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Abstract

Primary ciliary dyskinesia is a genetically heterogeneous autosomal recessive disease in which 

mutations disrupt ciliary function, leading to impaired mucociliary clearance and life-long lung 

disease. Mouse tracheal cells with a targeted deletion in the axonemal dynein intermediated chain 

gene Dnaic1 differentiate normally in culture but lack ciliary activity. Gene transfer to 

undifferentiated cultures of mouse Dnaic1−/− cells with a lentiviral vector pseudotyped with avian 

influenza hemagglutinin restored Dnaic1 expression and ciliary activity. Importantly, apical 

treatment of well-differentiated cultures of mouse Dnaic1−/− with lentiviral vector also restored 

ciliary activity, demonstrating successful gene transfer from the apical surface. Treatment of 

Dnaic1flox/flox mice expressing an estrogen responsive Cre recombinase with different doses of 

tamoxifen indicated that restoration of ~20% of ciliary activity may be sufficient to prevent the 

development of rhinosinusitis. However, while administration of a β-galactosidase expressing 

vector to control mice demonstrated efficient gene transfer to the nasal epithelium, treatment of 

Dnaic1−/− mice resulted in a low level of gene transfer, demonstrating that the severe rhinitis 

present in these animals impedes gene transfer. The results demonstrate that gene replacement 

therapy may be a viable treatment option for primary ciliary dyskinesia, but further improvements 

in the efficiency of gene transfer are necessary.
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Introduction

Primary ciliary dyskinesia (PCD) is a rare genetic disease in which mutations in critical 

genes impair the function of motile cilia resulting in reduced or absent mucociliary clearance 

(MCC) 1, 2. Patients with PCD, as a result of the defect in MCC, suffer from neonatal 

respiratory distress, chronic rhinosinusitis, otitis media, and repeated airway infections, 

resulting in bronchiectasis 1, 2. Additionally, abnormalities of situs occur with increased 

frequency in this population 3, 4, and males with PCD are typically infertile 1, 2. Current 

treatments are designed to reduce the incidence and severity of respiratory tract infections, 

as there are no corrective treatments available 5, 6.

Recent genetic studies have identified some of the genes mutated in PCD, including 

components of the dynein motors (DNAI1, DNAI2, DNAH5, DNAH11), radial spokes 

(RSPH4A, RSPH9) and other genes involved in ciliary assembly (KTU, LRRC50) 7. Because 

of the genetically heterogeneous nature of the disease, which makes it unlikely that a single 

drug can be identified to treat/correct each causative mutation, gene transfer may be a viable 

therapeutic option for PCD. For example, a drug that corrects a specific defect in one 

axonemal protein would be unlikely to correct mutations in a different axonemal protein. In 

contrast, if a suitable gene transfer vector were available, by simply replacing the cDNA the 

vector could be used to correct most, if not all, PCD causing mutations. Heterozygotes have 

apparently normal ciliary function, indicating that dominant negative mutations are not 

common, and the conducting airways, which are the site of the most serious pathology, are 

relatively accessible to administration of a viral vector 1, 2.

Much prior effort has been devoted to developing gene transfer as a therapy for other airway 

diseases, most notably, cystic fibrosis. These studies have identified several challenges to 

successful gene therapy, including the resistance of well-differentiated (polarized) airway 

epithelium to apical transduction by viral vectors, the difficulties of obtaining long-term 

expression, and the development of an immune response to many vector components 8-10. 

Although gene therapy of airway diseases has not yet been successful, researchers are 

continuously making advances in vector design and production. For example, several groups 

have identified viral envelope proteins useful for targeting lentiviral vectors to the apical 

membrane of differentiated airway epithelial cells 11-14. Our group has recently 

demonstrated that pseudotyping lentiviral vectors with an avian influenza hemagglutinin 

(HA) protein allows efficient apical transduction of differentiated airway epithelial 

cells 15, 16. The incorporation of endogenous cellular promoters and the use of integrating 

lentiviral vectors to transduce airway epithelium in animal models have resulted in stable, 

long-term expression 11-14, 17.

To test the hypothesis that gene transfer could restore normal ciliary activity to PCD cells, 

we utilized an inducible mouse model of PCD we have previously characterized 18. In this 

model, activation of an estrogen responsive Cre recombinase (CreER) by tamoxifen 

treatment causes the deletion of two exons flanked by loxP sites in the axonemal dynein 

intermediate chain 1 (Dnaic1) gene. The mouse Dnaic1 protein is 82% identical to the 

human DNAI1 protein, and mutations in DNAI1 cause about 10% of PCD cases 19-22. The 

deletion disrupts the structure of critical WD40 domains in the Dnaic1 protein and prevents 
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the assembly of the outer dynein arm 23, resulting in immotile cilia and a PCD phenotype. 

Unlike traditional knock-out models, the use of an inducible system avoids the 

complications of neonatal hydrocephalus 24, 25, heart defects 26, 27, and other situs 

abnormalities that frequently occur in PCD mice, allowing us to study adult PCD animals18.

In this report, we have tested the ability of an HA-pseudotyped lentiviral vector to restore 

ciliary activity to both undifferentiated and differentiated PCD cells in vitro. We also 

utilized our inducible mouse model to estimate the level of gene transfer required to prevent 

upper airway disease and to investigate the turnover of a ciliary protein, two important 

aspects that will have to be considered when designing clinical trials for PCD. Finally, we 

examined the effect of preexisting rhinosinusitis on the ability of the HA-pseudotyped 

lentiviral vector to transduce the nasal epithelium of PCD animals.

Results

Construction of lentiviral vectors

A full-length mouse cDNA for Dnaic1 was cloned into a lentivirus gene transfer vector 

(SIN6.1CB-W) based on the equine infectious anemia virus (EIAV, 15) and the construct 

was verified by direct sequencing (Fig. 1a). The Dnaic1 cDNA was under control of hybrid 

promoter consisting of the human CMV enhancer followed by the chicken β-actin promoter 

(CB) that is ubiquitously expressed 16. Additional vectors expressing the reporter genes 

EGFP, firefly luciferase, or β-galactosidase (β-gal) from the same construct were utilized as 

controls in these studies 16. Vectors were also constructed that contained an internal 

ribosomal entry site (IRES) after the Dnaic1 cDNA followed by a cDNA encoding EGFP, 

however, these vectors were found to be inefficient. Viral particles pseudotyped with 

influenza hemagglutinin (HA) from fowl plague virus were produced by transfection of 

293T cells as previously described 16. Transduction of 293 cells with Dnaic1-encoding 

lentivirus resulted in expression of a protein of the correct size that reacted with a purified 

monoclonal antibody against human DNAI1 on Western blotting (Fig. 1b, 18) confirming the 

vector was expressing full-length Dnaic1.

Gene transfer to undifferentiated PCD cells restores ciliary activity

To test the hypothesis that exogenous expression of Dnaic1 could restore ciliary activity to 

Dnaic1 −/− (PCD) cells, mouse tracheal epithelial (MTE) cells from Dnaic1 flox/flox mice that 

also express CreER were cultured at an air/liquid interface (ALI) on porous inserts 18. Cells 

were treated with tamoxifen to activate CreER and induce the deletion of Dnaic1 and 

generate PCD cells as previously described 18. After the cells reached confluence, but before 

ciliated cell differentiation was visible (day 5 of culture), cultures were treated apically with 

Dnaic1-encoding HA-EIAV lentivirus and then monitored for the appearance of ciliary 

activity. As a negative control, cultures received either no vector or were transduced with a 

lentiviral vector expressing EGFP from the CB promoter. Each experiment also included 

cultures that were not treated with tamoxifen or cultures from heterozygous mice (Dnaic1
flox/wt ,CreER+ ) treated with tamoxifen as a positive control for ciliogenesis. As expected, 

the percentage of the culture surface area demonstrating active ciliary beating in the PCD 

cells and PCD cells transduced with the EGFP expressing control vector was extremely low, 
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averaging <1% in 4 separate experiments (Supplemental Video S1). Transduction of PCD 

cells with a Dnaic1 expressing lentivirus resulted in a clearly visible increase in ciliary 

activity, seemingly in parallel with the development of ciliary activity in the positive control 

cultures. In four separate experiments, treatment of undifferentiated cultures of PCD cells 

with lentivirus expressing Dnaic1 increased the level of ciliary activity significantly over 

untreated PCD cultures. At the time when ciliary activity was maximal in the vector-treated 

cultures, the level of ciliary activity averaged ~10% of the positive control cultures, 

compared to ~0.4% for the PCD cultures (p= 0.04 by student's t-test, n=4; Figure 2a). 

Measurement of ciliary beat frequency (CBF) using the SAVA system demonstrated that 

there was no significant difference in CBF between the positive control cultures and the 

virally transduced cultures (heterozygote=18.4 Hz; experimental=18.2 Hz; p=0.42 by 

students t-test, n=9; Supplemental Video S2, S3). Figure 2b illustrates the typical time 

course of the development of ciliary activity in an experiment in which treatment with a 

lentiviral vector expressing Dnaic1 from the CB promoter increased ciliary activity from 

0.1% to 8.5%. Ciliary surface activity in the positive control cultures typically reached 

40-50%, depending on the culture and the time of measurement. Ciliary activity was 

maintained in the virally transduced cultures for the remainder of the experiment, usually 

2-3 weeks, at which time ciliary activity in the positive control cultures was also diminishing 

due to the limited lifespan of primary cultures.

At the end of these experiments, individual cultures were harvested for various additional 

analyses. Qualitative analysis of cellular DNA was performed by PCR amplification using 

primers specific for deleted exons of Dnaic1 followed by gel electrophoresis. Because the 

primers span the intron between exons 17 and 18, it is possible to distinguish products 

derived from the endogenous genomic Dnaic1 (333 bp) and products derived from the 

vector encoded cDNA (223 bp). These experiments confirmed the essentially complete 

deletion of the endogenous Dnaic1 in cultures treated with tamoxifen (as shown previously; 

Fig. 3a in ref. 18) and the presence of the integrated viral genome in cultures treated with 

vector (2/2 cultures; data not shown). Treatment of PCD cultures with Dnaic1 expressing 

lentivirus also resulted in easily detectable levels of Dnaic1 RNA. Quantitative RT-PCR 

using exon 17-18 specific primers demonstrated that virally transduced cultures expressed 

Dnaic1 RNA at levels between 7 and ~140-fold higher than the PCD cultures when analyzed 

4 weeks after transduction (n=3; data not shown).

Apical gene transfer to differentiated PCD cells restores ciliary activity

Gene transfer to differentiated airway epithelial cells from the apical surface has been shown 

to be a major obstacle to successful gene therapy of lung diseases, including cystic fibrosis. 

To determine if apical delivery of an HA-EIAV lentivirus encoding wild-type Dnaic1 to 

fully-differentiated PCD cells could restore ciliary activity, tamoxifen-treated MTE cells 

from Dnaic1 flox/flox /CreER+ animals were cultured at an ALI for 19 days. At this time, all 

positive control (non-PCD) cultures were well-differentiated and displayed easily visible 

ciliary activity covering 35-65% of the culture surface, while the PCD cultures had few or 

no actively beating ciliated cells. Apical treatment of the PCD cultures with Dnaic1-

expressing lentiviral vectors again resulted in an increase in ciliary activity. The percentage 

of the surface area of the vector-treated cultures increased to levels as high as 8.8%, while 
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the PCD cultures again averaged less than 1.0%. The average ciliary activity in treated 

cultures was 10-fold higher than that in the PCD cultures (6.1% vs 0.6%; p=0.02 by 

student's t-test, n=4). Compared to the positive control cultures that had an average of 56% 

of their surface covered by active ciliated cells, treatment with the lentiviral vector restored 

~10% of the normal level of ciliary activity (Fig. 3a). Active ciliated cells appeared in the 

cultures 5-6 days after vector application (Fig. 3b), and increased in number over the next 

several days. RT-PCR analysis demonstrated full-length Dnaic1 RNA in differentiated PCD 

cultures treated with vector, and qRT-PCR with primers specific for exons 17-18 

demonstrated levels several thousand-fold that observed in the PCD cultures (n=3; data not 

shown). The amount of intact Dnaic1 RNA in the cultures transduced after differentiation 

appeared greater than that found in cultures transduced early in culture ; this most likely 

reflects the increased cell turnover in the cultures transduced early due to the longer time 

interval between the viral treatment and the RNA isolation in the two groups. Similarly, 

Western blot analysis showed the levels of intact Dnaic1 protein to be higher in the virally 

transduced differentiated cultures than in the virally transduced undifferentiated cultures. 

Dnaic1 protein was expressed in the late cultures at almost 60% of the level in positive 

control cultures, while no full-length Dnaic1 protein was detectable in the cultures that were 

transduced at earlier time points (data not shown).

In contrast to the cultures treated with vector before differentiation, in which the appearance 

of ciliary activity roughly paralleled the development of ciliary activity in the positive 

controls, we noticed a delay of 5-6 days before ciliary activity was observed in the already 

differentiated PCD cultures following vector treatment (compare Figure 2b and 3b which are 

from the same experiment). One hypothesis for the delay in restoration of ciliary activity to 

the differentiated PCD cells is that the incorporation of the vector-expressed wild-type 

Dnaic1 protein into the already fully assembled ciliary axonemes may be rate-limiting. Very 

little is known about the time required for assembly or turnover of axonemal proteins in 

mammalian systems, and this may be an important consideration when designing or testing 

treatments for PCD. Therefore we took advantage of the inducibility of our system to study 

the turnover of the intact Dnaic1 protein in cultured tracheal epithelial cells. In these studies, 

MTE cells from Dnaic1 flox/flox /CreER+ mice were cultured at an ALI in the absence of 

tamoxifen until ciliated cell differentiation was well-established (14-21 days). The 

percentage of the culture surface area covered with actively beating cilia was measured and 

the cultures were then treated with tamoxifen (1 μM tamoxifen in media on day 0, 2, and 4) 

to induce the deletion of exons 17-18 from Dnaic1. Cultures were harvested at various times 

during treatment and the amount of intact Dnaic1 gene and the level of Dnaic1 protein were 

measured, along with the amount of ciliary activity remaining. As expected, treatment with 

tamoxifen rapidly induced the deletion of the floxed Dnaic1, decreasing the percentage of 

intact Dnaic1 to ~60% 48 hrs after tamoxifen addition and to < 25% after 5 days of 

tamoxifen treatment (Fig. 4). Similarly, the amount of intact Dnaic1 protein in the cellular 

(soluble) fraction of total cell lysates decreased rapidly over the first 5 days of treatment, 

while the level of deleted Dnaic1 protein increased (Fig. 4 and supplemental Fig. S1). In 

contrast, the level of intact Dnaic1 protein in the axonemal fraction (pellet) decreased at a 

slower rate, with over 50% of the untreated control level remaining 5 days after initiation of 

treatment and almost 30% remaining 14 days after initiation of treatment (Fig. 4 and 
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supplemental Fig. S1). The high levels of intact Dnaic1 protein remaining in the axonemal 

fraction were reflected in even higher levels of ciliary activity, with over 90% of the activity 

of untreated control cultures maintained at 5 days, and >70% maintained at 14 days (Fig. 4). 

These results suggest that Dnaic1, and likely other ciliary proteins, are very stable once they 

are incorporated into the axonemal structure. Further, these results suggest that the delay in 

the restoration of ciliary activity in well-differentiated PCD cultures may be due to the 

relatively slow incorporation of the newly synthesized Dnaic1 protein into pre-existing 

axonemes.

The above studies clearly demonstrate that apical treatment with a lentiviral vector can 

restore ciliary activity to PCD cells in vitro, however the percentage of cells corrected was 

only 10-15% of the positive control cultures. To determine if this level of transfer might be 

sufficient to improve the outcome of PCD patients, we treated Dnaic1 flox/flox /CreER+ mice 

with different doses of tamoxifen to induce different levels of Dnaic1 gene deletion. We also 

included several Dnaic1 WT/flox / CreER+ animals that were not treated with tamoxifen, but 

because of low levels of leakiness (i.e. CreER activation and deletion of the target gene in 

the absence of tamoxifen treatment 18), also had varying levels of genomic Dnaic1 deletion. 

Mucociliary clearance was measured in the nasopharynx as previously described18. 

Following the measurement of MCC, the nasal cavity was fixed for histology and the level 

of intact genomic Dnaic1 remaining was determined in excised tracheal tissue by qPCR. As 

shown in Fig. 5a, the rate of mucociliary clearance was directly correlated with the level of 

intact genomic Dnaic1 remaining (R2 =0.7). As noted in our previous study 18, most animals 

with < 20% of intact genomic Dnaic1 remaining had essentially no mucociliary clearance, 

although 2 animals with 16% and 19% Dnaic1 had MCC rates of ~2 mm/min and 1 animal 

with 22% of the wild-type level of intact genomic Dnaic1 had a MCC rate of 3.8 mm/min. 

Examination of the nasal cavity of these animals revealed essentially normal histology in 2 

while the third showed severe mucus accumulation and sinusitis (Fig. 5b). In contrast, all 

animals with lower levels of intact genomic Dnaic1 (<15%) had extensive mucus 

accumulation in the nasal cavity, in agreement with previous studies of these PCD mice. 

Together, these studies indicate that successful gene transfer of as little as 20% of the 

normal level of a ciliary gene may be able to restore a low level of MCC and significantly 

lessen the severity of disease.

To determine if the HA-pseudotyped lentiviral vector could efficiently transduce PCD 

airway epithelium in vivo, we administered vector to groups of PCD and control animals by 

nasal inhalation. To measure both the level of gene transduction and the stability of 

expression, we first utilized a vector expressing both firefly luciferase and β-gal from a 

single CB promoter construct 16. Four days after vector administration, animals were 

anesthetized and luciferase activity was measured in the nasal cavity as described in 

methods. Clear evidence of gene transfer to the control animals was observed, with an 

average luciferase activity ~8-fold higher than the untreated (no virus) negative control 

animal (1.6 × 106 ± 2.9 × 105 photons/sec/cm2 (avg. ± S.E.M., n=6) vs. 2.1 × 105 ± 8.0 × 

104 photons/sec/cm2 (avg. ± S.E.M. of 3 repeat measures); Fig. 6). In contrast, only one of 

the PCD animals exhibited a substantial level of luciferase activity (1.0 × 106photons/sec/

cm2), with the PCD animals together averaging 4.6 × 105 ± 1.5x 105 photons/sec/cm2 (avg ± 
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S.E.M., n=5; significantly different from controls with p< 0.005 by student's t-test) The level 

of luciferase activity was increased in the control animals at 7 and 12 days after treatment, 

while the level of activity in the PCD animals, although increased, remained significantly 

lower than the controls. At day 7, the control animals averaged 1.3 x107 ± 2 × 106 compared 

to 1.7 × 106 ± 8.4 × 105 for the PCD animals; at day 12 the control animals averaged 2.4 × 

107 ± 5.9 × 106 while the PCD animals averaged 2.2 × 106 ± 1.2 × 106 (significantly 

different at both days with p< 0.007). After one month, the level of luciferase activity 

declined in both groups, and was no longer significantly different between them, although 

the average activity remained higher in the controls (Fig. 6). To examine the cellular 

distribution of viral mediated gene transfer, animals were euthanized and tissues were 

processed for detection of β-gal. Sections were prepared and β-gal positive cells were 

enumerated in the nasal cavity and trachea. In agreement with the luciferase data, there were 

significantly fewer β-gal positive cells in the nasal cavity of the PCD mice compared to the 

control animals (2.2 ± 2 vs 116 ± 54, mean ± S.E.M.in 3 sections/ animal; n=5; p=0.03 by 

student's t-test). In contrast, there was no significant difference in the numbers of β-gal 

positive mice in sections of the tracheas from PCD mice compared to the control animals 

(174 ± 107 vs 30 ±24; n=5; p>0.11 by student's t-test), indicating that the inhibition of gene 

transfer was limited to the site of disease pathology, i.e., the nasal cavity. To further 

examine the distribution of virally transduced cells in the PCD animals compared to 

controls, additional groups of PCD and control animals were treated with an HA-

pseudotyped lentivirus expressing only β-gal. Animals were again administered vector by 

nasal inhalation, but were euthanized and examined for positive gene transfer about the time 

of maximum luciferase expression (Fig. 6; 12 days after treatment). In confirmation of our 

earlier study 16, control animals displayed a high level of gene transfer to the ciliated 

epithelium of the nasal cavity. β-gal positive cells were easily identified along the septum, 

nasal turbinates, and throughout the nasopharynx, while olfactory tissue was routinely 

negative (Fig. 7a, c). PCD animals displayed little or no gene transfer to the nasal epithelium 

(Fig. 7b, d). While control animals averaged over 500 β-gal positive cells, PCD animals had 

significantly fewer positive cells (532 ± 42; n=7 vs. 62 ± 31; n=9; p=1.3 x10-7 by student's t-

test). In contrast, transfer to the trachea was again similar between the two groups 

(control=285 ± 31, PCD =298 ± 39; p> 0.4 by student's t-test, Fig 7e, f, g, h). These data 

clearly demonstrate that the accumulated mucus and/or inflammation in the nasal cavity of 

the PCD animals prevent efficient gene transfer.

Discussion

Primary ciliary dyskinesia is a genetically heterogeneous disease that occurs with an 

incidence of approximately 1:16,000, and is therefore classified as a “rare” or “orphan” 

disease. Currently there are no specific treatments available for PCD, and individuals with 

PCD suffer from repeated respiratory tract infections eventually leading to 

bronchiectasis 2, 5. Our laboratories have been investigating the development of gene 

replacement therapy as a treatment for PCD and other respiratory diseases, including cystic 

fibrosis. To investigate the pathogenesis and treatment of PCD, we have previously 

developed an inducible mouse model of PCD that does not develop hydrocephalus or 
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developmental (heart) defects 18. In this work, we have utilized this model to investigate 

several aspects of gene therapy as a treatment for PCD.

Our initial studies demonstrated that expression of the wild-type Dnaic1 from a lentiviral 

vector successfully restored ciliary activity to cultures of undifferentiated PCD cells. 

Measurements of ciliary beat frequency were not significantly different between the virally 

transduced cultures and the controls, suggesting that expression of the wild-type Dnaic1 was 

sufficient to restore normal ciliary activity to the PCD cells. This is consistent with an earlier 

study in which a VSV-g pseudotyped lentiviral vector was used to express DNAI1 in human 

PCD cells 28. While it may be expected that expression of the wild-type protein will also 

lead to the correct orientation and regulation of ciliary activity required for efficient 

mucociliary clearance, further studies are required to test this hypothesis.

Importantly, for delivery of a gene transfer vector to the airways by inhalation, the vector 

must be able to transduce the airway epithelium via the apical surface. We have recently 

reported that influenza HA-pseudotyped vectors can mediate efficient gene transfer to 

murine airways 16. In this study, we found that apical administration of influenza HA-

pseudotyped vector expressing Dnaic1 to fully differentiated cultures of PCD cells restored 

ciliary activity to a similar level as did treatment of undifferentiated cells. In cultures that 

were examined at the end of the experiment, we observed higher levels of Dnaic1 RNA and 

protein in cultures that were transduced late in culture compared to those transduced early. 

Although we think it is likely this difference is due to the longer time period between 

transduction and analysis allowing for greater turnover (loss) of the transduced cells in the 

cultures treated early, other possibilities need to be considered. For example, it is possible 

that in the late stage cultures the PCR analysis was detecting residual vector RNA. In both 

conditions, the maximum level of correction achieved was approximately 10%; it is unclear 

at this time what the rate-limiting step for correction is. Interestingly, the appearance of 

ciliary activity in apically transduced differentiated cultures required several days, whereas 

expression of a reporter protein (e.g., EGFP) is typically observed in <72 hrs (e.g.,15). This 

observation prompted us to examine the stability the Dnaic1 protein by taking advantage of 

the inducible nature of our model. Unlike Chlamydomonas, an organism that rapidly sheds 

and regrows its flagella 29, there is little known about the turnover of respiratory ciliary 

proteins. Our studies indicated that although the Cre-mediated deletion of Dnaic1 and the 

decline in the level of cytoplasmic Dnaic1 protein occurred rapidly after tamoxifen 

treatment, the level of axonemal Dnaic1 protein and ciliary activity declined at a much 

slower rate. These studies demonstrate that once ciliary proteins are assembled into 

axonemal structures they exhibit an increased stability. These results also suggest that the 

process of Dnaic1 assembly into outer dynein arms (ODA) and the incorporation of 

sufficient ODA into the existing ciliary axonemes to restore motility requires several days. 

Alternatively, it is possible that the vector is transducing undifferentiated or preciliated cells 

that are then undergoing ciliated cell differentiation. In our previous study, 80% of the cells 

transduced by the HA-pseudotyped vector were identified as ciliated cells, making this seem 

less likely 15. Additional studies using a vector expressing both a reporter and the Dnaic1 

protein are necessary to distinguish between these two possibilities.
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Although the studies reported here demonstrate that ciliary activity can be restored to 

individual PCD cells by gene transfer, it is not known what level of gene transfer will be 

necessary to prevent or reduce the disease symptoms caused by PCD. Efficient mucociliary 

clearance in the airways requires the continuous transport of mucus, from the bronchioles to 

the larynx, and so the distribution as well as the number of cells transduced will be 

important determinants of success. To investigate the level of gene transfer required, we 

again took advantage of the inducible nature of our model system to generate individual 

animals with varying levels of Dnaic1 deletion. Measurement of MCC rates in the 

nasopharynx and examination of nasal histology showed that animals with ~ 20% of the 

wild-type level of intact genomic Dnaic1 remaining had some MCC remaining and most 

were free of obvious disease. Although this number (20%) is clearly an approximation, we 

have successfully transduced up to 40% of the surface epithelial cells in the trachea and 

large airways of mice using HA-pseudotyped lentiviral vector 16, suggesting that 

improvements in vector design may make gene therapy for PCD possible.

An additional barrier to gene transfer to the airways of adult individuals with PCD, cystic 

fibrosis, or other diseases is the existence of disease-associated pathology, including the 

presence of excess mucus and/or the presence of inflammatory cells and mediators that may 

reduce or prevent gene transfer. Mice with a deletion of Dnaic1 invariably develop 

rhinosinusitis with an accumulation of mucus and inflammatory cells in the nasal cavity and 

sinuses. Administration of an HA-pseudotyped vector to groups of control and PCD mice by 

nasal inhalation revealed a profound inhibition of gene transfer to the nasal cavity due to the 

presence of rhinosinusitis. In contrast, gene transfer to the trachea and lower airways of PCD 

mice was not significantly affected, demonstrating that the vector was able to successfully 

transduce regions of the airways lacking the excess mucus and inflammation present in the 

nasal cavity. However, additional strategies will be required for successful gene transfer to 

the airways of individuals with pre-existing disease. These may include pre-treatment to 

reduce the level of mucus accumulation and/or inflammation prior to administration of the 

vector. Alternatively, administration of vector to affected individuals early in the course of 

the disease, perhaps prenataly 30, may allow successful gene transfer before the development 

of severe symptoms.

In summary, the results presented here demonstrate that restoration of ciliary activity to 

PCD cells by gene transfer to the apical surface of airway epithelial cells is possible using an 

HA-pseudotyped lentiviral vector, and that successful transfer of ~20% of the normal 

endogenous level of the mutated gene may be sufficient to prevent or mitigate the 

consequences of disease. Using an inducible mouse model of PCD that allows studies of 

adult animals, these studies have also demonstrated a significant inhibition of gene transfer 

to the nasal cavity as a result of pre-existing rhinosinusitis.

Methods

Generation of animals

The generation and breeding of the Dnaic1flox/flox mice expressing CreER from the ROSA 

promoter has been described 18. These mice are maintained on a mixed background 

(C57Bl6/129) and when treated with tamoxifen provide a long-lived animal model of PCD. 
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All procedures using animals were approved by the Institutional Animal Care and Use 

Committee of the University of North Carolina at Chapel Hill, and were conducted in 

accordance with policies for the ethical treatment of animals established by the National 

Institutes of Health.

Cloning of Dnaic1

The cloning of mouse Dnaic1 into the lentiviral vector was performed using standard 

molecular biology procedures and reagents. RNA was isolated from cultured mouse tracheal 

epithelial cells and a full-length cDNA for mouse Dnaic1 was amplified using PfuUltra 

polymerase (Stratagene, Santa Clara, CA) and primers 

ACCaagcttGCAATGCCCTCGAAACAG (sense) and 

TTTtctagaCTGGGCCATACTCTCAGGTTTT (anti-sense). The product was cloned into the 

TOPO vector (TOPO-TA cloning kit; Invitrogen) and sequenced. A clone with the correct 

sequence was used to amplify the Dnaic1 cDNA using Fidelity Fast Start polymerase 

(Roche Diagnostics, Indianapolis, IN) with primers incorporating Sal1 and Not1 restriction 

sites (AATTgtcgaccgGCAATGCCCTCGAAACAGat; 

TTTgcggccgCTGGGCCATACTCTCAGGTTTT). The product was digested, ligated into 

the lentiviral vector SIN6.1CB-W, sequenced, and used for production of vector.

Production of Lentiviral vectors

Recombinant EIAV-based lentiviral vector stocks were generated by transient transfection 

of 293T-based TAB22 cells as previously described 16, 31. Briefly, lentiviral plasmids were 

transfected into 293T cells using the standard calcium phosphate method. After a 48 h 

incubation cell supernatant containing lentiviral vectors was harvested, clarified by low 

speed centrifugation (100 g, 10 min), and filtered through 0.2 μm PES membranes. Vector 

was concentrated by high speed centrifugation at 5000 g (Beckman Avanti J-E centrifuge, 

JS-5.3 rotor) for 21 h at 8°C. Vector pellets were suspended in vector formulation buffer (5 

mM Hepes (pH 7.4), 37 mM NaCl and 40 mM lactose) and stored at −80°C. Recombinant 

lentiviral vector stocks were titered on 293T cells by serial dilution as previously 

described 16. Titers for these experiments ranged from 6-10 × 107 infectious units per ml 

(IFU).

Western blotting of Dnaic1

Detection of Dnaic1 protein by Western blotting was performed using a mouse monoclonal 

antibody generated against a synthetic peptide from the human DNAI1 protein 18 using 

standard procedures. For analysis of mouse tracheal epithelial cells, total cell lysates were 

prepared in Mammalian Protein Extraction Reagent (Pierce, Rockford, IL). Ciliary 

axonemes were isolated from cultured mouse tracheal epithelial cells as previously 

described 32 and prepared in gel-loading buffer. For studies of protein turnover, both the 

soluble (cytoplasmic) and pellet (axonemal) fractions from individual cultures were 

analyzed. Protein samples were fractionated on 4 to 12% Bis-Tris gradient gels (Invitrogen, 

Carlsbad, CA), transferred to nitrocellulose membranes, and probed using Amersham ECL 

Plus reagents (GE Healthcare, Buckinghamshire, UK), all according to manufacturer's 

instructions. For normalization of loading, Western blots of cytoplasmic extracts were 

reprobed with an antibody to GAPDH (Sigma, St. Louis, MO), and axonemal pellets were 
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reprobed with mouse anti-acetylated α-tubulin (Invitrogen). Quantification of signals was 

performed on an Odyssey Imaging System (Licor, Lincoln, NB).

Culture, tamoxifen treatment, and transduction of MTE cells

Procedures for the isolation and culture of mouse tracheal epithelial (MTE) cells have been 

described in detail previously 18, 33. To generate PCD cells for gene transfer studies, MTE 

cells from Dnaic1flox/flox; CreER+/− mice were seeded on collagen coated Millicell Cell 

Culture Inserts (12 mm; 0.4 μm, Millipore) and treated with 1 μM tamoxifen for the first 5-7 

days of culture. As we have observed no difference between heterozygous and wild-type 

cultures, mice from both genotypes were used as controls. Lentiviral vectors with a titer of 

6-10 × 107 infectious units (IFU) per ml (33 μL) were applied to the apical surface of 

washed cultures (day 5 or 19) and allowed to incubate for 3-4 hours before the supernatant 

was removed. Cultures were washed and refed 48 hrs after infection.

For Dnaic1 turnover studies, differentiated cultures of MTE cells from Dnaic1flox/flox;CreER

±mice were cultured in the absence of tamoxifen until ciliated cell differentiation was 

apparent (day 14-21). Experimental cultures were then treated with 1 μM tamoxifen in 

media on day 0, 2, and 4, while positive control cultures received only media. Ciliary 

activity was measured and parallel cultures were harvested for DNA, RNA, and protein 

analysis. Four separate experiments were performed with similar results, although not all 

data were collected from each experiment.

Measurement of ciliary activity

The extent of ciliary activity and measurements of ciliary beat frequency (CBF) were 

performed essentially as previously described 18 using a Nikon Eclipse TE2000 microscope 

and the SAVA software package 34. Briefly, for measurements of the percentage of active 

ciliated surface area, nine different low-magnification fields (one central, eight peripheral) 

from each insert were measured. Typically, 2-3 inserts were measured and averaged at each 

time point. Because the absolute level of ciliogenesis varied between cultures, data is also 

expressed as the percentage of positive control cultures. For comparison between vector-

treated and untreated cultures, the data shown in Figures 2a and 3a is taken from the time-

point when vector-treated cultures showed maximal ciliary activity as a percentage of 

positive control. For determining CBF, positive control (heterozygous) cultures and PCD 

cultures treated with vector on day 5 were washed free of mucus and debris, equilibrated at 

37° C, and 9 random fields were analyzed on day 25 (20 days after vector treatment).

Measurement of Dnaic1 RNA and DNA

RNA and DNA were isolated from MTE cell cultures or tail snips using RNeasy or DNeasy 

reagents and kits (Qiagen Inc., Valencia, CA) according to the manufactures protocols. 

DNA and RNA concentrations were determined by spectrophotometry. Qualitative PCR 

analysis of samples was performed by using primers (TGCTCCAAATCCTACTCCAG and 

AACACAGTGGAAGAGTACGG) that are internal to the deleted region of Dnaic1 to 

amplify cellular DNA followed by gel electrophoresis using standard procedures. The 

primers produce a 323 bp product with intact genomic DNA, no product from the deleted 

genomic DNA (tamoxifen-treated), and a 223 bp product from the vector encoded cDNA. 
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Quantitative PCR to determine the amount of intact Dnaic1 in various samples was 

performed using LightCycler SYBR Green reagents (Roche Applied Science, Mannheim, 

Germany) and a Roche LightCycler using the same primers as previously published18. Each 

sample was analyzed in duplicate. Relative changes in the level of Dnaic1 were calculated 

from the efficiency of the PCR reaction and the cross-point deviation between samples. For 

experiments in which the level of Dnaic1 was being quantified, signals were normalized to 

the single-copy reference gene β-ENaC (Scnn1b)18; for the estimation of levels of Dnaic1 

mRNA, signals were normalized to the level of the ciliated cell-specific gene dynein 

axonemal heavy chain 5 (Dnahc5) using primers GTCTGGATGGGCGGCATGACTA and 

ATCCTGTAGCCCCTCGAGCTCA.

Tamoxifen treatment of mice

To generate PCD mice, Dnaic1flox/flox; CreER+− mice, 6-9 weeks old, were treated with 

tamoxifen (five intraperitoneal injections of 75 μg/g body weight18). For the experiment 

shown in Fig. 5, animals were treated with 2 or 3 injections of tamoxifen to generate mice 

with varying levels of intact genomic Dnaic1 remaining. Additional Dnaic1flox/wt; CreER+− 

mice with varying levels of intact genomic Dnaic1 (due to the spontaneous activation of 

CreER) and Dnaic1wt/wt mice were included in the study. After allowing sufficient time for 

ciliated cell turnover (>6 mos; 18), mucociliary clearance was measured in the nasopharynx, 

the nasal cavity was fixed in formalin for histology, and the percentage of intact genomic 

Dnaic1 remaining was determined in tracheal tissue.

Measurement of MCC

Measurement of mucociliary clearance in the nasopharynx was performed as previously 

described in detail 18. In this procedure, the transport of endogenous particles is recorded 

with a video camera after exposing the nasopharynx by dissection immediately after 

euthanizing the animal. The time required for the particles to move a calibrated distance 

(0.5-1 mm) is measured and the MCC rate reported for each animal is the average speed of 

5-10 particles.

Treatment of Mice with lentiviral vectors

Lentiviral vectors were administered to Dnaic1−/−; CreER+− (PCD) and control mice by 

nasal inhalation 16. Control animals included both Dnaic1+− and Dnaic1+/+ littermates; both 

were treated with tamoxifen. Mice were anesthetized with isoflurane and the concentrated 

vector solution (7 × 108 IFU) was administered dropwise to the tip of the nose in a small 

volume (20-25 μl), where it was spontaneously inhaled into the nasal cavity.

Quantification of luciferase

For live animal imaging of nasal luciferase expression 16, mice were anesthetized with 

isoflurane and D-luciferin (Gold Biotechnology, St Louis, MO, USA) substrate (20 μl of 

25mg/ml D-luciferin in PBS) was delivered by intranasal administration 35. Mice were 

imaged using the IVIS Lumina optical imaging system (Caliper Life Sciences, 

Hopkinton,MA, USA) and images of luciferase activity were collected using a charge-
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coupled device camera interfaced to a computer. Data is presented as the average ± S.E.M.in 

photons/sec/cm2.

Quantification of β-galactosidase

Tissue from the lungs, trachea and nasal cavity of treated animals were prepared and stained 

with X-Gal Solution as previously described 16. For quantification, sections were scanned at 

high resolution (2400 dpi) and stained (blue) cells were counted. To quantify transduction in 

the nasal cavity, multiple sections (3 or 4) at different levels of the nasal cavity were counted 

for each animal and the total number of stained cells were compared. In the first experiment, 

sections were prepared from levels 9, 11, and 23; in the second experiment, sections were 

prepared from levels 5, 9, 11, and 23, based on the system of Mery et al. 36. For 

quantification in the trachea, a single section the length of the trachea was evaluated; both 

sides of the longitudinal section through the trachea were counted. Data is reported as mean 

± S.E.M.

Statistical Analyses

Results between PCD and vector-treated groups were compared using a student's t-test with 

a p-value of ≤ 0.05 accepted as significant. In experiments where more than two groups 

were being compared, an ANOVA was first performed to determine significance. For the 

data shown in Figure 5a, the coefficient of determination (R2) was determined by linear 

regression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a) Diagram of the lentiviral gene transfer construct used in these studies. The mouse Dnaic1 

cDNA was expressed from a hybrid CMV enhancer/chicken β-actin promoter (CB). The 

vector also contains an upstream CMV enhancer/promoter fused to the R and U5 domains of 

the EIAV long terminal repeat (LTR) sequence, the viral Rev Responsive Element (RRE), 

RNA encapsidation sequence (Ψ), the woodchuck hepatitis virus post-transcriptional 

regulatory element (WPRE) and a 3’ self-inactivating (SIN) LTR sequence. b) Western blot 

demonstrating expression of full-length Dnaic1 protein. Cultures of 293 cells were untreated 

(negative control) or transduced with lentiviral vectors expressing EGFP (EGFP) or Dnaic1 

(Dnaic1) from the CB promoter. Purified mouse cilia (cilia) isolated from tracheal cell 

cultures 32, 33 served as a positive control. Molecular size markers are shown (Std.).
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Figure 2. 
a) Ciliary activity as a percentage of surface area in PCD cultures and undifferentiated PCD 

cultures transduced with a lentiviral vector expressing Dnaic1. Data are expressed as the 

percentage of parallel positive control cultures and represents the average ± S.E.M. of 4 

separate experiments. b) Representative experiment showing the increase in ciliary activity 

vs. time in culture of positive control cells (squares), PCD cells (diamonds), or in 

undifferentiated PCD cells transduced apically with the vector (circles). Vector was 

administered on day 5 (arrow).

Ostrowski et al. Page 17

Gene Ther. Author manuscript; available in PMC 2014 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
a) Ciliary activity as a percentage of surface area in PCD cultures and differentiated PCD 

cultures transduced apically with a lentiviral vector expressing Dnaic1. Data are expressed 

as the percentage of parallel positive control cultures and represents the average ± S.E.M. of 

4 separate experiments. b) Same experiment as in 2b showing the increase in ciliary activity 

vs. time in culture of positive control cells (squares), PCD cells (diamonds) or in 

differentiated PCD cells transduced apically with the vector (circles). Vector was 

administered on day 19 (arrow).
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Figure 4. 
Turnover of Dnaic1 protein in ciliated cells. Differentiated cultures of Dnaic1 flox/flox 

CreER+− cells were treated with tamoxifen (day 0, 2, and 4) and the percentage of intact 

Dnaic1 DNA (circles), cytoplasmic protein (triangles), and axonemal protein (diamonds) 

were measured over time, along with the level of ciliary activity (squares). Measurements 

were taken before treatment (day 0) and at various times after treatment with tamoxifen was 

begun. Data shown are from a single experiment. See text for details.
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Figure 5. 
a) Relationship between level of intact genomic Dnaic1 and MCC. Most animals with >20% 

Dnaic1 remaining had MCC rates > 2 mm/min and no evidence of disease. b) Histology of 

the nasal cavity of animals with 16% (left) and 19% (right) of the wild-type level of Dnaic1 

showing the absence (left) or presence (right; arrow) of rhinosinusitis. The maxillary sinus 

(*) and nasal septum (arrow) are indicated (left). Sections were stained with alcian blue-

periodic acid Schiff.
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Figure 6. 
Time course of luciferase activity in the nasal cavity of control (squares; n=6) and PCD 

(circles; n=5) mice transduced with a lentiviral vector. Data = average ± S.E.M. Untreated 

(no virus) negative control (diamonds) exhibited <1 × 106 photons/sec/cm2 at all time 

points.
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Figure 7. 
Gene transfer in the nasal cavity (a, b, c, d) and trachea (e, f, g, h) of control (a, c, e, g) and 

PCD (b, d, f, h) mice. HA-pseudotyped lentivirus expressing β-gal was administered to mice 

by nasal inhalation and 12 days later tissues were stained for the expression of β-gal and 

paraffin sections were evaluated. Both the nasal cavity and the trachea exhibited positive β-

gal staining in the control mice. In PCD animals the level of gene transfer in the nasal cavity 

was greatly reduced (note the mucus (*) in b, d; compare with Figure 5), while gene transfer 

to the trachea was not impeded. Nasal sections (a, b, c, d) are from ~level 23 36. Arrowheads 

pointing at the nasal septum in a, b, indicate the location of the higher magnification images 

in c, d. Sections were counter-stained with neutral fast red. Scale bars =50 μm in c, d, e, f, g, 

h.
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