactions, including the cyanohydrin forming
process, additions to the dicyano-vinyl group, michael addition, and indolium or pyridinium addition
reactions. Recently, based on the specific addtion reaction of CN− dicyano-vinyl group, Ghosh
developed a Zeolitic imidazolate framework, M-ZIF-90 ([Zn(C8H6N4O2)]n), for fluorescence sensing
CN− [166]. M-ZIF-90 was prepared by incorporating the recognition moiety of dicyano-vinyl onto
the aldehyde-appended ZIF-90 via post-synthetic modification (Figure 22). In the H2O/DMSO (1:1)
mixture, M-ZIF-90 displayed a turn-off fluorescence response towards CN− based on the nucleophilic
addition of CN− to the dicyano-vinyl group, which would interrupt the π-conjugation of the probe
and thus result in significant fluorescence change.
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5. Conclusions

In recent years, the design, synthesis, and application of MOFs have attracted an ever-increasing
interest of researchers in the fields of chemistry, physics, materials, and engineering. The porous and
crystalline nature, versatile selections for metal nodes and organic linkers, and tunable structures also
endow MOFs with unique characteristics for sensing applications. In this review, we summarized
recently developed MOF-based luminescent chemodosimeters. These reaction-based luminescent
probes inherit the robust structural features of MOFs (e.g., large surface area, high porosity, and
good thermal and chemical stability) and also exhibit excellent selectivity as they exploit the specific
reactivities of the target analyte. Several strategies have been involved in the development of MOF-based
chemodosimeters: (i) installing the recognition moiety onto the ligand via a post-synthetic modification
approach or using a recognition moiety-appended ligand for preparing MOFs; (ii) construction of
small-molecule fluorescent probe@MOF hybrid nanocomposites, in which the MOFs act as a carrier to
confine the responsive probe; (iii) based on the target-induced collapse of the MOF structure, etc. Further,
the MOF scaffolds exploited for constructing luminescent chemodosimeters are normally required to
possess several features, including high stability and dispersibility in aqueous (or aqueous-containing)
media, feasibility of installing the recognition moiety for certain analytes, environmental friendliness,
and/or good biocompatibility for biosensing and bioimaging applications. Until now, although, dozens
of MOF-based chemodosimeters have been reported for different analytes with several desirable traits,
such as high selectivity and sensitivity, good stability, and rapid response, some critical performance
limitations for this type of luminescent probe still need to be improved, including short-wavelength
light excitation and/or emission, insufficient designing strategies for the probe, and limited target
analytes. To overcome these shortcomings, several future directions for the design of MOF-based
chemodosimeters are proposed herein.

(i) Employing New Rationally Designed Ligands

Most of the developed MOF-based chemodosimeters are ligand-based emission systems. Currently,
the used ligand normally belongs to a blue-emissive fluorophore (e.g., BDC) with ultraviolet to blue
light excitation, which is unfavorable for applications in complex samples, as well as in bioimaging.
Future efforts should focus on the design and utilization of new ligands for constructing luminescent
MOFs that have typical spectral features, such as visible/near-infrared emission, two-photon excitation,
and large Stokes shifts.

(ii) Developing Dual-Ligand Mofs Systems

Compared with the single-ligand system, the dual-ligand MOFs have greater structural and
functional diversity. For example, a fluorescence resonance energy transfer (FRET) sensing system
could be achieved by carefully designing the electronic structure of two different ligands. Ratiometric
fluorescent probes could be obtained by using one ligand as the target-responsive unit and the other
ligand as the internal signal reference.
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(iii) Expanding the Application Scope for Mof-Based Chemodosimeters

To date, MOF-based chemodosimeters have only been employed for sensing some ions and
small molecules, such as F−, Hg2+, CN−, H2S, HClO, Cys, H2O2, AA, and HT. It is anticipated that
future efforts will focus on developing MOF-based chemodosimeters for monitoring other important
biomolecules, such as bioenzymes, as well as for bioimaging applications.

In summary, MOF-based luminescent chemodosimeters have increasingly attracted research
interest. It can be expected that ongoing studies in this area will lead to the rapid development of more
effective luminescent nanomaterials for sensing and imaging applications.
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Abbreviations

IPA isophthalic acid
NDC napthalene-2,6-dicarboxylic acid
TCPP meso-tetrakis (4-carboxylphenyl) porphyrin
HBSS Hanks’ balanced salt solutions
BBS boricacid−borax buffer
SNP S-nitroso-N-acetyl-dl-penicillamine
PPG dl-propargylglycine
TO thiazole orange
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
FCA flow cytometry analysis
CLSM confocal laser scanning microscopy
Cys cysteine
Hcy homocysteine
GSH glutathione
DNP dinitrophenyl
PET photoinduced electron transfer
H3tca 4,4′,4”-tricarboxyltriphenylamine
Ppca 1H-pyrrolo-[2,3-b]pyridine-2-carbaldehyde
PLQY photoluminescence quantum yield
RhB rhodamine B
AA ascorbic acid
Isp isophthalic acid
5-bop 5-boronoisophthalic acid
H3tctb tris (p-carboxylic acid) tridurylborane
H2TDA thiazolidine 2,4-dicaboxylic acid
BDC-B(OH)2 2-boronobenzene-1,4-dicarboxylic acid
ZIF Zeolitic imidazolate frameworks
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