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Autism spectrum disorder (ASD) is a range of neurodevelopmental conditions

that affect communication and social behavior. Besides social deficits, systemic

inflammation, gastrointestinal immune-related problems, and changes in the gut

microbiota composition are characteristic for people with ASD. Animal models showed

that these characteristics can induce ASD-associated behavior, suggesting an intimate

relationship between the microbiota, gut, immune system and the brain in ASD. Multiple

factors can contribute to the development of ASD, but mutations leading to enhanced

activation of the mammalian target of rapamycin (mTOR) are reported frequently.

Hyperactivation of mTOR leads to deficits in the communication between neurons in

the brain and to immune impairments. Hence, mTOR might be a critical factor linking the

gut-brain-immune axis in ASD. Pharmacological inhibition of mTOR is shown to improve

ASD-associated behavior and immune functions, however, the clinical use is limited due

to severe side reactions. Interestingly, studies have shown that mTOR activation can also

be modified by nutritional stimuli, in particular by amino acids. Moreover, specific amino

acids are demonstrated to inhibit inflammation, improve gut barrier function and tomodify

the microbiota composition. In this review we will discuss the gut-brain-immune axis in

ASD and explore the potential of amino acids as a treatment option for ASD, either via

modification of mTOR activity, the immune system or the gut microbiota composition.

Keywords: autism spectrum disorder, amino acids, mammalian target of rapamycin, nutritional intervention,

gut-immune-brain axis

THE GUT-BRAIN AXIS IN AUTISM SPECTRUM DISORDER

Autism spectrum disorder (ASD) is a spectrum of neurological disorders that become apparent in
early childhood and last throughout a person’s life. This spectrum of disorders is characterized by
varying levels of deficits in social behavior and communication, as well as stereotypical behaviors
(1). Estimates of the prevalence of ASD vary widely among different studies, largely attributable
to differences in diagnostic criteria, the ages and gender of the children screened, as well as the
geographical location (2). Meta-analyses comprising studies in different geographical locations
indicate a global incidence of ASD between 0.6 and 0.7% (3, 4). Over the past decades, the
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reported global prevalence has increased markedly (4, 5). Studies
suggest that part of this increase is attributable to changes in
diagnostic criteria, an increased awareness and the ability to
diagnose at a younger age (3, 6). However, these changes alone are
not sufficient to explain the rise in ASD prevalence. Other factors,
including prenatal, natal and postnatal environmental factors like
diet, intestinal microbiota, and immunological triggers are likely
to also contribute to this increase (7–9).

In addition to behavioral deficits, autistic individuals often
present with mild systemic inflammation and gastrointestinal
disorders (10, 11). Although current epidemiological data is
limited, a recent meta-analysis confirms that children with
ASD experience four times more gastrointestinal symptoms
than control groups and that gastrointestinal symptoms may
identify a unique subgroup of children with ASD (12). Moreover,
numerous studies showed a link between immune disturbances
andASD (11, 13, 14). Although research into the relation between
immune disturbances and ASD is still in its early phases, studies
suggest that many different aspects of the immune system are
involved (15–17). For instance, ASD has been associated with a
deregulated activation of microglia and astroglia (the “immune-
like” cells in the brain) (18, 19), autoimmunity (20), increased T
cell activation (21), deregulated innate immune functioning (11)
and mutations in genes controlling the functioning of immune
cells (11, 22, 23). The deregulated immune functions in people
with ASD are reflected by abnormal cytokine levels in their
body fluids. More specifically, levels of pro-inflammatory and
allergy-associated type 2 helper T (Th2) cell-derived cytokines
(e.g., TNFα, IL-4, IL-5, IL-6, IL-8) are shown to be upregulated
in either cerebrospinal fluid, plasma or serum of people with
ASD (21), whereas levels of regulatory cytokines IL-10 and TGF-
β are downregulated (24–26). Multiple studies investigated the
relation between the aberrant cytokine levels and autism. One
example is a study performed by Hashim et al. (27). Here, it
was shown that serum levels of TGF-β negatively correlated with
the severity of autistic symptoms. A similar negative correlation
was found between the severity of autism and the frequency of
regulatory T (Treg) cells in blood, which appears to be lower in
autistic individuals (28). As TGF-β plays a critical role in Treg
cell development (29), there might be a causal relation between
lower TGF-β levels, lower Treg levels and autism severity.
Besides its role in the development of Treg cells, TGF-β is also
indicated to play an important role in brain development (30, 31).
More specifically, TGF-β regulates survival and differentiation
of neurons and directs the growth of synapses, as observed in
various invertebrate models (30, 31). Hence, a lack of TGF-β
could contribute to dysregulated brain functioning, representing
another mechanism by which aberrant TGF-β levels could be
involved in the development of autistic phenotypes observed in
autistic patients. The presence of a relation between abnormal
cytokine levels in autistic individuals and autism severity is
further corroborated by two large studies in children with ASD
(32, 33). In these studies it was demonstrated that the increase
of a broad range of cytokines including pro-inflammatory, Th2
as well as type 1 helper T (Th1) cell-derived cytokines and
chemokines correlates with aberrant (autistic) behavior and
impaired development (32, 33).

The exact mechanisms underlying the increased production
of pro-inflammatory cytokines and allergy-associated Th2
cytokines in autistic individuals are yet to be elucidated. However,
a potential explanation of these findings might be sought in the
observation that allergy, especially food allergy, and eosinophilic
esophagitis are often reported in ASD patients (34, 35). A food-
induced allergic disease is an unfavorable immune reaction that
can occur on exposure to specific food components, particularly
proteins (36). Classically, food allergy is regarded as a type
1 hypersensitivity, i.e., an IgE-mediated immune response to
harmless food proteins (Figure 1).

THE IMMUNE-BRAIN AXIS IN ASD WITH A
FOCUS ON FOOD ALLERGY

It has been shown from parental reports that food allergies
are observed more often in autistic individuals than in the
general population (39–41). This differential occurrence of food
allergies might be even more evident than reported, since
impaired communication by autistic individuals could lead to
underdiagnoses (39). Multiple studies investigated the relation of
food allergies with ASD. For instance, it has been reported that
autistic children have higher serum levels of IgA, IgG, and IgM
specific for cow’s milk proteins compared to healthy controls (42,
43). Interestingly, Lucarelli et al. showed that autistic children
on a cow’s milk free diet showed improved behavioral symptoms
(43). Vice versa, challenging autistic individuals with cow’s milk
led to an increase in hallmark behaviors associated with ASD,

FIGURE 1 | In the first phase of allergy or type 1 hypersensitivity reactions

sensitization to the food allergen takes place (sensitization phase). During this

phase, allergens cross the intestinal mucosal barrier and are presented via

MHC-II to naïve T cells that develop into type 2 helper T (Th2) cells. Th2 cells

induce the plasma cells to produce IgE antibodies (37), after which IgE binds

to the FcεRI receptor on mast cells. In the challenge phase, upon a second

exposure to the same allergen, cross-linking of mast cell-bound IgE occurs. In

turn, this leads to mast cell degranulation, a process resulting in the release of

several mediators including histamine, cytokines and tryptases. The release of

these mediators is the direct cause of most of the allergic intestinal symptoms,

including nausea, vomiting, cramps, and diarrhea (38). With permission of

Dr J. Wu.
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providing evidence for a relation between food allergic reactions
and behavior (43). Preclinical studies provide further evidence
for a relation between food allergies and ASD, as cow’s milk
allergic (CMA) mice show autistic-like behavior such as reduced
social interaction, increased repetitive behavior, disturbed spatial
memory and reduced exploration behavior (44). The changes in
behavior of CMA mice were associated with increased neuronal
activation in the prefrontal cortex (PFC). Similarly, patients with
ASD show enhanced neuronal activation in the PFC in response
to tasks involving facial recognition (45) and attention (46).
Furthermore, the activation of the dopaminergic system in the
PFC of CMAmice was reduced as compared to non-allergic mice
(44). Interestingly, in mouse models for ASD as well as in patients
with ASD, dampening of the dopaminergic system in the PFC is
observed as well (47–49). Taken together, it can be hypothesized
that intestinal allergic responsesmay affect brain circuits involved
in social behavior in ASD patients with food allergies.

A variety of studies examined the underlying mechanism of
the apparent relation between the induction of food allergy and
autistic behavior. As described earlier, individuals with ASD are
associated with a pro-inflammatory cytokine profile in various
body fluids and a disbalance in Th2 and Treg cells, which are
common features for allergic individuals as well (21, 27, 32).
Besides differences involving T cells, ASD is also associated
with deviations involving the activation of mast cells, which
are cells that, upon activation, play a central role in driving
allergic reactions. For instance, mast cell activation is shown to
be increased in ASD patients, resulting in elevated release of
inflammatory and neurotoxic mediators, which in turn could
contribute to the development of autistic phenotypes (14, 50, 51).
The influence of mast cells on behavior is not limited to the effects
of mediator-release, as mast cells can also influence behavior via
direct mast cell-neuron interactions, which take place in the brain
(52) and the gut (53, 54). The potential of mast cell abnormalities
to drive ASD-associated behavior in human is supported by a
study performed by Theoharides et al. (55). In this study, the
occurrence of mastocytosis, as characterized by the presence of
proliferating and hyperactivated mast cells in several organs, is
investigated in children with ASD (55). This study indicated
that the incidence of mastocytosis is ten times higher in ASD
patients than in the general population (55). In addition, 15%
of the people who suffered from mastocytosis showed aberrant
behaviors, such as concentration problems, decreased attention
span, memory impairment, irritation, and distraction (55). These
abnormal behaviors are similar to those encountered in ASD,
suggesting that hyperactivation of mast cells, as occurs during
allergic reactions, might be one of themechanisms underlying the
relation between food allergies andASD-associated behavior. The
potential involvement of mast cell hyperactivation in inducing
ASD-associated behavior is further supported by studies showing
that mast cell hyperactivation is associated with increased
intestinal permeability (55). Accordingly, it is frequently reported
that people with ASD have an increased intestinal permeability
(56, 57). This disruption of the intestinal barrier might be
involved in inducing ASD-like behavior, as preclinical research
demonstrated that animals with ASD who suffer from defects
in the intestinal barrier show increased levels of bacterial

toxins in the bloodstream, which in turn could influence brain
function (58).

THE MAMMALIAN TARGET OF
RAPAMYCIN IN ASD AND ITS
CONNECTION WITH THE IMMUNE
SYSTEM

ASD is thought to be a neurodevelopmental disorder caused by
multiple genetic and environmental factors. The genes involved
in ASD are variable and diverse, but mutations in genes
related to the mammalian target of rapamycin (mTOR) pathway,
including NF1 (59), PTEN (60), TSC1 (61), TSC2 (62), eIF4E
(63), FMRP (64), are among those most widely associated with
ASD (Figure 2).

NF1, PTEN, and TSC1/TSC2 act as negative regulators of
mTOR complex 1 (mTORC1), of which single gene mutations
lead to enhanced mTOR activity in the brain in various mouse
models (60, 62, 65). Enhanced activation of mTOR leads to
an increase in the phosphorylation of proteins downstream
of mTORC1, such as S6 kinase (S6K) and eIF4E-binding
proteins (4E-BPs), thereby promoting cap-dependent protein
translation (66, 67). In this way, enhanced mTOR activation
leads to an increase in the translation of neuroligins (67),
which are proteins that are involved in the formation and
maintenance of synapses between neurons. In turn, this results
in an increased synaptic excitation/inhibition ratio, which
may contribute to the development of ASD phenotypes (67).
Interestingly, apart from its important role in neurological
disorders, the mTOR-signaling pathway is also involved in
directing immune responses (Figure 3).

Several studies suggest that Th1 and T helper 17 (Th17) cell
differentiation are specifically regulated by mTORC1 signaling,

FIGURE 2 | Schematic representation of the mTOR-signaling pathway in ASD.

Mutations in various components involved in the mTOR signaling pathway

such as PTEN, Nf1, TSC, eIF4E, FMRP (indicated by red circles) affect the

protein synthesis machinery, leading to the development of ASD. Adapted

from Ehninger et al. (62, 65). With permission of Dr. J. Wu.
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FIGURE 3 | Schematic representation regarding the possible role of mTOR

activity in the balance of T cell profiling in food allergy. Enhanced mTOR activity

is required for Th1, Th2, and Th17 cell differentiation. Suppression of the

mTOR activity induces the differentiation into Treg cells. Adapted from Delgoffe

et al. (68) and Kim et al. (69). With permission of Dr J. Wu.

whereas Th2 cell differentiation depends on mTOR complex 2
(mTORC2) signaling (68, 70, 71). This is supported by studies
that show that T cells in which mTORC2 activity is eliminated
fail to differentiate into Th2 cells in vitro and in vivo, but
are able to differentiate into Th1 and Th17 cells (72). When
mTORC1 and mTORC2 are both inhibited using rapamycin,
T cells differentiate into Treg cells (72). Indeed, rapamycin-
induced mTOR inhibition resulted in elevated numbers of Treg
cells in tissue culture of nasal polyps obtained from patients
suffering from chronic allergic rhinitis (73). Further evidence
of the ability of mTOR to direct immune responses is provided
by a study by Kim et al. showing that mTORC1 activation in
mast cells is associated with survival, differentiation, migration,
and cytokine production (69). Finally, increased mTOR activity
is shown to attenuate autophagy (74) which, in the intestine, is
an important process to limit chronic intestinal inflammation
(75). Thus, hyperactivity of mTOR in the intestinal tract might
lead to a loss of immune regulation and barrier integrity,
leading to an inflammatory profile possibly associated with
allergy. Taken together, these findings reveal that in ASD the
mTOR signaling pathways could be disturbed at the level
of the immune system, the gastro-intestinal tract as well as
the brain. As such, the mTOR signaling pathways could be
considered as a central point in the gut-immune-brain axis.
Manipulation of the mTOR signaling pathway may therefore
serve as a therapeutic strategy for inflammation-associated
neurodevelopmental disorders including ASD.

In order to more specifically investigate the role of mTOR
in ASD, a variety of mTOR-inhibitors have been used.
The mTOR inhibitor that is most commonly used for this
purpose is rapamycin. Rapamycin interacts with the intracellular
receptor FK506 binding protein (FKBP12). The formed FKBP12-
rapapmycin complex binds to mTOR and directly inhibits
mTORC1, while mTORC2 is inhibited indirectly in a manner
not fully understood (76, 77). As described earlier, mTORC1
drives translation of proteins, like neuroligins, that increase
autistic-like phenotypes (77). Therefore, inhibition of mTORC1

by rapamycin might represent a therapeutic strategy for ASD
patients. Indeed, rapamycin treatment improved ASD-associated
behavior in various animal models for ASD, including the widely
used BTBRT(+)ltpr3(tf)/J mouse model (78–81). Moreover,
rapamycin treatment was shown to inhibit the social behavioral
deficits and normalize the repetitive self-grooming behavior of
CMA mice (82). In these mice, the humoral immune responses
and mucosal mast cell activation in the intestines were also
inhibited (82). At the molecular level, several changes were
observed in the intestines of rapamycin-treated CMA mice
that might underlie the observed improvement in behavioral
outcomes. For instance, it has been shown that rapamycin
treatment inhibited the enhanced phosphorylation and activation
of the downstream target of mTOR p70 ribosomal protein
S6 kinase (p70S6K) in the small intestines (82). Moreover,
rapamycin significantly increased the mRNA expression of
forkhead box P3 (Foxp3) both in the ileum and the Peyer’s
Patches of CMA mice, indicating an increase in Treg cell
development (82). Finally, rapamycin treatment increased the
expression of Treg cell-associated cytokines, including IL-10 and
TGF-β in the small intestine of CMA mice (82). Till this day,
however, the effects of targeting mTOR on possible immune
dysregulations found in the rodent ASDmodelsmentioned above
remain understudied.

Collectively, these data support the relevance to further
investigate the therapeutic potential of mTOR inhibiting
strategies in both genetic and idiopathic forms of ASD. However,
the occurrence of serious side effects of chronic administration
of pharmacological mTOR inhibitors like rapamycin, such as
severe immunosuppression, is reason for concern and limits
their potential as a viable treatment option for ASD (83, 84).
Hence, safer alternative strategies to normalize mTOR activity
are required.

TARGETING ASD-ASSOCIATED
ABNORMAL MTOR ACTIVITY WITH
AMINO ACIDS

Besides pharmacological compounds, nutritional components
are also able to modulate mTOR activity. Often described as
being the most potent nutrition-derived modulators of mTOR
are amino acids (AAs) (85, 86). Although it is not yet fully
understood how AAs regulate mTOR activity, AA transporters
seem to play a crucial role. A variety of mechanisms involving
AA transporters are proposed by which AAs can regulate
mTOR activity. First, AA transporters can form a passageway
for AAs through the plasma membrane. Once inside the cell,
the AAs activate cytoplasmic AA sensors by interacting with
a multi-protein complex involving RAG GTPases, Ragulator,
and the v-ATPase on the lysosomal surface (87–89). This
interaction recruits mTORC1 to lysosomes, where it can be
activated. One example of a cell-surface AA transporter is the
well-studied heterodimeric CD98, which transports preferably
branched chain AAs (BCAAs). In combination with a glutamine
transporter (SLC1A5), CD98 exchanges leucine for glutamine to
increase the intracellular leucine concentration which, in turn,
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activates mTORC1 through different signaling molecules (90).
Another mechanism by which AAs can modulate mTORC1
activation involves a specific subset of AA transporters, known
as AA transceptors, which have a dual transporter-receptor
function. The binding or translocation of AAs by transceptors
initiates an intracellular signaling cascade, ultimately leading
to the modulation of mTORC1 activation (89, 91). Thus, AA
transceptors can modulate mTORC1 activation by sensing the
extracellular AA concentration. Finally, AAs can also modulate
mTORC1 activity by mechanisms that do not involve the
translocation of AAs across the plasma membrane (89, 91).
Studies have demonstrated that specific AAs can bind and
activate G-protein-coupled receptors, which in turn induce
lysosomal localization and activation of mTORC1 (89). One
example is the G protein-coupled receptor family C group 6
member A (GPRC6A), which is activated by basic, aliphatic and
polar AAs such as serine, arginine and lysine.

As AAs can modulate mTORC1 activity via multiple
mechanisms, which involve receptors and transceptors that
specifically recognize different types of AAs, it is likely that the
modulation of mTORC1 activity is different for each type of
AA. Consistently, a previous study using mammary epithelial
cells demonstrated that the BCAAs leucine (Leu), isoleucine
(Ile), and valine (Val) enhanced mTORC1 activity, whereas
histidine (His), lysine (Lys), and threonine (Thr) suppressed
mTORC1 activity (92). Similar results were found in an in vitro
allergic mast cell model (93). Inhibition of mTOR signaling
by a combination of the AAs His, Lys and Thr in this mast
cell model was accompanied by an inhibition of acute mast
cell degranulation and an attenuated allergy-associated cytokine
production following antigen-IgE mediated activation (93).
Based on the outcomes of these in vitro studies, a diet containing
relatively higher amounts of His, Lys and Thr and relatively lower
amounts of Leu, Ile, and Val was developed for preclinical ASD
studies (93). It was hypothesized that mTOR signaling could
either be normalized or reduced in ASD animals using this
AA diet. Consistent with this hypothesis, the AA diet restored
the social interaction and normalized the repetitive behavior of
CMA mice (93). In addition, dietary intervention with the AAs
inhibited the enhanced mTOR signaling pathway in the PFC
and amygdala of CMA mice. Since the mTOR signaling pathway
is centrally involved in directing immune responses including
differentiation of T cells (94), T cell responses were measured
as well. Indeed, the CMA-induced Th2 and Th17 cell immune
responses were downregulated by the specific AA diet (93). These
effects of dietary AAs on effector T cells was accompanied by an
upregulation of Treg cells in the small intestines of CMA mice.
In another set of experiments using the same AA diet, the diet
normalized the repetitive behavior of BTBRT(+)ltpr3(tf)/J mice,
a frequently used murine model for ASD (93). This outcome was
associated with an inhibition of the enhanced mTOR signaling
pathway in the PFC of these mice, suggesting beneficial effects of
the AA diet in both genetic and idiopathic forms of ASD (93).

The studies described above further establish mTOR activity
to be a crucial factor in the gut-immune-brain axis playing
a key role in the regulation of ASD-associated behavior. It
has become clear that not only the effects of mTOR on the

brain are important, but also the effects of mTOR concerning
the regulation of immune responses and intestinal health. This
warrants further investigation into the activity status of mTOR
in peripheral blood mononuclear cells and intestinal biopsies of
autistic patients. These data are needed to further substantiate
mTOR as a therapeutic target or as biomarker in patients with
ASD. Finally, based on the positive outcomes of an AA-based
nutritional intervention on autistic behavior in mouse models for
ASD, a proof of principle clinical study in ASD patients using this
specific diet is warranted.

THE EFFECTS OF AMINO ACIDS ON THE
GUT-IMMUNE-BRAIN AXIS IN ASD
BEYOND MTOR

As described, specific AAs can modulate the activity of mTOR in
a manner that might be beneficial for people with ASD. However,
the potential of AAs to be beneficial for ASD is not limited
to mTOR modulation. Numerous studies have shown that AAs
can also exert beneficial effects on other components in the
gut-immune-brain axis. Below, the interactions of AAs with the
immune system and the gut microbiota (composition) will be
discussed in relation to ASD.

THE POTENTIAL EFFECTS OF AMINO
ACIDS ON THE DERAILED IMMUNE
SYSTEM CHARACTERISTIC FOR ASD

Beyond targeting the ASD-enhanced mTOR signaling, AAs have
been demonstrated to exhibit anti-inflammatory capabilities. As
previously described, intestinal and systemic inflammation, as
evaluated by a.o. higher levels of pro-inflammatory cytokines
(e.g., IL-6, TNFα, and IL1β) are characteristic for people
with ASD. In fact, inflammation is shown to induce ASD-
associated behavior. Therefore, inhibition of systemic and/or
intestinal inflammation might be beneficial for people diagnosed
with ASD. Below, the immunomodulatory effects, mostly anti-
inflammatory effects, of several AAs are described in relation
to ASD.

Numerous studies investigated the immune modulatory
functions of AAs in in vitro studies. Among these are studies
that demonstrate anti-inflammatory effects of AAs on immune
cells that might be affected in people with ASD. For instance,
application of the BCAAs Leu, Ile and Val individually reduced
the production of NO as well as mRNA and protein levels of the
pro-inflammatory cytokine IL-6 in LPS-stimulated macrophages
in vitro (95). Moreover, application of Leu, Ile, and Val
individually or in combinations inhibited the acute degranulation
and IL-6 production in antigen-IgE-activated mast cells, as
previously mentioned (96). Whereas, increasing the availability
of BCAAs has anti-inflammatory effects on specified immune
cells, a decreased availability of the BCAAs leads to immune
cell impairments. For instance, human lymphocytes cultured in
medium containing Leu, Ile and Val at levels lower than the
typical concentration in adult human plasma showed decreased
ability to proliferate (97, 98). Not only in vitro, but also in
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vivo experiments demonstrate the importance of an adequate
availability of BCAAs for normal immune cell functioning. For
example, reducing the levels of Leu, Ile, and Val by 50% in
an otherwise normal mice diet increased the susceptibility of
mice to salmonella infections, potentially due to an impaired
antibody production (99). These mice also showed a lowered
number of spleen cells, which might be indicative of a decreased
lymphocyte proliferation in vivo (99). Interestingly, Novarino
et al. identified inactivating mutations in the gene branched
chain keto-acid dehydrogenase kinase (BCKDK) in several
ASD patients (100). Loss of BCKDK function resulted in
hypercatabolism of Leu, Ile and Val, leading to abnormally low
levels of these BCAAs in serum and in the brain (100). Knowing
the importance of adequate BCAA availability for normal
immune cell functioning, these mutations might contribute to
the immune impairments observed in a subgroup of individuals
with ASD.

In addition to the observed anti-inflammatory effects of the
BCAAs in vitro and in mouse models, this group of AAs
also has demonstrated anti-inflammatory effects in immune
compromised humans. For example, in cirrhotic patients, daily
supplementation of Leu, Ile and Val improved innate immune
cell functions including the phagocytic function of neutrophils
and natural killer activity of lymphocytes, which are processes
that are also impaired in people with ASD (17, 101, 102).
Also, in patients with rectal cancer, infusing a solution enriched
in Leu, Ile and Val led to an increase in the number of
CD4+ (Th) cells in blood, and led to an increased ratio of
CD4+/CD8+ (cytotoxic T) cells in the blood (103). Studies
have demonstrated that autistic individuals have fewer CD4+
cells and a lower CD4+/CD8+ cell ratio in blood, indicating
immune impairments (104–106). Interestingly, Abd El-Aziz et al.
showed a negative correlation between the CD4+/CD8+ cell
ratio in blood of individuals with ASD and the severity of autistic
behavior. Thus, factors like Leu, Ile and Val that increase the ratio
of CD4+/CD8+ cells might provide therapeutic benefits for ASD
patients (104).

Besides their modulatory capacities on peripheral immune
cells, the BCAAs also affect microglial cells, the immune cells of
the brain. Culturing rat microglial cells in a medium enriched
with these BCAAs induced a more anti-inflammatory state of the
microglial cells after LPS stimulation (107). This was supported
by a decreased microglial production of IL-1β, TNFα, and
inducible nitric-oxide synthase (iNOS), as well as an increased
production of IL-10, both at the level of mRNA and at the
protein level (107). Moreover, microglial phagocytic capacity,
which is critical for normal brain functioning and is impaired
in individuals with ASD (108), was stimulated by the presence
of high levels of the BCAAs (107). However, neuroprotective
functions of microglial cells were impaired in the presence of
high levels of Leu, Ile and Val, as represented by a decreased
production of the neuroprotective factor Insulin-like growth
factor 1 (IGF-1) (107). The latter observation is in line with the
possible detrimental effects of mTOR-hyperactivation.

Alongside the BCAAs, the essential AAs Thr, Lys, and His also
have immunomodulating capacities, potentially via modulation
of mTOR signaling (93). Of these AAs, Thr has been most widely

associated with immunomodulation in vivo. Animal studies
have demonstrated that Thr is critical for intestinal barrier
and immune function and can improve intestinal epithelial
integrity in inflammatory conditions where the gut barrier
is impaired, as is the case in ASD (109). For instance, in
various rat models of colitis, a Thr-enriched diet was shown
to restore mucus synthesis and normalize the gut microbiota,
thereby improving intestinal function (110, 111). Studies in
animals and humans also suggest an increased requirement of
Thr by the intestines in inflammatory conditions in order to
maintain intestinal barrier function (112, 113). Although less
widely studied, the AA His also interacts with the immune
system. Apart from its use for the generation of histamine, a
key molecule involved in immune responses, His exhibits anti-
inflammatory effects on a variety of immune cells. For instance,
in vitro studies show that supplementation of His suppressed IL-8
secretion in TNFα-activated human epithelial cells, PBMCs and
monocytes (114, 115). The immunomodulating ability of His is
also demonstrated in vivo, as dietary His improved murine colitis
by inhibiting the production of pro-inflammatory cytokines by
macrophages (116). Studies examining the immunomodulatory
effects of Lys are limited. However, dietary deficiency of Lys
has been shown to limit lymphocyte proliferation and induces a
pro-inflammatory state, represented by increased levels of pro-
inflammatory cytokines and NO in the kidney, liver and spleen
of piglets (117). Taken together, data from both in vitro and in
vivo experiments suggest that there is a potential for the AAs Thr,
Lys, and His to ameliorate the compromised gut-immune-brain
axis in ASD.

In addition to the AAs that are demonstrated to interact
with mTOR, several other AAs also have anti-inflammatory
capabilities, in particular glycine (Gly), glutamine (Gln)
and glutamate (Glu). In vitro studies demonstrated that
supplementation of Gly protects intestinal epithelial cells
against inflammatory oxidative stress (118), and reduces pro-
inflammatory cytokine production while enhancing IL-10
expression of LPS-stimulated monocytes (119). The capacity
of Gly to exert anti-inflammatory effects is further supported
by in vivo studies using a variety of animal immune models.
For instance, oral intake of Gly reduced TNFα production and
improved the survival rate of LPS-injected rats (120), reduced
inflammation and oxidative stress in a mouse model of cancer
cachexia (121) and inhibited the onset of CMA in mice (122).
As the pro-inflammatory, allergic-like status of the intestines in
people with ASDmight play a role in the induction of autistic-like
behavior, it can be speculated that dietary Gly supplementation
might have therapeutic potential for individuals with ASD.

The AAs Gln and Glu are related to each other, both in terms
of structure and their immunomodulatory capabilities. Both Gln
and Glu are critical for intestinal growth and functions and are
shown to reduce intestinal hyperpermeability both in vitro and in
vivo (123–125). Remarkably, plasma levels of Gln are reported to
be lower in patients with ASD as compared to healthy individuals
(126). The reduced bioavailability of Gln might be involved in
the mucosal barrier impairments observed in individuals with
ASD. This is supported by studies demonstrating that low levels
of serum Gln correlate with intestinal barrier disruption and
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inflammation in children (127, 128). Besides its involvement
in intestinal barrier function, Gln is also widely known as an
anti-inflammatory agent, likely via inhibition of the activation
of nuclear factor kappa B (NF-κB) and signal transducers and
activators of transcription (STAT) (129). In turn, this inhibition
leads to suppression of the production of inflammatory cytokines
such as IL-6, TNFα and IL-8 as shown for various immune cells
in vitro, in animal immunemodels and in immune-compromised
human (129–131). As such, Gln is proposed as candidate for
treating inflammatory disorders. Anti-inflammatory effects of
Glu include the inhibition of Th2 cells, the stimulation of the
production of regulatory cytokine IL-10 by Treg cells and the
stimulation of Treg cell development via modulation of the
cytokine expression by dendritic cells (132, 133).

Besides their involvement in inflammatory immune
responses, Gly and Glu are also neuroactive AAs. Glu
is the primary excitatory neurotransmitter of the brain,
which is stored in the form of Gln until it is transferred
to presynaptic terminals and converted back to Glu (134).
Normally, Glu has a protective effect on cognitive function
and neural plasticity. However, excessive levels of Glu may
be neurotoxic and may play a role in neuroinflammation
events in the pathogenesis of ASD (135). Accordingly,
multiple studies report higher levels of Glu in serum,
plasma and the brain of people with ASD as compared to
healthy controls (136–138). In contrast, levels of Gly, a major
inhibitory neurotransmitter, are found to be unchanged in
patients with ASD (126). The imbalance between Gly and
Gln might drive an imbalance in inhibitory and excitatory
neurotransmitters, which is indicated to lead to excessive
neuroinflammation (137).

As discussed, specific AAs can modify the functions of
the immune system in a way that might be beneficial for
individuals with ASD. Conversely, the derailed immune system
observed in ASD can also modulate the bioavailability of
specific AAs, and thereby drive the pathogenesis of ASD. This
has been demonstrated most clearly for tryptophan (Trp),
of which plasma levels are consistently shown to be lower in
ASD patients (139–141). Apart from being a precursor for the
neurotransmitter serotonin, Trp is extensively metabolized
in the kynurenine pathway (142). This pathway produces
several immunomodulatory and neuroactive compounds,
examples of which include kynurenine (142) and quinolinic
acid (143), respectively. In pro-inflammatory conditions, like
ASD, the activation of the kynurenine pathway is enhanced
(144), leading to abnormal production of metabolites with
neurotoxic effects (144, 145). Furthermore, the kynurenine
pathway produces metabolites that induce apoptosis in Th1 cells
but not in Th2 cells, suggesting that an increased activation of
this pathway favors Th2 polarization, which is characteristic
for ASD (146). Finally, aberrant activation of the kynurenine
pathway in ASD also diverts Trp from the serotonin synthesis
route (144, 147, 148). Psychological complications characteristic
for a.o. ASD patients may originate from serotonin deficiency
mediated by the depletion of Trp following kynurenine pathway
activation (139, 148), which is also reported in a murine model
for ASD (149, 150). Whereas, aberrant Trp metabolism might

induce neurotoxicity and a Th2-type immune status, Trp can
also act as an anti-inflammatory agent. For instance, dietary
supplementation of Trp in a mouse and piglet model for
colitis reduced inflammation (151, 152), whereas mice fed a
low-Trp diet became increasingly susceptible to chemically
induced inflammation (153). Promising effects of a multi-
nutrient diet containing high Trp on disturbed behavior and
reduced intestinal and CNS serotonin levels are reported in a
murine model for ASD (96). Whether dietary supplementation
of Trp has therapeutic potential for ASD patients remains
open to speculation: it might further drive abnormal
activation of the kynurenine pathway, however, it could
also provide benefits by reducing inflammation and normalizing
serotonin synthesis.

THE INTERACTION BETWEEN AMINO
ACIDS AND THE GUT MICROBIOME IN
RELATION TO ASD

Accumulating evidence has demonstrated a bidirectional
communication between the brain and the gut, with the
intestinal microbiota as a key factor in both health and disease
(154, 155). The microbiota can affect cognition and behavior,
as has been demonstrated in an increasing number of studies
(156–158). Modification of the microbiota composition or
absence of the microbiota impacts the hypothalamic-pituitary-
adrenal (HPA) axis, the immune system and behavior (158). The
importance of gut microbiota in early life and brain development
is demonstrated by animal studies showing that maternal
separation of neonates does not only lead to a dysbiotic state of
the microbiota that persists into adulthood, but also results in
long-term cognitive and behavioral deficits (159). Nevertheless,
the mechanistic link between the gut microbiota, gut immune
homeostasis, and brain functioning remains poorly understood.
A variety of mechanisms including immune, hormonal and
neural pathways are likely to be involved and may depend
on the nature of the microbiota dysbiosis. Also for ASD, the
microbiome-gut-immune-brain axis is suggested to be important
as profound changes in the microbial composition and activity
have been reported (160). Below, we describe the possible
interaction between AAs and the gut microbiota in perspective
of ASD.

Over the last decades extensive studies have revealed that
the gut microbiota composition plays an important role in the
metabolism and recycling of nitrogen-containing compounds
(161, 162). One of the major nitrogenous compounds utilized
by gut bacteria are AAs. AAs derived from either the host or
from food enter the gut and are metabolized by gut bacteria into
a wide variety of products (163). Hence, it can be speculated
that the gut microbiota regulates the AA pool and composition
that is available to the host. This is supported by a study
demonstrating that gut bacteria alter the AA distribution in the
gastrointestinal tract (164). Alterations in AA availability may
lead to changes in signaling pathways that are sensitive to AAs,
including the mTOR signaling and inflammatory pathways (77,
165). For instance, studies demonstrated that people with ASD
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have lower BCAA levels in their plasma, urine and cerebrospinal
fluid (141, 166, 167). A deficiency of any of the BCAAs is
shown to cause immune cell impairments in various animal
models, leading to a more pro-inflammatory immune status
(168), which is also observed in people with ASD. A possible
explanation for the abnormal levels of BCAAs might be an
increased conversion of these AAs by gut Proteobacteria, as
these are among the most extensive BCAA-fermenting bacteria
(169) and are shown to be more abundant in people with
ASD (170–172).

Gut bacteria do not only alter AA availability, but they also
play a role in the availability of AA-derived metabolites. For
instance, levels of Thr are shown to be decreased in patients
with ASD (141, 167, 173). Gut bacteria use Thr for a.o. the
production of short-chain fatty acids (SCFAs), mainly propionate
(163, 174). Studies have revealed an increased abundance of
propionate in people with ASD (175, 176). In fact, elevated
propionate production is postulated to be involved in the
pathogenesis of ASD, as this SCFA is shown to cross the
blood-brain barrier and is able to induce ASD-like behavior
in adult rodents, possibly via activation of microglia (177–
179). The gut microbiome also has a role in the regulation
Trp metabolism (180, 181). Deviations in either endogenous or
bacterial Trp metabolism have been associated with a variety
of immune-related disorders, including ASD (182, 183). For
instance, a recent study demonstrated a significant reduction
of serotonin bioavailability in the intestines of a mouse
models for ASD (96, 149). This reduction was accompanied
by a down-regulation of the gene Tph1, indicating a lower

production of serotonin from dietary Trp (149). Interestingly,
serotonin production from Trp was positively associated with
the abundance of the Blautia bacteria present in the gut. In
both mouse models of ASD and in humans with ASD, the
abundance of Blautia bacteria is reported to be lower compared
to healthy controls (149, 184). This change in the microbiota
might underlie the abnormal Trp-metabolism and serotonin
bioavailability that is frequently observed in ASD patients
as well as in in vivo models for ASD and thus may drive
ASD pathogenesis.

As discussed, the gut microbiota influences the bioavailability
of AAs and their metabolites. Vice versa, the availability of AAs
can also influence the microbiota composition. For instance,
several studies have reported that the gut microbiota of people
with ASD as well as in murine ASD models is characterized
by a significantly higher ratio of Firmicutes to Bacteroidetes,
mainly due to a decrease in Bacteroidetes (171, 185, 186).
The ratio of Firmicutes to Bacteroidetes, which are the two
most abundant bacterial phyla in human, is considered of
significant relevance in human health (187). An increased
Firmicutes/Bacteroidetes ratio might be involved in inducing
inflammation, as this is observed in several inflammatory
conditions and as this ratio is shown to be positively
associated with dysregulated humoral and cellular immunity
(188, 189). Interestingly, dietary supplementation of arginine
(Arg) in healthy mice decreased the Firmicutes to Bacteroidetes
ratio in the small intestine, mainly due to an increase in
Bacteroidetes (190). Similarly, dietary supplementation of Gln
decreased the Firmicutes/Bacteroidetes ratio in sows (191).

FIGURE 4 | Schematic representation of the possible targets for dietary amino acids in the impaired gut-microbiome-immune-brain axis in ASD.
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Whether modulation of Gln and Arg intake can restore the
aberrant Firmicutes/Bacteroidetes ratio observed in ASD patients,
and subsequently improve their immune status remains to
be examined.

Furthermore, several studies have reported an increase
in the abundance of Proteobacteria in people with ASD
(170–172). Proteobacteria are often found to be increased in
inflammatory conditions such as colitis and inflammatory
bowel disease and have been identified as a marker for
microbiota instability and gut inflammation (192, 193).
Supplementation of BCAAs was shown to largely reduce the
abundance of Proteobacteria in mice, accompanied by lower
concentrations of inflammatory marker LPS-binding protein
(LBP) in serum (194), which has been shown to be elevated
in ASD patients (195). In addition, BCAA supplementation
also reduced the Firmicutes/Bacteroidetes ratio in middle-
aged mice (194). However, whether BCAA supplementation
is able to restore the abnormal gut microbiota in ASD, and
which underlying mechanisms are involved remains to be
further investigated.

CONCLUSION

In Table 1, an overview is presented of the complex roles of AAs
described in this review regarding the microbiome-gut-immune-
brain axis in ASD. Besides behavioral deficits, people with
ASD are characterized by systemic inflammation, gastrointestinal
immune-related disturbances and changes in the gut microbiota

composition. Moreover, differences in levels of specific AAs in

various body compartments, including the intestinal tract, blood,
urine and brain have been reported in patients with ASD, as well
as in rodent models for ASD. This review described that specific
AAs can modulate the intestinal epithelial immune barrier and
are able to tune the mucosal immune system, possibly through
influencing the mTOR pathway in immune cells. Moreover,
specific AAs can influence neuroinflammatory processes and
can target the aberrant mTOR signaling in the brain, thereby
influencing neuronal activity and disturbed behavior associated
with ASD. Finally, though limited reports are available, dietary
AAs can influence the changed intestinal microbiota composition
and activity of people with ASD. Figure 4 shows a graphical
overview of the different targets for dietary AAs in ASD.
Taken together, this review creates more insight in the complex
pathogenic relevance of the microbiome-gut-immune-brain axis
in ASD and warrants additional research into the opportunities
for AA-based nutritional interventions as treatment for ASD in
the system medicine approach.
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