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Purpose. To investigate the diagnostic accuracy of machine learning classifiers (MLCs) using retinal nerve fiber layer (RNFL)
and optic nerve (ON) parameters obtained with spectral domain optical coherence tomography (SD-OCT). Methods. Fifty-
seven patients with early to moderate primary open angle glaucoma and 46 healthy patients were recruited. All 103 patients
underwent a complete ophthalmological examination, achromatic standard automated perimetry, and imaging with SD-OCT.
Receiver operating characteristic (ROC) curves were built for RNFL and ON parameters. Ten MLCs were tested. Areas under
ROC curves (aROCs) obtained for each SD-OCT parameter and MLC were compared. Results. The mean age was 56.5 ± 8.9 years
for healthy individuals and 59.9 ± 9.0 years for glaucoma patients (𝑃 = 0.054). Mean deviation values were −1.4 dB for healthy
individuals and −4.0 dB for glaucoma patients (𝑃 < 0.001). SD-OCT parameters with the greatest aROCs were cup/disc area ratio
(0.846) and average cup/disc (0.843). aROCs obtained with classifiers varied from 0.687 (CTREE) to 0.877 (RAN). The aROC
obtained with RAN (0.877) was not significantly different from the aROC obtained with the best single SD-OCT parameter (0.846)
(𝑃 = 0.542). Conclusion. MLCs showed good accuracy but did not improve the sensitivity and specificity of SD-OCT for the
diagnosis of glaucoma.

1. Introduction

Primary open-angle glaucoma is a chronic disease that is
characterized by a progressive optic neuropathy and degen-
eration of the retinal nerve fiber layer (RNFL), resulting in a
distinct appearance of the optic nerve head (ONH) and
concomitant visual field (VF) loss. Examination of the RNFL
and theONH are recognized as valuablemethods of diagnos-
ing early glaucoma, since these changes are often detectable
before VF loss [1]. Some studies have shown that as many
as half of retinal ganglion cells can be lost before standard
automated perimetry (SAP) shows a VF defect [2, 3]. During
the last years, several methods have emerged for the objective
assessment of RNFL thickness and ONH topography [4].

Optical coherence tomography (OCT), first described
by Huang et al. in 1991 [5], has been widely accepted in

glaucomamanagement [6].The Cirrus spectral domain OCT
(SD-OCT) (Carl Zeiss Meditec Inc., Dublin, CA), one of the
commercially available SD-OCT instruments, has an axial
resolution of 5 𝜇m and a scan speed of 27,000 A-scans per
second. The scanning area covers 6mm × 6mm × 2mm,
analyzing both RNFL thickness and ONH topography. This
SD-OCTprovides faster scanning than previous time domain
OCTs (TD-OCT) [7].

Machine learning classifiers (MLCs) have been developed
since 1962 [8] and have been used in ophthalmology research
since 1990 [9].MLCs train computerized systems to detect the
relationship between multiple input parameters, eventually
facilitating the diagnosis of a condition. In fact, some reports
suggest that MLCs are as good as [10–13] or better than [14–
20] currently available techniques for glaucoma diagnosis.
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In a recent study [21], we have demonstrated that MLCs
using RNFL thickness measurements obtained with SD-
OCT show good diagnostic accuracy. However, they did not
improve the sensitivity and specificity of RNFL parameters
alone. In a subsequent study, we analyzed the accuracy of
MLCs using RNFL and VF parameters [22]. The purpose of
this study is to evaluate the sensitivity and specificity ofMLCs
using both RNFL and ONH parameters measured by SD-
OCT for the diagnosis of glaucoma.

2. Methods

2.1. Subjects. This was a prospective, observational, cross-
sectional study. We analyzed 103 eyes of 103 participants (46
healthy control subjects and 57 patients with glaucoma), all
of them older than 40 years, at the Glaucoma Service of the
University of Campinas (UNICAMP), Brazil. Each partic-
ipant had a complete ophthalmic evaluation that included
medical history, best corrected visual acuity (BCVA), slit
lamp biomicroscopy, measurement of intraocular pressure
(IOP) with Goldmann tonometry, gonioscopy, dilated slit
lamp fundus examination with a 78-diopter lens, SAP using
the standard 24-2 Swedish interactive threshold algorithm
(SITA) (Humphrey Field Analyzer II, Carl Zeiss Meditec
Inc., Dublin, CA), and imaging with the Cirrus SD-OCT.
All patients participated in two other studies published
previously by our group [21, 22]. However, after an upgrade
of the Cirrus software (5.1.1.6), which allows the analysis of
the ONH, a change in the signal strength of almost all OCT
images was observed. We decided to modify the inclusion
criteria, decreasing theminimumsignal strength to 6 (instead
of 7), which resulted in a total of 103 eyes of 110 participants.

Participants of both groups had a BCVA better or equal to
20/40, spherical refraction within ±5.0 diopters (D), cylinder
correction within ±3.0D and open angles on gonioscopy and
reliable SAPs with false-positive errors <33%, false-negative
errors <33%, and fixation losses <20%. We excluded all
eyes with retinal diseases, uveitis, pseudophakia or aphakia,
nonglaucomatous optic neuropathy, and significant cataract
according to the criteria of Lens Opacification Classification
System III (LOCSIII) [23], defined as the maximum nuclear
opacity (NC3, NO3), cortical (C3), and subcapsular (P3). If
both eyes were eligible, one eye was randomly selected.

The inclusion criteria for healthy eyes were IOP ≤
21mmHg with no history of elevated IOP or glaucoma cases
in the family and two consecutive and reliable normal visual
3 fields.

The inclusion criteria for glaucomatous eyes were two or
more IOP measurements >21mmHg and a glaucomatous VF
defect confirmed in two recent and reliable examinations.
Eyes with glaucomatous VF defects were defined as those that
met two of the following criteria: (1) cluster of 3 points with
a probability of <5% on a pattern deviation map in a single
hemifield, including at least 1 point with a probability of <1%;
(2) glaucoma hemifield test outside 99% of the age-specific
normal limits; and (3) pattern standard deviation outside 95%
of the normal limit. The severity of glaucomatous damage
was classified into (a) mild damage: mean deviation (MD) ≥
−6 dB; (b) moderate damage:MD between −6 dB and −15 dB;

(c) advanced damage:MD ≤ −15 dB. Glaucomatous eyes with
advanced damage were excluded from this study.

We respected the Declaration of Helsinki and obtained
an informed consent from all participants. The study was
approved by theUniversity ofCampinasMedical Institutional
Review Board.

2.2. Optical Coherence Tomography. All subjects had RNFL
thickness and ONH topography measured with the Cirrus
SD-OCT (software version 5.1.1.6). The ONH mode consists
in a 3-dimensional dataset of 200 A-scans that are derived
from 200 B-scans and analyzes a 6-mm2 area centered on the
optic disc. The software creates a RNFL thickness map from
the 3-dimensional cube data set and centers the disc. Subse-
quently, it also extracts a circumpapillary circle of 1.73mm
of radius for RNFL thickness measurements. The SD-OCT
provides RNFL thickness maps with 4 quadrants (superior,
inferior, nasal, and temporal) and 12-clock-hours and average
thickness measurements. All RNFL hourmeasurements were
aligned according to the orientation of the right eye. Hence,
clock hour 3 of the circumpapillary scan represented the nasal
side of the optic disc for both eyes. The 5.1.1.6 software also
allows the measurement of ONH parameters, such as rim
area, disc area, average cup/disc ratio, vertical cup/disc ratio
and cup volume. We created an additional parameter: the
cup/disc area ratio, defined as: [(disc area − rim area)/disc
area]. The end of Bruch’s membrane is defined as the disc
margin and is identified from the 3-dimensional cube dataset.
The rim width around the circumference of the optic disc
edge is determined by measuring the amount of neuroretinal
tissue in the optic nerve [6]. We excluded all poor-quality
scans analyzed at printouts with (a) incorrect identification
of the vitreoretinal surface, (b) horizontal eye motion within
themeasurement circle in the en face image printouts, and (c)
misidentification of Bruch’s membrane. Only well-centered
scans with a signal strength between 6 and 10 were included.
All images were acquired with undilated pupils by a single,
well-trained ophthalmologist, masked for the diagnosis.

2.3. Machine Learning Classifiers. Ten MLC algorithms were
tested using 23 parameters measured with the SD-OCT (17
RNFL and 6ONH).The followingMLCswere tested: bagging
(BAG), naı̈ve-bayes (NB), linear support vector machine
(SVML), Gaussian support vector machine (SVMG), multi-
layer perceptron (MLP), radial basis function (RBF), random
forest (RAN), ensemble selections (ENS), classification tree
(CTREE), and AdaBoost M1 (ADA). The rationale behind
eachMLCwas explained in a previous paper [21]. Initially, the
classifiers were trainedwith all 23 SD-OCTparameters.Then,
a backward feature selection was used to find the smallest
number of parameters that resulted in the best accuracy.
The analysis started with the full-dimensional feature set and
sequentially deleted the feature with worst accuracy (based
on the aROC) and restarted a new analysis.

Weka software version 3.7.7 (Waikato Environment
for Knowledge Analysis, the University of Waikato, New
Zealand) was used to develop all 10 classifiers. Both receiver
operating characteristic (ROC) curves and the calculation of
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Table 1: Demographic characteristics of the healthy and glaucoma groups.

Healthy (𝑛 = 46) Glaucoma (𝑛 = 57) 𝑃

Age (years; mean ± SD) 56.5 ± 8.9 59.9 ± 9.0 0.054
Gender (male [%] : female [%]) 23 [50.0] : 23 [50.0] 28 [49.2] : 29 [50.8] 0.930
Race (Caucasian [%] : African-American [%]) 35 [76.0] : 11 [24.0] 43 [75.4] : 14 [24.6] 0.539
Visual acuity LogMAR (mean ± SD) 0.04 ± 0.09 0.09 ± 0.10 0.010
Spherical equivalent (diopters; mean ± SD) 0.78 ± 1.6 0.95 ± 1.4 0.586
Intraocular pressure (mmHg; mean ± SD) 14.7 ± 2.6 13.8 ± 2.5 0.100
Medications (mean ± SD) 0 2.0 ± 1.1 <0.001
MD (dB; mean ± SD) −1.4 ± 1.6 −4.0 ± 2.4 <0.001
PSD (dB; mean ± SD) 1.8 ± 0.7 4.3 ± 2.4 <0.001
SD: standard deviation; MD: mean deviation; dB: decibel; PSD: pattern standard deviation.

the area under the ROC curve (aROC) were obtained using
this software.

We used the 10-fold cross-validation resampling method
to maximize the use of our data. All eyes were randomly
divided into 10 subsets, each containing approximately the
same number of healthy and glaucomatous eyes. Nine subsets
were used for training the classifiers, while the remaining
subset was used for testing the classification performance.

2.4. Statistical Analysis. MedCalc software version 12.3.0
(MedCalc Software, Mariakerke, Belgium) was used in all
analysis. Continuous variables were compared using the
Student’s 𝑡-test and categorical variables were analyzed using
the chi-square test.

aROCs were obtained for all 23 SD-OCT parameters:
average thickness, 4 quadrants (superior, inferior, nasal, and
temporal), and 12-clock-hours RNFL thickness measure-
ments, rim area, disc area, cup/disc area, average cup/disc,
vertical cup/disc, and cup volume measurements. aROCs
obtained for each SD-OCT parameter and each machine
learning classifier, before and after optimization, were com-
pared using the 𝑧 test. 𝑃 values <0.05 were considered to be
statistically significant.

3. Results

One hundred and three eyes of 103 patients were enrolled in
this study; 46 of themwere healthy eyes and 57 glaucomatous
eyes.

The clinical characteristics of the study population are
shown in Table 1. The mean age was 56.5 ± 8.9 years for
healthy individuals and 59.9 ± 9.0 years for glaucoma
patients (𝑃 = 0.054). There was no significant difference
between groups regarding IOP (14.7 ± 2.6mmHg and 13.8 ±
2.5mmHg, resp.) (𝑃 = 0.100), but glaucoma patients were
using a mean number of 2.0 ± 1.1 medications to lower IOP.
Mean MD values were −1.4 ± 1.6 dB for healthy individuals
and −4.0 ± 2.4 dB for glaucoma patients (𝑃 < 0.001). Among
the glaucoma patients, 86.0% had early VF damage and 14.0%
had moderate VF damage.

Table 2 compares the mean SD-OCT values in both
groups. All SD-OCT parameters were significantly different
between the groups, except for the 3, 4, and 9 o’clock positions
and disc area.

Table 3 displays the aROCs of all SD-OCT parameters.
The parameters with larger aROCs with a 95% confidence
interval (CI) were cup/disc area (0.846—CI 0.762–0.910),
average cup/disc (0.843—CI 0.758–0.907), vertical cup/disc
(0.832—CI 0.746–0.899), rim area (0.828—CI 0.741–0.895),
cup volume (0.786—CI 0.694–0.860), average thickness
(0.783—CI 0.690–0.858), and inferior (0.775—CI 0.682–
0.851). For a fixed specificity of 80%, the best sensitivities were
observed with vertical cup/disc (70.8%), rim area (70.1%),
cup/disc area (67.7%), average cup/disc (66.6%), cup volume
(64.9%), and inferior (63.1%). For a fixed specificity of 90%,
the best sensitivities were observed with rim area (62.4%),
cup/disc area (60.0%), vertical cup/disc (58.9%), average
cup/disc (58.2%), superior (55.4%), and average thickness
(51.9%).

aROCs obtained with MLCs varied from 0.687 (CTREE)
to 0.839 (ADA and RBF) when trained with all parameters.
Nine classifiers performed best when trained with a smaller
number of parameters. When less parameters were used,
aROCs varied from 0.733 (CTREE) to 0.877 (RAN) (Table 4).
The best aROC obtained with RAN trained with 13 param-
eters (0.877) was not significantly different from the aROC
obtained with the best single optic nerve SD-OCT parameter
(cup/disc area) aROC = 0.846 (𝑃 = 0.542) (Figure 1) and
from the aROC obtained with the best single retinal nerve
fiber layer SD-OCT parameter (average thickness) aROC =
0.783 (𝑃 = 0.094).

When a small number of parameters was used, there was
an increase in the aROCs of 9 of 10 classifiers: SVML (13.0%
increase), MLP (9.7%), SVMG (9.5%), RAN (8.9%), CTREE
(6.6%), NB (6.3%), ENS (4.5%), RBF (3.2%) BAG (2.9%),
and ADA (0%). However, this increase was not statistically
significant (𝑃 > 0.05).

4. Discussion

Statistical comparisons between the various published studies
that investigate the glaucoma diagnostic accuracy are difficult
because of different demographic distributions, inclusion and
exclusion criteria, OCTs and MLCs employed and, mainly,
the severity of glaucoma.

Since its inception, MLCs have been studied in combina-
tionwith several apparatus designed to improve the diagnosis
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Table 2: Mean ± standard deviation of SD-OCT parameters in both groups.

SD-OCT Healthy (𝑛 = 46) Glaucoma (𝑛 = 57) 𝑃

Average thickness (𝜇m) 93.3 ± 9.9 81.4 ± 11.2 <0.001
Quadrant (𝜇m)

Temporal 63.2 ± 11.3 57.4 ± 12.5 0.017
Superior 117.4 ± 15.1 100.4 ± 18.9 <0.001
Nasal 72.8 ± 10.9 66.4 ± 9.8 0.002
Inferior 119.9 ± 17.6 101.1 ± 17.5 <0.001

Clock hour (𝜇m)
1 103.3 ± 19.0 90.9 ± 20.8 0.002
2 90.9 ± 16.2 78.7 ± 13.8 <0.001
3 61.4 ± 9.3 59.4 ± 9.5 0.295
4 66.2 ± 13.7 62.1 ± 11.7 0.105
5 97.2 ± 18.9 88.0 ± 15.6 0.007
6 132.4 ± 26.4 111.1 ± 25.3 <0.001
7 130.2 ± 23.4 104.3 ± 27.8 <0.001
8 64.7 ± 13.5 58.4 ± 15.7 0.033
9 50.8 ± 14.5 48.1 ± 12.8 0.316
10 74.2 ± 13.6 65.9 ± 14.4 0.003
11 123.8 ± 21.9 103.2 ± 26.7 <0.001
12 125.0 ± 26.1 107.0 ± 25.6 <0.001

Cup/disc area (ratio) 0.34 ± 0.14 0.53 ± 0.13 <0.001
Average cup/disc (ratio) 0.56 ± 0.13 0.71 ± 0.09 <0.001
Vertical cup/disc (ratio) 0.53 ± 0.13 0.68 ± 0.09 <0.001
Rim area (mm2) 1.28 ± 0.21 0.98 ± 0.24 <0.001
Cup volume (mm3) 0.24 ± 0.24 0.50 ± 0.29 <0.001
Disc area (mm2) 2.01 ± 0.41 2.19 ± 0.52 0.055
SD-OCT: spectral domain optical coherence tomography.

of glaucoma such as TD-OCT [11, 15, 17, 19], SD-OCT [21, 22],
Heidelberg Retina Tomograph (HRT) [16, 18, 24], Scanning
Laser Polarimetry (GDx) [14], and VF [12, 17, 18, 20, 22].

In the scientific literature, we identified six relevant
studies involving the structural analysis of the ONH with
OCT and/or HRT associated with MLCs in order to improve
the accuracy in the diagnosis of glaucoma. Similar to previous
reports, our study demonstrated that the reduction in the
number of OCT parameters improved the performance of
MLC [10, 11, 16, 19, 21, 22, 24]. However, there is disagreement
about the superiority of MLCs over isolated parameters for
the diagnosis of glaucoma.

As far as we know, this study was the first to use MLCs
with both RNFL and ONH data obtained from SD-OCT try-
ing to improve the glaucoma diagnostic accuracy. We found
that the best classifier was RAN (aROC = 0.877) and the best
individual parameter from SD-OCT was the cup/disc area
ratio (aROC = 0.846), with no statistical difference between
them (𝑃 = 0.542). We consider those results as reflecting
a good diagnostic accuracy, especially because 86% of the
glaucomatous eyes were classified as having mild VF damage
(MD > −6 dB).

Burgansky-Eliash et al. used five MLCs built with RNFL,
ONH, and macular data from TD-OCT (a total of 38 param-
eters, of which only the 8 parameters with the best correlation
with MD were used). They examined 42 healthy eyes and 47

glaucomatous eyes (among these, 27 eyes with early glaucoma
and 20 eyes with advanced glaucoma). The healthy subjects
were significantly younger than the glaucoma patients (𝑃 =
0.001) and the mean VF MD of the glaucomatous eyes was
−6.4 dB. They concluded that the aROC obtained with the
best classifier SVM(0.981)was not significantly different from
the aROC obtained with the best single ONH parameter of
OCT, the rim area (0.969) (𝑃 = 0.07). On the other hand,
the aROC obtained with SVM was significantly larger than
the best single RNFL parameter average thickness (0.938)
and mean macular thickness (0.839) (𝑃 = 0.01 and 𝑃 <
0.001, resp.) [11]. In our study, we did not observe differences
between aROCs obtained with RNFL parameters compared
with those obtained with classifiers. However, the previous
study used VF information to reduce the number of OCT
parameters, which could have introduced bias, adding func-
tional information to a classifier that should have exclusively
structural data.

In a study of our group, Vidotti et al. compared the perfor-
mance of 17 RNFL parameters from SD-OCT and 10MLCs in
discriminating between 48 healthy and 62 glaucomatous eyes.
Thebest individual parameterwas inferior quadrant (aROC=
0.813), the best classifier trained with all OCT parameters was
SVMg (aROC = 0.795), and the best classifier trained with
two SD-OCTparameterswas BAG (aROC=0.818) (𝑃 = 0.93)
[21]. Similar to our study, a large proportion (82.3%) of their
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Table 3: Areas under the ROC curve (aROCs) for each SD-OCT parameter and sensitivities (%) with fixed specificities of 80% and 90%.

SD-OCT aROC (CI) Specificity 80% Specificity 90%
Average thickness 0.783 (0.690–0.858) 62.2 51.9
Quadrant

Temporal 0.641 (0.540–0.733) 38.7 28.0
Superior 0.747 (0.652–0.828) 57.8 55.4
Nasal 0.672 (0.573–0.761) 41.9 23.8
Inferior 0.775 (0.682–0.851) 63.1 45.6

Clock hour
1 0.690 (0.591–0.777) 49.1 27.3
2 0.720 (0.623–0.804) 52.9 45.9
3 0.563 (0.462–0.661)∗ 23.1 18.4
4 0.597 (0.495–0.692)∗ 26.4 12.2
5 0.642 (0.542–0.734) 28.0 25.6
6 0.711 (0.613–0.796) 45.6 32.6
7 0.764 (0.670–0.842) 54.7 40.7
8 0.638 (0.537–0.730) 44.2 26.6
9 0.564 (0.463–0.662)∗ 31.5 25.7
10 0.670 (0.570–0.759) 47.7 31.9
11 0.741 (0.646–0.823) 58.6 32.6
12 0.686 (0.587–0.774) 42.8 24.5

Cup/disc area 0.846 (0.762–0.910) 67.7 60.0
Average cup/disc 0.843 (0.758–0.907) 66.6 58.2
Vertical cup/disc 0.832 (0.746–0.899) 70.8 58.9
Rim area 0.828 (0.741–0.895) 70.1 62.4
Cup volume 0.786 (0.694–0.860) 64.9 42.1
Disc area 0.594 (0.493–0.690)∗ 33.3 19.3
SD-OCT: spectral domain optical coherence tomography; CI: confidence interval of 95%.
∗Parameters with aROCs not significantly different from chance.

Table 4: Areas under the receiver operating characteristic curve (aROCs) of best parameter (BP) and all 23 parameters (AP) obtained with
machine learning classifiers and sensitivities (%) with fixed specificities of 80% and 90% for AP.

MLC aROC-BP (CI) [NP] aROC-AP (CI) Specificity 80%-AP Specificity 90%-AP
RAN 0.877 (0.810–0.944) [13] 0.805 (0.738–0.872) 64.9 49.1
NB 0.870 (0.801–0.939) [11] 0.818 (0.749–0.939) 68.4 52.6
RBF 0.866 (0.796–0.936) [11] 0.839 (0.746–0.898) 71.9 63.1
MLP 0.843 (0.768–0.918) [11] 0.768 (0.693–0.918) 49.1 47.3
ADA 0.839 (0.763–0.915) [19] 0.839 (0.763–0.915) 73.6 52.6
ENS 0.829 (0.751–0.907) [08] 0.793 (0.715–0.871) 61.4 56.1
BAG 0.828 (0.749–0.907) [12] 0.804 (0.725–0.883) 57.8 50.8
SVMG 0.825 (0.746–0.904) [10] 0.753 (0.674–0.832) 56.0 28.0
SVML 0.780 (0.692–0.868) [02] 0.690 (0.602–0.778) 45.0 22.5
CTREE 0.733 (0.684–0.862) [07] 0.687 (0.638–0.736) 46.0 23.0
MLC:machine learning classifier; aROC: area under the ROC curve; BP: best parameter; AP: all parameters; NP: number of parameters; CI: confidence interval
of 95%; BAG: bagging; NB: Naive-Bayes; SVML: linear support vector machine; SVMG: Gaussian support vector machine; MLP: multilayer perceptrons; RBF:
radial basis function; RAN: random forest; ENS: ensemble selection; CTREE: classification trees; ADA: AdaBoost.

patients had early glaucomatous VF damage. Both studies
did not find any significant improvement in discriminating
patients with glaucoma from healthy subjects comparing the
best single OCT parameter and the best MLC.

On the other hand, Bizios et al. tested the performance
of two MLCs (MLP and SVM) using conventional and new
RNFL thickness data from TD-OCT. The authors analyzed

90 healthy subjects and 62 glaucomatous eyes with MD >
−12 dB, combined with changes in optic nerve photographs.
Both MLCs (MLP and SVM) performed successfully with
aROCs of 0.982 (95% CI 0.966–0.999) and 0.989 (95%
CI 0.979–1), respectively. SVM trained on the transformed
A-scan thickness values performed significantly better than
MLPs or SVMs trained on any of the single RNFL thickness
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Figure 1: Areas under the receiver operating characteristic curve
(aROCs) of the best classifier trained with the number of spec-
tral domain optical coherence tomography (SD-OCT) parameters
which allowed the best performance (RAN: random forest = 0.877)
and aROC of the best SD-OCT parameter (CDA: cup/disc area =
0.846) (𝑃 = 0.542).

parameters (𝑃 = 0.038). SVM performance based on this
input was also better than the performance of the average
RNFL thickness (𝑃 = 0.013) [15]. Likewise, Huang et al.
tested three MLCs in order to improve the accuracy of
glaucoma diagnosis based on RNFL and ONH data obtained
with TD-OCT. They analyzed 100 normal individuals and 89
glaucomatous patients with early VF damage (MD > −6 dB).
The inferior quadrant thickness was the best individual OCT
parameter (aROC = 0.832) and Mahalanobis was the best
MLC (aROC = 0.849). However, there is no statistical com-
parison between the aROCs obtained with inferior quadrant
and Mahalanobis in this paper [19].

Naithani et al. evaluated the relationship between RNFL
and ONH from TD-OCT and HRTII and compared three
TD-OCT-basedMLCs with those inbuilt in HRTII for detec-
tion of glaucomatous damage. As we know, OCT and HRT
evaluate the ONH with two different scanning techniques.
Furthermore, they use distinct reference planes to define
where the cup begins, which may cause a difference in the
measured values of all ONH parameters evaluated by the
twomodalities.They evaluated 60normal eyes and 60 glauco-
matous eyes, 30 of those with early glaucoma and 30 with
moderate glaucoma. LDAwas the best MLC-OCT parameter
(aROC = 0.982) and FSM functions as the best MLC-HRT
parameter (aROC = 0.859). Although there was no statistical
comparison between those values, they concluded that OCT
algorithms perform better than HRT-based formulas in dis-
tinguishing patients with early or moderate glaucoma from
normal subjects [24].

Finally, Townsend et al. aimed to assess the performance
of seven classifiers trained onHRTIII parameters for discrim-
inating between 60 healthy eyes and 140 glaucomatous eyes.
The classifiers were trained on all 95 variables and smaller sets

created with backward elimination.The aROCwas calculated
for classifiers, individual parameters, and HRTIII glaucoma
probability scores (GPS). Vertical cup/disc ratio was the indi-
vidual parameter with the best performance (aROC = 0.848),
global GPS was the best GPS parameter (aROC = 0.829), and
SVMr showed significant improvement over both (aROC =
0.904) (𝑃 = 0.018 and 𝑃 = 0.006, resp.). They concluded
that MLC can provide a significant improvement in HRTIII
diagnostic power over single parameters and GPS [16].

Our study has limitations, including a limited sample
size in both groups and the use of 10-fold cross-validation
resampling method that maximizes the analysis of our data
but uses the same population to train MLCs and test their
performance.

In conclusion, the MLCs obtained with RNFL and ONH
data did not improve the sensitivity and specificity of the
Cirrus SD-OCT for the diagnosis of mild to moderate
glaucoma in this population, even though a good diagnostic
accuracy was observed. Further studies with a larger sample,
pool of new structural parameters of OCT, and new classifiers
may improve the accuracy for the diagnosis of glaucoma.
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