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Abstract
Fatal familial insomnia (FFI) and a genetic form of Creutzfeldt-Jakob disease (CJD178) are

clinically different prion disorders linked to the D178N prion protein (PrP) mutation. The dis-

ease phenotype is determined by the 129 M/V polymorphism on the mutant allele, which is

thought to influence D178N PrP misfolding, leading to the formation of distinctive prion

strains with specific neurotoxic properties. However, the mechanism by which misfolded

variants of mutant PrP cause different diseases is not known. We generated transgenic

(Tg) mice expressing the mouse PrP homolog of the FFI mutation. These mice synthesize a

misfolded form of mutant PrP in their brains and develop a neurological illness with severe

sleep disruption, highly reminiscent of FFI and different from that of analogously generated

Tg(CJD) mice modeling CJD178. No prion infectivity was detectable in Tg(FFI) and Tg(CJD)

brains by bioassay or protein misfolding cyclic amplification, indicating that mutant PrP has

disease-encoding properties that do not depend on its ability to propagate its misfolded con-

formation. Tg(FFI) and Tg(CJD) neurons have different patterns of intracellular PrP accu-

mulation associated with distinct morphological abnormalities of the endoplasmic reticulum

and Golgi, suggesting that mutation-specific alterations of secretory transport may contrib-

ute to the disease phenotype.
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Author Summary

Genetic prion diseases are degenerative brain disorders caused by mutations in the gene
encoding the prion protein (PrP). Different PrP mutations cause different diseases, includ-
ing Creutzfeldt-Jakob disease (CJD) and fatal familial insomnia (FFI). The reason for this
variability is not known, but assembly of the mutant PrPs into distinct aggregates that
spread in the brain by promoting PrP aggregation may contribute to the disease pheno-
type. We previously generated transgenic mice modeling genetic CJD, clinically identified
by dementia and motor abnormalities. We have now generated transgenic mice carrying
the PrP mutation associated with FFI, and found that they develop severe sleep abnormali-
ties and other key features of the human disorder. Thus, transgenic mice recapitulate the
phenotypic differences seen in humans. The mutant PrPs in FFI and CJD mice are aggre-
gated but unable to promote PrP aggregation. They accumulate in different intracellular
compartments and cause distinct morphological abnormalities of transport organelles.
These results indicate that mutant PrP has disease-encoding properties that are indepen-
dent of its ability to self-propagate, and suggest that the phenotypic heterogeneity may be
due to different effects of aggregated PrP on intracellular transport. Our study provides
new insights into the mechanisms of selective neuronal dysfunction due to protein
aggregation.

Introduction
Prion strains with unique self-templating and neurotoxic properties are thought to emerge
spontaneously in humans carrying genetic prion disease-associated PrP mutations, dictating
the phenotypic expression of disease. Here we report that transgenic (Tg) mice carrying the
PrP mutation associated with one of these diseases (fatal familial insomnia, FFI) develop severe
sleep disorders and other key phenotypic features of the human disease, different from those
seen in analogously generated Tg mice expressing another prion disease-associated mutation
(Creutzfeldt-Jakob disease, CJD). No prion infectivity is spontaneously generated in these
mice, indicating that mutant PrP has disease-encoding properties that do not depend on self-
templating competence.

Prion diseases are progressive and invariably fatal degenerative disorders of the central ner-
vous system (CNS) that affect humans and other animals [1]. CJD, FFI and Gerstmann-
Sträussler-Scheinker (GSS) syndrome are the most common forms in humans; scrapie of the
goat and sheep, bovine spongiform encephalopathy, and chronic wasting disease of deer and
elk are the best-known prion zoonoses [2]. Neuronal loss, gliosis, spongiform change (vacuola-
tion of the neuropil in the gray matter) and in some cases amyloid deposits are typical neuro-
pathological findings in prion diseases, which in humans usually present with loss of motor
coordination and other motor abnormalities, dementia and neurophysiological deficits.

Similarly to other progressive neurodegenerative disorders, such as Alzheimer’s disease
(AD) and Parkinson’s disease (PD), frontotemporal dementia and the tauopathies, prion dis-
eases can arise sporadically or be genetically inherited; however, they can also be acquired by
infection [3, 4]. The infectious agent (prion) is scrapie prion protein (PrPSc) [5]. This is a con-
formationally altered and aggregated isoform of the cellular prion protein (PrPC) which propa-
gates by imprinting its aberrant conformation onto native PrPC molecules [6].

Genetic prion diseases are linked to point mutations and insertions in the PRNP gene en-
coding PrPC on chromosome 20 [7]. Point mutations are mainly clustered in the protein’s C
terminus, leading to amino acid substitutions or protein truncations. The insertions consist of
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additional copies of an octapeptide repeat in the N-terminal region, which normally contains
one nonapeptide and four octapeptides. Mutant PrP is thought to misfold and aggregate spon-
taneously, eventually acquiring the PrPSc structure.

Different PRNPmutations are associated with distinct clinical and neuropathological phe-
notypes: CJD, FFI, GSS, PrP-cerebral amyloid angiopathy [7] and a recently described PrP sys-
temic amyloidosis [8]. The disease phenotype is also influenced by PRNP polymorphic codon
129, where either methionine (M) or valine (V) can be encoded. A typical example is the prion
disease linked to the substitution of aspartic acid (D) to asparagine (N) at codon 178, which,
depending on the aminoacid encoded at polymorphic site 129, segregates with either FFI
(D178N/M129), primarily characterized by severe sleep disorders and autonomic dysfunction,
or CJD178 (D178N/V129), clinically identified by global cortical dementia and motor abnor-
malities [9]. The reason for this variability is not known. There is evidence that D178N/M129
and D178N/V129 PrPs differ in their folding and supramolecular assembly [10–12], but how
conformational variants of the PrP polypeptide produce different diseases is not clear.

Only recently have we begun to understand how mutant PrP causes neurological dysfunc-
tion. PG14, a mouse (mo) PrP carrying a nine-octapeptide repeat insertion associated with
GSS [13], and moPrP D177N/V128, homologous to the human CJD178 mutation, are partially
retained in the neuronal endoplasmic reticulum (ER) [14, 15]. Intracellular accumulation of
these mutants impairs the secretory transport of the voltage-gated calcium channel (VGCC)
α2δ-1 subunit, resulting in inefficient targeting of the VGCC complex to presynaptic terminals.
This leads to inefficient glutamatergic neurotransmission in cerebellar granule neurons
(CGNs) and abnormal motor behavior in Tg mice [15]. Thus in mouse models of GSS and
CJD178, ER retention of mutant PrP causes motor disease by altering the secretory trafficking
of calcium channels essential for synaptic activity.

To further explore the mechanisms of mutant PrP neurotoxicity and, specifically, the role of
the 129 polymorphism in directing the disease phenotype, we developed a mouse model of FFI.
Here we describe Tg(FFI) mice expressing moPrP D177N/M128, which presented abnormali-
ties in sleep-wake patterns and other pathological features highly reminiscent of FFI. Neurons
in Tg(FFI) mice accumulate mutant PrP in the Golgi and show morphological alterations of
this transport organelle. This suggests that different mutant PrPs may have different effects on
secretory transport, potentially inducing specific functional abnormalities in neurons, hence
clinically defined neurological diseases.

Results

Generation of Tg(FFI) Mice and Characterization of Mutant PrP
We produced Tg mice expressing moPrP D177N/M128 with or without an epitope tag for
monoclonal antibody 3F4. We identified ten founders (four with and six without the 3F4 epi-
tope). To generate the transgenic lines, referred to as Tg(FFI), founders were bred with PrP
knockout mice (Prnp0/0), so that the progeny expressed only mutant PrP. We established five
Tg lines: one expressing 3F4-tagged (FFI-K5) and four untagged mutant PrP (FFI-10, FFI-15,
FFI-26 and FFI-31). Transgene copy number and mutant PrP expression are shown in Table 1
and Fig 1A and 1B. Western blot analysis showed that unglycosylated PrP was under-repre-
sented (Fig 1), like in humans carrying the D178N mutation [16].

Mutant PrP in the mouse brain was largely insoluble (seen in pellet fractions in Fig 1C and
1D), and weakly protease-resistant (Fig 1E, lanes 5–8). After deglycosylation with PNGaseF,
the PK-resistant fragment had an apparent molecular mass of 19 kDa (Fig 1F, lane 2), consis-
tent with observations in FFI patients [16]. The PK-resistant fragment of D177N/V128 PrP in
Tg(CJD) mice was also 19 kDa (Fig 1F, lane 4), different from mutant PrP from CJD178
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patients, which has a PK-resistant core of 21 kDa [16], confirming our previous observations
[14]. Detergent-insoluble and PK-resistant PrP was already detectable in 50 days old mice (S1
Fig), well before they developed clinical disease (see below).

Like in FFI Patients, Circadian Organization, Architecture, EEG Features
and Amount of Sleep Are Deranged in Tg(FFI) Mice
As disruption of sleep is a key feature of FFI, we analyzed the sleep-wake patterns in Tg(FFI)
mice. We used Tg(FFI-26)/Prnp0/0 mice, which express the mutant protein at approximately
twice the wild-type (WT) level (Table 1 and Fig 1B) and develop a fatal neurological syndrome
with motor and cognitive deficits (see below). To assess the effect of co-expression of WT PrP,
we also analyzed Tg(FFI-26)/Prnp+/0 mice, in which one Prnp allele was reintroduced by back-
crossing Tg(FFI-26)/Prnp0/0 with C57BL/6J mice (hereafter referred to as non-Tg/Prnp+/+).

Circadian organization of sleep and motor activity was lost in Tg(FFI)/Prnp0/0 mice. As ex-
pected in nocturnal animals, non-Tg/Prnp+/+ mice slept (summing up NREM and REM sleep)
about twice as long during the day than during the night (2.1 ± 0.2 times). This was also true
for non-Tg/Prnp0/0, and Tg(FFI)/Prnp+/0 mice, which slept 2.0 ± 0.1 and 2.4 ± 0.3 times more
during the day than during the night, respectively. In contrast, Tg(FFI)/Prnp0/0 mice slept only
fifty percent more (1.5 ± 0.1 times; p< 0.05 by one-way ANOVA, F3,31 = 5.672).

The disorganization of sleep circadian rhythms in Tg(FFI)/Prnp0/0 mice was confirmed by
analysis of gross body movements. Non-Tg/Prnp+/+, non-Tg/Prnp0/0 and Tg(FFI)/Prnp+/0 mice
moved almost three to almost four times more during the night than during the day, respective-
ly (2.9 ± 0.3, 3.9 ± 0.4 and 3.7 ± 0.6 times). Tg(FFI)/Prnp0/0 mice moved only 1.6 ± 0.2 times
more during the night than during the day (p< 0.001 by one-way ANOVA, F3,31 = 10.819).

Sleep continuity and organization were affected in Tg(FFI)/Prnp0/0 mice. The number of
transitions between different behavioral states (an indicator of broken sleep) was greater in Tg
(FFI)/Prnp0/0 mice than in non-Tg/Prnp+/+ and non-Tg/Prnp0/0 mice, during both the light
and dark phases (Fig 2). In Tg(FFI)/Prnp+/0 mice there were more transitions only in compari-
son to non-Tg/Prnp+/+ mice, and only during the light phase (Fig 2).

Table 1. Characteristics of founders carrying the D177N/M128 transgene.

Founder 3F4 epitope Transgene copy numbera Tg PrP proteinb

FFI-A6c + 17 0.5X

FFI-K2c + 3 0.01X

FFI-K5 + 18 0.7X

FFI-10 - 15 1X

FFI-15 - 2 0.5X

FFI-17d - ND 4X

FFI-26 - 31 2X

FFI-28e - ND 5X

FFI-31 - 1 0.03X

a Determined by quantitative PCR.
b Relative to endogenous PrP expression in non-Tg mice (data are for mice that are hemizygous for the

transgene array).
c Founders euthanized at > 800 days of age, with no clinical symptoms.
d Founder died at 109 days of age because of lymphoma.
e Founder died with neurological symptoms at 477 days of age. ND, not determined.

doi:10.1371/journal.ppat.1004796.t001
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Fig 1. Mutant PrP in the brains of Tg(FFI) mice is insoluble andmildly protease-resistant. (A, B) The indicated amounts of total proteins extracted from
the brains of a C57BL/6J mouse (non-Tg, 360 days old), a Tg(FFI-10+/-)/Prnp0/0 (87 days old), a Tg(FFI-15+/-)/Prnp0/0 (32 days old) and a Tg(FFI-K5+/-)/Prnp0/
0 (601 days old) (panel A), and from a Tga20 (113 days old), a Tg(WT-E1+/-)/Prnp0/0 (460 days old), a Tg(FFI-26+/-)/Prnp0/0 (227 days old) and a non-Tg
mouse (307 days old) (panel B), were analyzed byWestern blot with monoclonal antibody 12B2. (C, D) Brain lysates prepared frommice of the following
genotypes and ages were ultracentrifuged at 186,000 x g for 40 min, and PrP in the supernatants (S lanes) and pellets (P lanes) was analyzed byWestern
blotting using the 12B2 antibody: non-Tg, 61 days; Tg(FFI-10+/-)/Prnp0/0, 58 days; Tg(FFI-K5+/-)/Prnp0/0, 287 days; Tg(WT-E1+/-)/Prnp0/0, 276 days; Tg(FFI-
26+/-)/Prnp0/0, 371 days. (E) Brain lysates from the Tg(WT-E1+/-)/Prnp0/0 and Tg(FFI-26+/-)/Prnp0/0 mice used in D were incubated with 0–2 μg/ml of PK for 30
min at 37°C, and PrP was visualized byWestern blotting using antibody 12B2. The undigested samples (0 μg/ml PK) represent 25 μg of protein, and the
other samples 100 μg. (F) Brain lysates from the Tg(FFI-26+/-)/Prnp0/0 mouse and a Tg(CJD-66+/-)/Prnp0/0 mouse (322 days old) were incubated with 0 or
0.5 μg/ml of PK as in E, followed by incubation with PNGaseF andWestern blot analysis with antibody 12B2. The arrowheads indicate the PK-resistant
deglycosylated PrP bands. Molecular size markers are given in kDa.

doi:10.1371/journal.ppat.1004796.g001
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In 8 out of 9 Tg(FFI)/Prnp0/0 mice, entry into REM sleep was abnormal. Tg(FFI)/Prnp0/0

mice entered REM sleep directly from wakefulness in 24.6 ± 6.5% of REM epochs, instead of
going through NREM sleep, as normally occurs (Fig 3). This was never observed in the other
groups of mice.

Fig 2. Sleep architecture. Values are the mean ± SEM of 8 non-Tg/Prnp+/+, 10 non-Tg/Prnp0/0 mice, 8 Tg(FFI-26)/Prnp+/0 mice and 9 Tg(FFI-26)/Prnp0/0

mice. The grey areas indicate the dark portion of the light-dark cycle. *p� 0.05; **p� 0.01 (mixed model for repeated measures followed by between-strain
one-way ANOVAwith Bonferroni's correction).

doi:10.1371/journal.ppat.1004796.g002
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Fig 3. Entry in REM sleep is abnormal in Tg(FFI) mice.Whereas a Tg(FFI-26)/Prnp0/0 mouse (A) enters REM sleep directly from wakefulness (left arrow),
as shown by the hypnogram (lower trace), in a non-Tg/Prnp+/+ mouse REM sleep is preceded by an episode of NREM sleep (B). Top to bottom: EEG
(electroencephalogram), EEG power in the delta (0.5–4 Hz, black line) and theta (6–9 Hz, red line) bands, and the related hypnogram. Arrows indicate the
beginning and end of a REM sleep phase.

doi:10.1371/journal.ppat.1004796.g003
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Slow-wave activity (SWA) during NREM sleep (a measure of sleep drive and depth [17]) and
EEG spindles (which characterize this sleep phase) were reduced in Tg(FFI)/Prnp0/0 mice. Al-
though the amount of NREM sleep was not reduced in Tg(FFI)/Prnp0/0 mice in comparison to
the other mice, NREM sleep SWAwas significantly less in Tg(FFI)/Prnp0/0 mice than in both
non-Tg/Prnp+/+ and non-Tg/Prnp0/0 mice during the first portion of the light phase (Fig 4). The
density of EEG spindles during NREM sleep in the light phase was lower in Tg(FFI)/Prnp0/0 mice
(38.4 ± 7.5 spindles/h) than in both non-Tg/Prnp+/+ and non-Tg/Prnp0/0 mice (184.4 ± 11.0 and
148.0 ± 9.1 spindles/h, respectively; p< 0.01 by one-way ANOVA F3.31 = 35.587). The density of
spindles in Tg(FFI)/Prnp+/0 mice (106.8 ± 14.3 spindles/h) was intermediate between that of non-
Tg/Prnp+/+ and Tg(FFI)/Prnp0/0 mice, and significantly different from both.

Besides starting abnormally, in Tg(FFI)/Prnp0/0 mice REM sleep differed in amount (Fig 4),
and its EEG power in the theta (6–9 Hz) band (the EEG hallmark of rodent REM sleep) was
significantly lower than in the other groups. The loss of REM sleep in Tg(FFI)/Prnp0/0 mice
was due to a reduction in the number of REM sleep bouts, but not their duration (Fig 2). Dur-
ing the light phase, REM sleep theta power was 11.8 ± 0.4% (of REM sleep EEG total power) in
Tg(FFI)/Prnp0/0 mice, 13.7 ± 0.4% in non-Tg/Prnp+/+, and 13.2 ± 0.3% in non-Tg/Prnp0/0 mice
(mean ± SEM; p< 0.05 and p< 0.001, Tg(FFI)/Prnp0/0 vs. non-Tg/Prnp+/+ and non-Tg/Prnp0/
0, respectively; one-way ANOVA with Bonferroni’s correction). During the dark phase, REM
sleep theta power was significantly lower in both Tg(FFI)/Prnp0/0 and Tg(FFI)/Prnp+/0 than in
non-Tg/Prnp+/+ mice (11.8 ± 0.5%, 11.9 ± 0.5% and 13.9 ± 0.5% respectively; p< 0.05).

Since additional alterations may become apparent when the sleep drive is increased, we in-
vestigated the response to sleep deprivation. Mice were kept awake during the first 6 h of the
light phase by gentle handling, then allowed to sleep freely in the following 18 h. REM and
NREM sleep, shown in Fig 5, was calculated hourly for each animal as the difference between
the time spent in REM or NREM sleep during and after sleep deprivation, and the amount
spent in the corresponding hour during baseline conditions (undisturbed). The hour-by-hour
differences were then summed to give a cumulative curve.

Nontransgenic and Tg(FFI)/Prnp+/0 mice lost the same amount of REM sleep during depriva-
tion (Fig 5A). By the end of the recording period (i.e. 18 h after the end of the sleep deprivation
period), non-Tg/Prnp+/+ and non-Tg/Prnp0/0 mice fully recovered the REM sleep lost, whereas
Tg(FFI)/Prnp+/0 mice did not (Figs 4 and 5A). During sleep deprivation, Tg(FFI)/Prnp0/0 mice
lost less REM sleep than all other mouse lines, because REM sleep was already markedly reduced
in these mice in basal conditions (Fig 4). In the next 18 h, Tg(FFI)/Prnp0/0 mice slept as much as
in undisturbed conditions, having little loss of REM sleep to recover (Figs 4 and 5A).

Mice of all genotypes lost the same amount of NREM sleep during sleep deprivation. During
the next 18 h, they did not fully recover (Fig 5B) and compensated the loss of NREM sleep with
an increase in the power of the EEG delta band in the first 6 h of recovery (Fig 4), as previously
shown for rodents deprived of sleep by gentle handling for a short time [18].

EEG activity was altered in Tg(FFI)/Prnp0/0 and Tg(FFI)/Prnp+/0 mice. This consisted of
bursts of high-voltage polyphasic complexes, similar to those described in Tg(CJD) mice ex-
pressing D177N/V128 PrP [14], with frequency peaking at about 7 Hz. This activity was almost
equally distributed during the light and dark parts of the light/dark cycle. In Tg(FFI)/Prnp0/0

mice polyphasic complexes were present in respectively 8.8 ± 3.4% and 12.0 ± 3.7% of the ep-
ochs of the light and dark parts of the light-dark cycle. In Tg(FFI)/Prnp+/0 polyphasic com-
plexes were present in 0.60 ± 0.24% and 1.15 ± 0.60% of epochs of the light and dark phases.
Polyphasic complexes were present in 9.6 ± 3.1%, 2.1 ± 1.0% and 16.4 ± 5.2% of epochs scored
respectively as REM sleep, NREM sleep and wakefulness, in Tg(FFI)/Prnp0/0 mice. These per-
centages were 0.4 ± 0.2%, 0.5 ± 0.3% and 1.1 ± 0.5% in Tg(FFI)/Prnp+/0 mice. No pathological
activity was detected in non-Tg mice.
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Fig 4. Amount of sleep and EEG delta power during NREM sleep. Values are the mean ± SEM of 8 non-Tg/Prnp+/+, 10 non-Tg/Prnp0/0, 8 Tg(FFI-26)/
Prnp+/0 and 9 Tg(FFI-26)/Prnp0/0 mice. The grey areas indicate the dark portion of the light-dark cycle. *,°p� 0.05; **,°°p� 0.01. A mixed model for
repeated measures was used. Between-strain comparisons (*) were done by one-way ANOVA with Bonferroni's correction. Within-condition comparisons (°)
were done by paired Student's t test.

doi:10.1371/journal.ppat.1004796.g004
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Fig 5. Tg(FFI) mice show an altered response to sleep deprivation. Time course of the loss and recovery of time spent in rapid eye movement (REM) (A)
and non-rapid eye movement (NREM) (B) sleep, during and after sleep deprivation. Values were from 8 non-Tg/Prnp+/+, 10 non-Tg/Prnp0/0, 9 Tg(FFI-26)/
Prnp0/0 and 8 Tg(FFI-26)/Prnp+/0. Mice were kept awake during the first 6 h of the light phase (crosshatched bar) by gentle handling, and allowed to sleep
freely in the next 18 h. The black bar indicates the dark portion of the light-dark cycle. REM and NREM sleep were calculated hourly for each animal as the
difference between the amount of time spent in a given state (REM or NREM sleep) during and after sleep deprivation, and the amount spent in the
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Tg(FFI) Mice Develop Motor Dysfunction and Alterations of Recognition
and Spatial Working Memory
Tg(FFI) mice had progressive neurological disease. They developed ataxia, with abnormal
flexed posture of the hind legs, kyphosis, and foot clasp reflex (S2 Fig). The phenotype was evi-
dent from 202 ± 2 days (mean ± SEM, n = 58) in Tg(FFI-26) mice. As the disease progressed
the mice lost weight, and were killed when unable to feed themselves, at 436 ± 4 days (n = 87).
Prospective observation of individual mice indicated an average duration of the illness of
262 ± 4 days (n = 32).

To check the earliest appearance of motor dysfunction, Tg(FFI-26) mice were tested on the
accelerating Rotarod. They performed well until 90 days of age, indicating normal development
of motor function. From 110 days on, however, the mutant mice showed a significantly shorter
latency to fall than nontransgenic littermates; their performance worsened with aging until
they became unable to stay on the rod (Fig 6A).

A similar but less aggressive neurological illness was seen in Tg(FFI-10) mice expressing
mutant PrP at lower levels. Neurological signs were evaluated at a single time in a cohort of
hemi- and homozygous Tg(FFI-10) littermates of different ages. There was no disease in hemi-
zygous Tg(FFI-10) mice younger than 328 days, but 23 out of 37 (62%) mice between 328 and
757 days showed mild neurological disease. Prospective observation indicated that these mice
never reached a debilitating stage and survived as long as non-Tg littermates. In addition, some
hemizygous Tg(FFI-10) animals remained free of neurological signs, suggesting incomplete
penetrance when the mutant PrP was expressed at wild-type levels.

In contrast, all homozygous Tg(FFI-10) mice older than 290 days had neurological disease,
and reached a terminal stage at 698 ± 26 days (n = 14), indicating a profound effect of trans-
gene zygosity on the manifestation and time course of the illness. Confirming this, the Rotarod
task showed age-dependent, transgene-dose-related motor dysfunction in Tg(FFI-10) mice
(Fig 6B). The non-breeding Tg(FFI-28) founder expressing PrP at ~5X died with neurological
symptoms at 477 days, whereas Tg(FFI) lines with mutant PrP levels below 1X (Table 1) never
developed neurological disease. Thus the appearance of neurological illness and its rate of pro-
gression were correlated with the expression level of mutant PrP, similar to other mouse mod-
els of genetic prion disease [13, 14, 19–21].

Co-expression of WT PrP had no effect on motor dysfunction, in contrast to the mitigating
effect on the sleep abnormalities. For example, in a group of littermates consisting of 9 Tg(FFI-
26)/Prnp0/0, 10 Tg(FFI-26)/Prnp+/0 and 8 Tg(FFI-26)/Prnp+/+ mice, symptom onset was at
207 ± 13, 216 ± 12 and 220 ± 11 days respectively (F2,24 = 0.29; p = 0.75 by one-way ANOVA).
There were also no differences in Rotarod performance (Fig 6C).

We found alterations in long-term recognition and spatial working memory too in Tg(FFI)
mice, tested in the novel object recognition task and eight-arm radial maze. To avoid con-
founding effects due to the motor deficit that develops in older mice, we tested Tg(FFI-26) ani-
mals younger than 100 days. Mice were impaired in long-term memory, as shown by the lower
discrimination index in the object recognition task compared to non-Tg mice (Fig 7A). They
also performed poorly in the eight-arm radial maze, which tests spatial working memory,

corresponding hour during baseline conditions (undisturbed). The hour-by-hour differences were then summed to obtain a cumulative curve. Data
(means ± SEM) are presented in 2-h intervals. Single symbols: p < 0.05; double symbols: p < 0.01. *, Tg(FFI-26)/Prnp0/0 vs non-Tg/Prnp0/0; °, Tg(FFI-26)/
Prnp0/0 vs. non-Tg/Prnp+/+; §, Tg(FFI-26)/Prnp0/0 vs. Tg(FFI-26)/Prnp+/0; #, Tg(FFI-26)/Prnp+/0 vs. non-Tg/Prnp+/+. A mixed model analysis of variance for
repeated measures was done on 6 h blocks. Between-strains post-hoc comparisons by one-way ANOVA with Bonferroni correction: (panel A) 0–6 h: F3,101 =
4.98, p = 0.003; 7–12 h: F3,101 = 5.25, p = 0.002; 13–18 h: F3,101 = 2.88, p = 0.05; 19–24 h: F3,101 = 3.30, p = 0.023. (panel B) 0–6 h: F3,101 = 1.01, p = 0.391;
7–12 h: F3,101 = 1.78, p = 0.156; 13–18 h: F3,101 = 3.76, p = 0.013; 19–24 h: F3,101 = 3.97, p = 0.010.

doi:10.1371/journal.ppat.1004796.g005
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Fig 6. Tg(FFI) mice develop motor dysfunction which is not rescued by co-expression of wild-type
PrP. (A) Groups of 7–12 Tg(FFI-26+/-)/Prnp0/0 and 9–13 non-Tg/Prnp0/0 littermates were tested on a Rotarod
at the ages indicated. Each mouse was tested three times, and the mean latency to fall was calculated. Bars
indicate the mean ± SEM of latency to fall (s); F10,192 = 10.82, p < 0.0001 by two-way ANOVA; **p < 0.01 and
****p < 0.0001 Šidàk’s post hoc test. (B) Groups of 6–19 (240–450 days old) and 10–11 (600–700 days old)

Mouse Model of Fatal Familial Insomnia

PLOS Pathogens | DOI:10.1371/journal.ppat.1004796 April 16, 2015 12 / 35



making significantly more errors in the first eight training trials than controls (Fig 7B). Latency
to complete the test was longer in Tg(FFI) than non-Tg mice (Fig 7C). This may reflect an im-
pairment in choice-making, since there were no significant differences in the number of total
movements in the open field (total line crossings: non-Tg = 304 ± 13; Tg(FFI-26) = 283 ± 23;
mean ± SEM), confirming no motor deficit at this stage.

Tg(FFI) Mice Have Thalamic and Cerebellar Atrophy, PrP Deposits and
Gliosis
We used magnetic resonance imaging (MRI) to investigate the effects of the FFI mutation on
brain structure. There were no significant differences between the whole-brain volumes of Tg
(FFI-26) and non-Tg littermates at 80 days of age (non-Tg = 464 ± 6 mm3; Tg(FFI-26) =
451 ± 5 mm3; mean ± SEM, n = 5–6; p = 0.0823 by Mann-Whitney test). In Tg(FFI-26) mice
older than 400 days, the whole-brain volume was 12% smaller than controls (non-Tg = 493 ± 4
mm3; Tg(FFI-26) = 436 ± 6 mm3; mean ± SEM, n = 9; p< 0.0001 by Mann-Whitney test).
Analysis of individual brain areas showed that the thalamic and cerebellar volumes were signif-
icantly smaller in Tg(FFI-26) mice than in non-Tg littermates, but there were no differences in
the other brain regions (Fig 8).

Neuropathological examination of Tg(FFI) mice showed PrP deposition in the form of dif-
fuse “synaptic-type” immunoreactivity in several regions. These deposits were most prominent
in the entorhinal and pyriform cortex, cingulate gyrus, hippocampal formation, thalamus, cau-
datum, putamen, amygdala and the molecular layer of the cerebellar cortex (Fig 9). Synaptic-
type deposits were also present in the other cortical areas and the septum. Dot-like and small
round PrP-immunoreactive profiles were seen in several subcortical structures, including the
stria terminalis, fimbria and thalamus (Fig 9). Strongly immunoreactive fiber tracts were ob-
served in the stria terminalis and in the stratum lucidum of CA3, corresponding to the hippo-
campal mossy fibers. Diffuse intraneuronal PrP immunoreactivity was present in the
mesencephalic trigeminal nucleus, the vestibular nucleus and the lateral dorsal nucleus of the
thalamus. The neurons of the mesencephalic trigeminal nucleus were outlined by dot-like im-
munoreactive profiles that were also scattered in the neuropil (Fig 9J). The PrP deposits were
not fluorescent after thioflavin S staining, indicating that they did not contain amyloid fibrils.
No spongiform-like changes were seen. Immunohistochemistry with the anti-GFAP antibody
revealed astrogliosis mainly in the hippocampus, external layer of the cerebral cortex, and cere-
bellum (S3A-S3F Fig). Staining with the anti-Iba1 antibody showed microgliosis mainly in the
hippocampus, cerebral cortex and periaqueductal gray (S3G-S3L Fig).

Tg(FFI) Neurons ShowMorphological Abnormalities of the Golgi with
Accumulation of Mutant PrP
Electron microscopy (EM) of Tg(FFI) brains detected neuronal ultrastructure abnormalities in
several regions, including the neocortex, hippocampus, thalamus and cerebellum. These in-
cluded autophagosomes, autophagolysosomes and increased amounts of lipofuscin (Fig 10A–
10D). The most marked finding, however, was alteration of the Golgi complex, whose cisternae
appeared swollen and ‘swirled’, often forming an onion-like structure (Fig 10E–10G). Three-

Tg(FFI-10+/-)/Prnp0/0, Tg(FFI-10+/+)/Prnp0/0 and non-Tg/Prnp0/0 littermates were tested on a Rotarod. Bars
indicate the mean ± SEM of latency to fall (s); F2,28 = 34.05, p < 0.0001 by one-way ANOVA; *p < 0.05 and
****p < 0.0001 vs. non-Tg; Tukey’s post hoc test. (C) Groups of 9 Tg(FFI-26+/-)/Prnp0/0, 10 Tg(FFI-26+/-)/
Prnp+/0, and 8 Tg(FFI-26+/-)/Prnp+/+ littermates were tested on a Rotarod and the ages indicated. F2,45 =
0.3374; p = 0.7154 by two-way ANOVA.

doi:10.1371/journal.ppat.1004796.g006
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Fig 7. Tg(FFI) mice show recognition and spatial workingmemory impairment. (A) Performance in the
novel object recognition task was expressed as a discrimination index (see Experimental Procedures).
Histograms indicate the mean ± SEM of 10 non-Tg/Prnp+/+, 10 non-Tg/Prnp0/0, and 8 Tg(FFI-26+/-)/Prnp0/0

aged 70 days; F2,25 = 8.3 p = 0.017 by one-way ANOVA; *p < 0.05, **p < 0.01, Tukey’s post hoc test. (B)
Histograms represent the mean ± SEM of total errors in the eight-arm radial maze in the first eight trials during
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16 days of training, by the same non-Tg/Prnp0/0 and Tg(FFI-26+/-)/Prnp0/0 mice used in A. t16 = 3.0; p = 0.009;
**p < 0.01 by Student’s t test. (C) Values are the mean latency (± SEM) to complete the radial maze. F15,240 =
19; p = 0.03 by one-way ANOVA for repeated measures. *p < 0.05 by Student’s t test.

doi:10.1371/journal.ppat.1004796.g007

Fig 8. Tg(FFI) mice show thalamic and cerebellar atrophy. (A) Brain anatomy of a non-Tg/Prnp0/0 and a Tg(FFI-26+/-)/Prnp0/0 mouse aged 460 days.
Representative T2-weighted images (TE/TR = 50/2500 ms). (B) Volumes of individual brains areas of 9 Tg(FFI-26+/-)/Prnp0/0 and 9 non-Tg/Prnp0/0

littermates aged between 408 and 498 days were quantified as described in the Experimental Procedures. To reduce interindividual variation, volumes were
normalized on the values of the striatum which were the same in non-Tg and Tg(FFI) mice (non-Tg: 20.83 ± 0.30 mm3, Tg(FFI): 20.09 ± 0.32 mm3;
mean ± SEM, p = 0.22 by MannWhitney test). *p < 0.05 and **p < 0.01 vs. non-Tg by MannWhitney test.

doi:10.1371/journal.ppat.1004796.g008
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dimensional tomography confirmed the concentric isolated Golgi cisternae and showed invagi-
nations of medial Golgi cisternae inside their lumen (Fig 10H and 10I). These abnormalities
were never seen in Tg(WT-E1) and non-Tg controls.

To see whether the Golgi abnormalities in Tg(FFI) neurons were associated with intracellu-
lar accumulation of mutant PrP, we examined primary CGNs by immuno-gold EM using a
published procedure [14]. The majority of WT PrP in granule neurons from non-Tg/Prnp+/+

mice localized on the plasma membrane and in endosomes, with only a small fraction in the
ER and Golgi (Fig 11A and 11D). In contrast, D177N/M128 PrP localized mostly in the Golgi
of Tg(FFI) neurons (~75% vs. ~2.5% in control cells), with far fewer molecules on the plasma

Fig 9. Tg(FFI) mice show cerebral accumulation of protease-resistant PrP. Immunohistochemical detection of PrP using monoclonal antibody 12B2
after PK digestion of sections in a 291-day-old Tg(WT-E1+/-)/Prnp0/0 mouse (A) and in three 338-day-old Tg(FFI-26+/-)/Prnp0/0 mice (B-J). The pattern of PrP
deposition was either diffuse, as in the cerebral cortex, hippocampus, thalamus and molecular layer of the cerebellum (B-H), strip-like as in the fimbria (I), or
dot-like as in the mesencephalic trigeminal nucleus (J). AD, anterodorsal thalamic nucleus; AV, anteroventral thalamic nucleus; st, stria terminalis; LDDM,
laterodorsal thalamic nucleus, dorsomedial part; LDVL laterodorsal thalamic nucleus, ventrolateral part; VL, ventrolateral thalamic nucleus. Scale bars = 1
mm in A, B, C and D, 250 μm in E, F, G and H, and 125 μm in I and J. Results were similar using the 3F4 antibody in Tg(FFI-K5+/-)/Prnp0/0 mice expressing
epitopically-tagged mutant PrP.

doi:10.1371/journal.ppat.1004796.g009
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Fig 10. Ultrastructural abnormalities in Tg(FFI) neurons. (A) Autophagosomes in a hippocampal neuron (arrow) and the surrounding neuropil
(arrowheads) of a Tg(FFI-26+/-)/Prnp0/0 mouse at 367 days. (B) Autophagosomes and autophagolysosomes in a dystrophic cerebellar neurite of a Tg(FFI-
26+/-)/Prnp+/0 at 444 days. (C) Lipofuscin residual bodies in a thalamic neuron of a Tg(FFI-26+/-)/Prnp0/0 mouse at 367 days. (D) Quantification of lipofuscin
residual bodies in the thalamus of three non-Tg and four Tg(FFI) mice aged between 292 and 444 days. Data are the mean ± SD. ****p < 0.0001 by
Student’s t test. Values from two non-Tg/Prnp+/+ and one non-Tg/Prnp0/0 mice, and from three Tg(FFI-26+/-)/Prnp0/0 and one Tg(FFI-26+/-)/Prnp+/0 mice were
pooled. (E) Normal Golgi appearance in a hippocampal neuron of a non-Tg/Prnp+/+ mouse at 280 days. Onion-like Golgi morphology in hippocampal (F) and
thalamic (G) neurons of a Tg(FFI-10+/-)/Prnp0/0 mouse at 331 days. (H, I) Three-dimensional tomography reconstruction from virtual serial slices of the Golgi
shown in G. The ER cisterna is colored green (blue arrows). The trans-most cisterna is in the center of the spherical Golgi (blue-green, orange arrows).
Medial Golgi cisternae show invaginations of membranes inside their lumen (red arrow in panel I). The cis-most cisterna is not visible in this Golgi stack.
Scale bars = 1 μm in A and C, and 0.5 μm in B and E, F and G.

doi:10.1371/journal.ppat.1004796.g010
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membrane (~15% vs. ~85% in controls) (Fig 11B and 11D). The Golgi in these neurons were
bigger than controls (Fig 11E). These abnormalities in PrP distribution and intracellular organ-
elle morphology were strikingly different from those of Tg(CJD) neurons, in which we found
dramatic swelling of the ER cisternae, with ER retention of mutant PrP (Fig 11C–11E) [14].

The Brains of Spontaneously Ill Tg(FFI) and Tg(CJD) Mice Do Not
Contain Detectable Prion Infectivity
Intracerebral inoculation of brain homogenates from FFI and CJD178 patients induced prion
disease in experimental animals [22–24], consistent with the contention that D178N PrP can
spontaneously acquire an infectious structure. To test whether prion infectivity was generated
de novo in the brains of Tg(FFI) and Tg(CJD) mice, we prepared different brain homogenates
from Tg lines expressing 3F4-tagged or untagged mutant PrP at different levels, and co-express-
ing endogenous WT PrP or not (Table 2). The brain homogenates were inoculated intracere-
brally in C57BL/6J mice, and in Tga20 mice that overexpress moPrP at 8X and are highly
sensitive to prions [25]. Homogenates from Tg(FFI-K5) and Tg(CJD-A21) mice, expressing
3F4-tagged mutant PrPs, were also inoculated in Tg(WT-E1+/+) mice overexpressing WT
moPrP with the 3F4 epitope [13], and in Tg(CJD-G1+/+) mice, which express low levels of
3F4-tagged D177N/V128 PrP and do not spontaneously become ill [14]. The PrPs expressed by
these two lines of mice should be particularly efficient for assaying infectivity because they con-
tain either the 3F4 epitope or the 3F4 epitope and the D177Nmutation. All transgenic recipient
mice used in this study carried two disrupted Prnp alleles, so they did not synthesize endoge-
nous PrP. Brain homogenates from non-Tg/Prnp+/+ mice served as negative controls. As posi-
tive controls, some host mice were inoculated with the mouse-adapted RML isolate of scrapie
that had been previously passaged in WT or Tg(WT-E1+/+) mice (RML and RML3F4, respec-
tively) [26]. All mice were observed weekly for the appearance of neurological signs.

None of the animals inoculated with brain homogenates from Tg(FFI) and Tg(CJD) mice, or
from negative control mice, developed neurological dysfunction, and all the animals either died
from intercurrent illness or were euthanized near the end of their normal lifespan, approximate-
ly two years after inoculation (Table 2, lines 2–17, 21–36, 40–49, 53–62). None of the brains
from inoculated C57BL/6J, Tg(WT-E1+/+) or Tga20 host mice that were subjected to biochemi-
cal analysis contained PrP that was detergent-insoluble or that yielded typical or atypical (i.e.
1E4- or SAF84-immunoreactive [27, 28]) PK-resistant fragments. Tg(CJD-G1+/+) spontaneously
accumulate small amounts of detergent-insoluble PrP in their brains [14], but inoculation with
Tg(CJD) or Tg(FFI) brain homogenates did not increase the amount. In contrast, all positive
control mice inoculated with RML prions developed scrapie (Table 2, lines 18, 19, 37, 38, 50, 51),
and their brains contained PrP that was resistant to high concentrations of PK. Thus, the brains
of Tg(FFI) and Tg(CJD) mice did not contain prion infectivity detectable by bioassay.

PMCA Does Not Detect Spontaneously Formed PrPSc in Tg(FFI) and Tg
(CJD) Brains, but the Mutant PrPs Can Be Converted into PrPSc in vitro
To test whether that the brains of Tg(FFI) and Tg(CJD) mice contained prions below the
threshold of detection of the bioassay, we subjected the brain homogenates to serial protein
misfolding cyclic amplification (PMCA). This allows highly efficient prion replication in a test
tube, and is able to amplify the equivalent of a single molecule of PrPSc [29]. Brain homoge-
nates from Tg(FFI) and Tg(CJD) mice were subjected to serial PMCA with or without a RML
seed. RML-seeded PMCA yielded forms of D177N/M128 and D177N/V128 PrPs that were
highly PK-resistant (hereafter referred to as D177N/M128RML and D177N/V128RML,
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respectively), while the unseeded reactions did not (Fig 12A and 12B), indicating that the
brains of Tg(FFI) and Tg(CJD) mice did not contain any spontaneously generated PrPSc.

To test whether D177N/M128RML and D177N/V128RML corresponded to bona fide PrPSc,
the PMCA reactions were intracerebrally inoculated in Tga20 mice. Four out of seven mice in-
oculated with D177N/M128RML, and five of nine inoculated with D177N/V128RML, had typical
PK-resistant PrPSc in their brains (Fig 12C and 12D), although at the time of death (> 400
days post-inoculation: d.p.i.) they did not have clinical signs of scrapie (for comparison Tga20
mice inoculated with in vitro amplified RML developed scrapie at 78 ± 6 d.p.i. and died at
83 ± 6 d.p.i.; mean ± SEM, n = 3). Thus the in vitro converted mutant PrPs were able to propa-
gate in vivo as authentic prions, but produced subclinical infections, most likely because of dif-
ferences between the primary structure of the mutant PrPSc in the infecting inoculum andWT
PrPC in the recipient mice [30, 31]. As expected, the brains of Tga20 mice inoculated with the
unseeded PMCA reactions did not contain any PK-resistant PrPSc (Fig 12C and 12D).

Discussion
The present study found that mice carrying a transgene encoding the mouse homologue of the
FFI mutation synthesize an abnormal form of PrP in their brains and develop a neurological

Fig 11. Tg(FFI) and Tg(CJD) neurons show different intracellular PrP accumulations andmorphological abnormalities of transport organelles.
Cultures of cerebellar granule neurons from non-Tg/Prnp+/+, Tg(FFI-K5+/-)/Prnp0/0 and Tg(CJD-A21+/-)/Prnp0/0 mice were fixed and labeled with anti-PrP
monoclonal antibody 12B2 using the gold-enhance protocol. WT PrP is mostly found at the plasmamembrane (A). D177N/M128 PrP is mostly in the Golgi
(B), and D177N/V128 PrP is mostly in the ER, whose cisternae appear enlarged and swollen (C). Scale bar = 250 nm in A, B and C. (D) Quantification of gold
particles in different cell compartments. PM, plasmamembrane. (E) Quantification of ER and Golgi volumes of cultured cerebellar granule neurons. Data are
the mean ± SD of at least 10 cells per specimen. Data for non-Tg/Prnp+/+ and Tg(CJD-A21+/-) neurons in D and E are from [14].

doi:10.1371/journal.ppat.1004796.g011
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Table 2. Transmission assay for infectivity in the brains of spontaneously ill Tg(FFI) and Tg(CJD) mice.

Recipienta Line no. Inoculumb Time to symptomsc

(mean days ± SEM)
Time to deathd

(mean days ± SEM)
No. dead/total

C57BL/6J 1 None >600 0/5

2 Non-Tg/Prnp+/+ >540 0/8

3 Non-Tg/Prnp+/+ >590 0/7

4 Tg(FFI-K5+/-)/Prnp0/0 >600 0/6

5 Tg(FFI-K5+/-)/Prnp0/0 >565 0/10

6 Tg(FFI-K5+/-)/Prnp+/0 >650 0/7

7 Tg(FFI-K5+/-)/Prnp+/+ >655 0/5

8 Tg(FFI-17+/-)/Prnp+/+ >585 0/7

9 Tg(FFI-26+/-)/Prnp+/0 >555 0/6

10 Tg(FFI-26+/-)/Prnp0/0 >660 0/9

11 Tg(CJD-A21+/-)/Prnp0/0 >545 0/9

12 Tg(CJD-A21+/-)/Prnp+/0 >570 0/9

13 Tg(CJD-A21+/-)/Prnp+/0 >645 0/8

14 Tg(CJD-A21+/+)/Prnp0/0 >605 0/11

15 Tg(CJD-39+/-)/Prnp0/0 >530 0/3

16 Tg(CJD-66+/-)/Prnp+/0 >580 0/7

17 Tg(CJD-66+/-)/Prnp0/0 >680 0/7

18 RMLe 140 ± 4 153 ± 3 6/6

19 RML 3F4f 171 ± 0 177 ± 1 5/5

Tga20 20 None >570 0/5

21 Non-Tg/Prnp+/+ >495 0/5

22 Non-Tg/Prnp+/+ >495 0/4

23 Tg(FFI-K5+/-)/Prnp0/0 >540 0/4

24 Tg(FFI-K5+/-)/Prnp0/0 >525 0/6

25 Tg(FFI-K5+/-)/Prnp+/0 >520 0/7

26 Tg(FFI-K5+/-)/Prnp+/+ >505 0/10

27 Tg(FFI-17+/-)/Prnp+/+ >570 0/7

28 Tg(FFI-26+/-)/Prnp+/0 >495 0/6

29 Tg(FFI-26+/-)/Prnp0/0 >500 0/8

30 Tg(CJD-A21+/-)/Prnp0/0 >500 0/7

31 Tg(CJD-A21+/-)/Prnp+/0 >515 0/9

32 Tg(CJD-A21+/-)/Prnp+/0 >590 0/7

33 Tg(CJD-A21+/+)/Prnp0/0 >640 0/5

34 Tg(CJD-39+/-)/Prnp0/0 >520 0/6

35 Tg(CJD-66+/-)/Prnp+/0 >545 0/6

36 Tg(CJD-66+/-)/Prnp0/0 >495 0/6

37 RMLe 61 ± 4 66 ± 2 4/4

38 RML 3F4f 85 ± 1 88 ± 2 5/5

Tg(WT-E1+/+)/Prnp0/0 39 Noneg >540 0/4

40 Non-Tg/Prnp+/+ >405 0/5

41 Non-Tg/Prnp+/+ >410 0/8

42 Tg(FFI-K5+/-)/Prnp0/0 >440 0/7

43 Tg(FFI-K5+/-)/Prnp0/0 >430 0/8

44 Tg(FFI-K5+/-)/Prnp+/0 >440 0/8

45 Tg(FFI-K5+/-)/Prnp+/+ >400 0/8

46 Tg(CJD-A21+/-)/Prnp0/0 >425 0/7

(Continued)
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illness causing abnormal sleep-wake behavior with dramatic disruption of sleep architecture
and circadian organization. The sleep abnormalities in Tg(FFI) mice are different from those
of Tg(CJD) mice in which, like in CJD178, the sleep-wake organization is partially preserved
[14]. Phenotypic differences are also seen at cellular level, with neurons in Tg(FFI) and Tg
(CJD) mice showing different PrP accumulations in the secretory pathway and morphological
alterations of transport organelles. The Tg(FFI) and Tg(CJD) diseases could not be transmitted
to other mice by intracerebral inoculation, and no PrPSc could be amplified from brain homog-
enates of the mutant mice by unseeded PMCA. Thus, the mutant PrPs expressed in these mice
are pathogenic but not infectious. Our results suggest a neurotoxic modality involving mutant
PrP accumulation in transport organelles, which may help explain the phenotypic heterogene-
ity of genetic prion diseases.

Sleep Disturbances in Tg(FFI) Mice Are Reminiscent of Those in FFI
Patients and Different from Those of Tg(CJD) Mice
The main EEG and sleep alterations of FFI patients [32] are also seen in Tg(FFI)/Prnp0/0 mice.
Longitudinal 24-h monitoring and spectral EEG analysis show a marked reduction in sleep

Table 2. (Continued)

Recipienta Line no. Inoculumb Time to symptomsc

(mean days ± SEM)
Time to deathd

(mean days ± SEM)
No. dead/total

47 Tg(CJD-A21+/-)/Prnp+/0 >440 0/9

48 Tg(CJD-A21+/-)/Prnp+/0 >450 0/7

49 Tg(CJD-A21+/+)/Prnp0/0 >450 0/7

50 RMLe 217 ± 11g 251 ± 26g 4/4g

51 RML 3F4f 183 ± 4g 202 ± 4g 5/5g

Tg(CJD-G1+/+)/Prnp0/0 52 None >600 0/6

53 Non-Tg/Prnp+/+ >570 0/5

54 Non-Tg/Prnp+/+ >550 0/7

55 Tg(FFI-K5+/-)/Prnp0/0 >570 0/10

56 Tg(FFI-K5+/-)/Prnp0/0 >525 0/9

57 Tg(FFI-K5+/-)/Prnp+/0 >590 0/10

58 Tg(FFI-K5+/-)/Prnp+/+ >515 0/10

59 Tg(CJD-A21+/-)/Prnp0/0 >630 0/9

60 Tg(CJD-A21+/-)/Prnp+/0 >530 0/8

61 Tg(CJD-A21+/-)/Prnp+/0 >510 0/9

62 Tg(CJD-A21+/+)/Prnp0/0 >535 0/11

a Recipient mice were inoculated intracerebrally at 40 to 100 days of age.
b Inocula consisted of 10% (w/vol) brain homogenates prepared from mice of the genotypes indicated. Tg(FFI-K5+/-) express 3F4-tagged D177N/M128

PrP at ~0.7X; Tg(FFI-17+/-) and Tg(FFI-26+/-) mice express untagged D177N/M128 PrP at ~4 and ~2X, respectively; Tg(CJD-A21+/-) express 3F4-tagged

D177N/V128 PrP at ~1X [14]; Tg(CJD-66+/-) and Tg(CJD-39+/-) express untagged D177N/V128 PrP at ~2 and ~4X, respectively. All Tg(FFI-26), Tg

(CJD-A21), Tg(CJD-66) mice, and the Tg(CJD-39) founder, were clinically ill at the time the brain homogenates were prepared.
c For mice that remained healthy, the time after inoculation at which the animals were killed to terminate the experiment is given. For the other mice (lines

18, 19, 37, 38, 50 and 51), the time from inoculation to onset of symptoms is given.
d Time from inoculation to death. Mice that died of nonneurological intercurrent illness are excluded.
e RML prions passaged repeatedly in CD1 mice, then once in 129 S2/SvHsd mice.
f RML prions passaged repeatedly in CD1 mice, then twice in Tg(WT-E1+/+)/Prnp0/0 mice.
g Data are from reference [26].

doi:10.1371/journal.ppat.1004796.t002
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spindles in FFI patients [32], and sleep spindle density is reduced by 75–80% in Tg(FFI)/Prnp0/
0 mice compared to non-Tg controls. Although there is no change in the amount of NREM
sleep, SWA during NREM sleep (a measure of sleep drive and depth [17]) is significantly re-
duced in Tg(FFI)/Prnp0/0 mice, like in FFI patients [32].

Tg(FFI)/Prnp0/0 mice also present a profound disruption of sleep continuity and organiza-
tion. They have a larger number of transitions between the different behavioral states than
non-Tg mice. In addition, in Tg(FFI)/Prnp0/0 mice approximately one fourth of REM sleep epi-
sodes starts directly from wakefulness, instead of being preceded by NREM sleep as normally
occurs; this is reminiscent of the sudden-onset episodes of REM sleep that intrude into wake-
fulness in FFI patients [32, 33]. The amount of REM sleep is also significantly decreased in Tg
(FFI)/Prnp0/0 mice, as often happens in FFI patients at a late stage of disease [33]. Finally, Tg
(FFI)/Prnp0/0 mice show an abnormal EEG pattern during REM sleep, with a significant reduc-
tion in theta activity. Cyclic organization of sleep and circadian motor rhythmicity are lost in

Fig 12. Serial PMCA does not detect spontaneously formed PrPSc in Tg(FFI) and Tg(CJD) brains, but the mutant PrPs can be converted into PrPSc

in vitro. (A and B) Homogenates of 3–4 pooled brains of C57BL/6J (Non-Tg), Tg(FFI-K5+/-)/Prnp0/0, Tg(FFI-26+/-)/Prnp0/0, Tg(CJD-A21+/-)/Prnp0/0 and Tg
(CJD-66+/-)/Prnp0/0 mice were subjected to serial rounds of PMCA without (-) or with (+) a PrPSc inoculum (RML seed). Ten rounds of 48 PMCA cycles were
done, and the samples were digested with 80 μg/ml PK before Western blot with anti-PrP antibody SAF84. (C and D) Brain lysates from Tga20 mice
inoculated with the reaction products of 17 rounds of PMCA (unseeded or seeded with RML, as indicated) were incubated with 0–20 μg of PK for 30 min at
37°C, and PrP was visualized byWestern blotting using antibody 12B2. The undigested samples (0 μg/ml PK) represent 10 μg of protein, and the other
samples 50 μg. Mice were killed at 86 (Non-Tg seeded), 558 (FFI-26 unseeded and CJD-66 seeded), 573 (FFI-26 seeded) and 611 (CJD-66 unseeded) days
post-inoculation.

doi:10.1371/journal.ppat.1004796.g012
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FFI patients [32], and we found that the circadian organization of sleep and motor activity was
lost in Tg(FFI)/Prnp0/0 mice.

Bursts of quasi-periodic sharp waves at 0.5–2 Hz (similar to the periodic sharp-wave com-
plexes in the EEG activity of CJD patients) may appear in advanced stages of the long-evolution
cases of FFI [32–34]. Bursts of high-voltage polyphasic complexes, similar to those described in
Tg(CJD) mice [14], were detected in the EEG of Tg(FFI)/Prnp0/0 mice.

Interestingly, some sleep abnormalities were attenuated in Tg(FFI)/Prnp+/0 mice co-ex-
pressing endogenous WT PrP. For example the amount of REM sleep and circadian organiza-
tion of sleep and motor rhythms are normal in these mice but they respond abnormally to
sleep deprivation, not fully compensating the loss. Moreover, during the light phase, they show
more sleep fragmentation than non-Tg/Prnp+/+ mice, and have less sleep spindle density and
abnormal EEG activity, although less than Tg(FFI)/Prnp0/0 mice. PrPC has been assigned a role
in promoting sleep continuity and circadian rhythmicity [35]. Our observation that re-intro-
duction of one WT PrP allele confers some protection against the sleep and EEG changes in-
duced by the D177N/M128 mutation suggests that functional loss of PrPC may contribute to
sleep disruption in FFI mice. It would be interesting to see whether co-expression of WT PrP at
a level comparable to that of transgenic mutant PrP completely reverses the sleep phenotype.

The alterations in sleep and circadian rhythmicity in Tg(FFI) mice differ significantly from
those in Tg(CJD) mice modeling CJD178 [14]. Whereas in Tg(FFI) mice the circadian organiza-
tion of sleep and motor activity is lost, sleep is fragmented, and theta activity (the EEG hall-
mark of rodent REM sleep) is reduced, in Tg(CJD) mice the circadian organization of sleep, its
continuity and its EEG patterns are not altered [14]. Thus Tg(FFI) and Tg(CJD) mice recapitu-
late specific phenotypic features of the corresponding human diseases.

Other Pathological Features
Ataxia and other motor symptoms, such as myoclonus, tremor, dysarthria and pyramidal im-
pairment, are clinical features of FFI, which in some cases can be the earliest and most marked
neurological signs [36–40]. We found that Tg(FFI) mice developed ataxia and sensorimotor
deficits, such as inability to climb on a vertical grill, poor performance on a rotating rod, ky-
phosis and foot clasp reflex. The time of onset and rate of progression of these symptoms is di-
rectly correlated with transgene dosage. Tg(FFI) mice with mutant PrP expression below the
level of endogenous PrP remain healthy throughout their lifetime. Mild neurological signs de-
velop in ~60% of hemizygous Tg(FFI-10) mice expressing mutant PrP at the endogenous level,
and these animals live as long as nontransgenic controls, similar to knockin ki-3F4-FFI mice in
which 3F4-tagged D177N/M128 PrP is under the control of the endogenous Prnp promoter
[41]. In contrast, all Tg(FFI) mice expressing mutant PrP twice the endogenous level or more
develop progressive and invariably fatal neurological disease. Transgenic mice expressing WT
PrP up to seven times the endogenous level remain healthy during their lifetime [13, 42], and
have normal sleep-wake behavior [14], strongly indicating that the Tg(FFI) phenotype is not a
mere consequence of overexpression, but is due to the D177N/M128 mutation.

In contrast to the mitigating effect on sleep abnormalities, co-expression of WT PrP does
not significantly modify the time of onset and progression of motor dysfunction or prolong
survival of Tg(FFI) mice, consistent with the dominant mode of inheritance of FFI and with
similar observations in other mutant PrP mice [14, 19, 43]. Thus, WT PrP influences only
some aspects of the Tg(FFI) phenotype, perhaps those that are more dependent on a physiolog-
ical function of PrP in neuronal excitability [44].

Disturbances of attention and memory, difficulties with the temporal ordering of events and
spatial disorientation are early signs of FFI, which usually appear before ataxia and other
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motor deficits [32, 45]. Tg(FFI) mice have significant alterations in recognition and spatial
working memory, detectable in the object recognition test and the eight-arm radial maze before
the onset of motor dysfunction. Thus salient motor and cognitive aspects of the clinical picture
of FFI are recapitulated in transgenic mice.

Tg(FFI) mice also show brain abnormalities reminiscent of human FFI. Thalamic degenera-
tion is the most marked neuropathological change in FFI patients, who frequently also have de-
generated cerebella [36, 40, 46], and reduced thalamic and cerebellar volumes were detected by
MRI in Tg(FFI) mice in the advanced stage of disease.

Although PrPSc accumulates to lower levels in FFI than in other human prion diseases, wide-
spread protease-resistant PrP deposits can be detected by immunohistochemistry in the CNS of
FFI patients, especially in cases of long duration [47]. These include fine-granular synaptic-type
and focal PrP deposits, patchy and strip-like immunoreactive profiles, as well as intravacuolar
and cytoplasmic PrP accumulations in neurons [40]. Synaptic-type, dot-like and small round
PrP profiles, as well as immunoreactive fiber tracts and intraneuronal PrP deposits, reminiscent
of those in FFI patients, are detected in the brains of Tg(FFI) mice. Moderate gliosis is seen in
several brain regions of Tg(FFI) mice, including the external layers of the cerebral cortex and
the periaqueductal gray, similar to findings in FFI patients where gliosis has a bilaminar accen-
tuation in the cerebral cortex and is often detected in the periaqueductal gray [40, 47].

D177N PrP Is Pathogenic but Not Infectious
Mutant PrP in the brains of Tg(FFI) and Tg(CJD) mice displays several biochemical character-
istics reminiscent of PrPSc, including insolubility in non-denaturing detergents, low PK resis-
tance and reactivity with PrPSc-directed antibodies [14, 48, 49 and this study], raising the
possibility that the protein may have spontaneously acquired an infectious conformation.
However, we found that brain homogenates from Tg(FFI) and Tg(CJD) mice had no detectable
infectivity when inoculated into different transgenic and nontransgenic hosts. We also found
no amplification of PrPSc in unseeded PMCA reactions, ruling out the possibility that the inoc-
ula contained prions below the threshold of detection by our bioassay. Thus mutant PrP in the
brains of Tg(FFI) and Tg(CJD) mice is misfolded and pathogenic but unable to propagate its
abnormal conformation, and is therefore fundamentally different from PrPSc. However, it is
not intrinsically refractory to PrPSc conversion since it acquires an infectious conformation
when subjected to PMCA in the presence of a RML seed.

Our results are different from those of Jackson et al., who reported the emergence of sponta-
neous prion infectivity in knockin ki-3F4-FFI mice expressing 3F4-tagged D177N/M128 PrP
from the endogenous Prnp locus [41]. Ki-3F4-FFI mice did not die prematurely, but developed
behavioral abnormalities in old age, similar to our hemizygous Tg(FFI-10) mice expressing mu-
tant PrP at the endogenous level. Intracerebral inoculation of brain homogenates from sick ki-
3F4-FFI mice induced neurological disease in ki-3F4-WTmice expressing 3F4-taggedWT PrP,
and in Tga20 mice, but not in nontransgenic mice [41], arguing that homology between mutant
PrP and the recipient’s PrPC at residues 108 and 111 (which constitute the 3F4 epitope), or
overexpression of untagged PrP by the recipient mice, is required for disease transmission.

In contrast with this, we found that the Tg(FFI) disease could not be transmitted to other
mice, despite homology between mutant and the recipient’s PrP, and/or PrP overexpression in
the recipient mice. The reason for this difference is not clear. It was suggested that mutant PrP
needs to be targeted to the Prnp locus to generate a transmissible agent spontaneously [41].
However, prions emerged spontaneously even in mice with randomly integrated transgenes,
including those constructed using the half-genomic Prnp vector used in our study [21, 50–53].
In addition, a gene targeting approach identical to the one used by Jackson et al. was employed
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to generate P101L mice expressing the mouse homolog of the P102L mutation linked to GSS
[54], and these mice did not develop a transmissible prion disease [54]. Thus, replacing the en-
dogenous PrP coding sequence is neither necessary nor sufficient for de novo prion generation.

Ki-3F4-FFI mice have a mixed 129/Ola X C57BL/6N genetic background, whereas our Tg
(FFI) mice are C57BL/6J x CBA/J hybrids backcrossed with C57BL/6J mice. It is possible that
the genetic makeup of ki-3F4-FFI mice favors generation of prion infectivity, for example be-
cause co-factors that might promote PrPSc formation [55, 56] are selectively expressed or en-
riched in these animals. However, prion infectivity developed de novo even in Tg PrP mice
with C57BL/6J X 129S5 [50], C57BL/6 X FVB [52], C57BL/6J X CBA/J X 129/Ola [21] and
FVB [51, 53] backgrounds, suggesting that a specific allelic composition is not required.

Mutant PrP in the brains of ki-3F4-FFI mice does not show the typical biochemical attri-
butes of PrPSc, suggesting that ki-3F4-FFI mice bear an unconventional prion strain [41]. How-
ever, small amounts of protease resistant PrP were detected when 20 mg of total brain
homogenates from two-year-old ki-3F4-FFI mice was PK digested and concentrated by trichlo-
roacetic acid precipitation [41]. It would be interesting to see whether this form of the protein
can be amplified by PMCA. It would also be interesting to compare the conformations of
D177N/M128 PrP molecules extracted from the brains of ki-3F4-FFI and our Tg(FFI) mice,
because this may shed light on the structural features that enable mutant PrP to self-replicate.
In this regard, we have found that infectious and non-infectious forms of PG14 PrP are struc-
turally related but differ in their oligomeric state and degree of PK resistance [26, 48, 57].

Different prion diseases are thought to be enciphered in distinctive conformations of the
PrPSc molecule (prion strains) [24, 58]. Our observation that Tg(FFI) and Tg(CJD) mice reca-
pitulate specific features of the respective human disorders without developing prion infectivi-
ty—and the same holds true for Tg(PG14) mice and other mouse models of GSS [20, 26, 59
and J. Mastrianni, personal communication]—suggests that the disease-encoding properties of
mutant PrP are enciphered in misfolded conformations of the protein that are toxic but not in-
fectious [60, 61]. We recently obtained evidence that the mutant PrPs extracted from the brains
of Tg(FFI), Tg(CJD) and Tg(PG14) mice have different structures, indicating that they carry
enough conformational diversity to encode different diseases [49].

Our observation that the pathogenicity of misfolded PrP does not depend on its ability to self-
replicate has implications for other neurodegenerative diseases associated with protein misfold-
ing. There is evidence that aggregated proteins such as amyloid-β in AD, tau in the tauopathies,
and α-synuclein in PD, are able to spread in a prion-like manner when inoculated into the
mouse brain [62]. However, the mechanism linking spread of protein misfolding and neurode-
generation in these diseases is not clear [63]. Our results are consistent with a dissociation be-
tween the toxic and propagating PrP species [60, 61], and suggest that there may be a separation
between spread of misfolded proteins and neurotoxicity also in other neurodegenerative diseases.

Impaired Trafficking of Mutant PrP and Its Potential Role in Phenotypic
Expression of Disease
We have reported that mouse PrP molecules carrying the D177N mutation are delayed in their
biosynthetic maturation and are partially retained in transport organelles of the secretory path-
way [14, 64–66]. In the present study we found that D177N/M128 PrP accumulates preferential-
ly in the Golgi of Tg(FFI) neurons, and this is associated with enlargement of the Golgi. In
contrast, D177N/V128 PrP is mostly found in the ER of Tg(CJD) neurons, and this organelle ap-
pears swollen and electrondense [14]. Thus the two polymorphic variants tend to accumulate in
different intracellular compartments, causing different morphological alterations of transport
organelles. The intracellular accumulation of D177N/M128 and D177N/V128 PrPs also differed
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in transfected cells [65, 67], and may reflect the way these mutants acquire abnormal conforma-
tions and aggregate during secretory transport [68]. There is evidence, in fact, that the M/V 129
polymorphism influences the kinetics of misfolding and oligomerization of D178N PrP [11],
and oligomerization and intracellular retention of this mutant are closely related [69].

We previously found that ER retention of PG14 and D177N/V128 PrPs impairs the trans-
port of VGCCs to presynaptic terminals of CGNs, due to a physical interaction of PrP with the
auxiliary α2δ-1 subunit of the channel [15]. Since artificial targeting of PrP to the Golgi results
in intracellular retention of α2δ-1 [15], D177N/M128 may also impair VGCC transport and
function in CGNs, contributing to the motor dysfunction of Tg(FFI), as in Tg(PG14) and Tg
(CJD) mice. However, there could be other PrPC-interacting proteins whose cellular trafficking
and synaptic targeting may be affected differently by the different mutants, potentially trigger-
ing specific neurotoxic effects [70]. PrPC interacts physically with the NR1 and NR2D subunits
of N-methyl-D-aspartate (NMDA) and the GluA1 and GluA2 subunits of α-amino-3-hy-
droxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and these interactions are im-
portant for normal neuronal physiology and survival [71–73]. Interestingly, the assembly and
trafficking of these receptors are finely tuned in the ER and Golgi [74, 75]. Our preliminary ob-
servations indicate that mutant PrPs that accumulate in different intracellular organelles affect
NMDA and AMPA receptor trafficking in different ways. Moreover, different mutants interact
differently with receptor subunit isoforms expressed in functionally distinct neurons of the
brain [73]. Thus, different mutant PrPs may have different effects on the function and survival
of different neurons—hence on the clinical presentation of disease—depending on where in
the secretory pathway they preferentially localize, and how this interferes with the transport of
the molecules they interact with [70].

In summary, we have generated transgenic mice that model essential aspects of FFI, and dif-
fer from analogous mice expressing the CJD178 mutation. Disease-specific features are seen in
independently generated Tg lines with different copies of integrated transgene and PrP expres-
sion levels, strongly indicating that they are encoded by mutant PrP, rather than non-specific
effects of random transgenesis. Tg(FFI) mice may be useful for investigating the pathophysiol-
ogy of sleep in FFI and for testing potential therapies for this devastating disorder. Comparative
studies of Tg(FFI) and Tg(CJD) mice may provide important information on the molecular
mechanisms responsible for the phenotypic heterogeneity associated with the polymorphic
variants of the PrP D178N mutation.

Materials and Methods

Transgenic Mice
The cDNAs encoding mouse PrP derived from the Prnpa allele, containing the D177N/M128
substitution with or without the 3F4 epitope tag, were ligated into the MoPrP. Xho vector,
which contains a 12 kb fragment of Prnp, including the promoter and intron 1, and drives the
expression of transgenic PrP in a tissue pattern similar to that of the endogenous protein [14,
76]. Recombinant plasmids were selected by PCR screening and restriction analysis, and their
identity confirmed by sequencing the entire coding region [13]. The transgene was excised by
NotI digestion and injected into the pronuclei of fertilized eggs from an F2 cross of C57BL/6J x
CBA/J F1 parental mice. Transgenic founders were bred with an inbred colony of Zürich I
Prnp0/0 mice [77] with a pure C57BL/6J background (C57BL/6J/Prnp0/0; European Mouse Mu-
tant Archive, Monterotondo, Rome, Italy; EM:01723). The status of the Prnp gene and the
presence of the transgene were determined by PCR, and the zygosity of the transgene by
RT-PCR [13]. Production of transgenic Tg(WT-E1+/-) mice, expressing wild-type PrP tagged
with an epitope for monoclonal antibody 3F4 at approximately 2X, and Tg(CJD-A21+/-) and
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Tg(CJD-G1+/+) mice expressing 3F4-tagged D177N/V128 PrP at ~1X and ~0.3X respectively,
has already been reported [13, 14]. Tg(CJD-66+/-) and Tg(CJD-39+/-) mice, which express un-
tagged D177N/V128 PrP at ~2X and ~4X respectively, were generated as described above.
They develop a CJD-like neurological syndrome like Tg(CJD-A21) mice [14], which will be de-
scribed in details elsewhere. All transgenic lines used in this study were backcrossed for at least
ten generations with C57BL/6J/Prnp0/0 mice, with the exception of Tga20 (EM:00181) [25], Tg
(CJD-G1) (EM:06144) and Tg(WT-E1+/+) [14] mice which were maintained as inbred hybrid
colonies. For some experiments the Prnp allele was re-introduced by breeding transgenic mice
with C57BL/6J (Harlan Laboratories).

Ethics Statement
Procedures involving animals and their care were conducted in conformity with the institu-
tional guidelines at the IRCCS—Mario Negri Institute for Pharmacological Research in compli-
ance with national (D.lgs 26/2014; Authorization n. 19/2008-A issued March 6, 2008 by
Ministry of Health) and international laws and policies (EEC Council Directive 2010/63/UE;
the NIH Guide for the Care and Use of Laboratory Animals, 2011 edition). They were reviewed
and approved by the Mario Negri Institute Animal Care and Use Committee that includes ad
hoc members for ethical issues (18/01-D and 18/02-D), and by the Italian Ministry of Health
(Decreto nr 62/2012-B and 63/2012-B). Animal facilities meet international standards and are
regularly checked by a certified veterinarian who is responsible for health monitoring, animal
welfare supervision, experimental protocols and review of procedures.

Biochemical Analyses
Assays of detergent insolubility and proteinase K resistance were done as described [13]. West-
ern blots were developed with monoclonal anti-PrP antibodies 12B2 (Central Veterinary Insti-
tute, Wageningen, NL), 1E4 (Cell Sciences), or SAF84 (Spi Bio).

Sleep-Wake Behavior and Electroencephalographic (EEG) Activity
We investigated EEG and sleep patterns in eight non-Tg/Prnp+/+, ten non-Tg/Prnp0/0, nine Tg
(FFI-26+/-)/Prnp0/0, and eight Tg(FFI-26+/-)/Prnp+/0 mice aged between 332 and 468 days of
age. Mice were anesthetized and instrumented for chronic EEG recording according to stan-
dard techniques [78]. They were individually housed in standard cages with food and water ad
libitum, and allowed at least ten days to recover from surgery and adapt to the recording condi-
tions. Cages were kept in sound-attenuated rooms at a constant temperature (26 ± 1°C), with a
12/12-hour light-dark cycle. Gross body activity was detected using an infrared sensor housed
in an observation unit that also contained a camera (BioBserve GmbH, Bonn, Germany), al-
lowing undisturbed monitoring of the animals’ behavior. Movements detected by the infrared
sensor were converted to a voltage output. The conditioned EEG signal and the voltage output
from the infrared sensor were digitized and collected using custom software (M. R. Opp, Uni-
versity of Michigan). For investigations in undisturbed conditions, EEG signals and gross body
activity were recorded for 24 h (starting at the beginning of the light phase) and used for poly-
graphic determination of vigilance. The animals were not handled starting from 48 h before
the recording session.

For investigations of the effects of sleep deprivation, mice were sleep-deprived by gentle
handling for the first six hours of the light phase, then allowed to behave and sleep freely for
the next 18 hours (i. e. for the second six hours of the light phase followed by the12 hours of
the dark phase). Two mice of different genotypes were always randomly matched and recorded
simultaneously. The order of recording of mice of the different lines was also randomized.
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Postacquisition determination of vigilance was done according to standard criteria [78]. An
investigator (F.D.G.) blind to the strain visually scored 12-s epochs. EEG power densities were
obtained for each animal and each behavioral state by Fourier transform for each artifact-free
12-s scoring epoch for the frequency range 0.5–20 Hz. Values in the 0.5–4.0 Hz (delta) frequency
range were collapsed and integrated for 12-s epochs, and used as measures of SWA during
NREM sleep. EEG recordings during the light portion of the light-dark phase were also band-
pass filtered (10–13 Hz, 4th order Chebyschev type II filter), and NREM sleep spindles were vi-
sually identified. Spindle density was obtained (number of spindles/hour of NREM sleep). Statis-
tical analysis was done as described in the Results section or in the legends to tables and figures.

Clinical Analysis of Mice
Mice were observed weekly for signs of neurological dysfunction, according to a set of objective
criteria [13]. Onset of disease was scored as the time at which at least two neurological signs
were observed, out of foot-clasp reflex, kyphosis, unbalanced body posture, inability to walk on
a horizontal metal grid, and to remain on a vertical grid for at least 30 s. The accelerating
Rotarod 7650 model (Ugo Basile) was used: mice were first trained three times the week before
official testing. They were positioned on the rotating bar and allowed to become acquainted
with the environment for 30 s. The rod motor was started at an initial setting of 7 r.p.m. and ac-
celerated to 40 r.p.m. at a constant rate of 0.11 r.p.m./s for a maximum of 300 s. Performance
was scored as latency to fall, in seconds. Animals were given three trials, and the average was
used for statistical analysis.

Radial Maze
Spatial working memory was measured using an eight-arm radial maze made of grey plastic
with a Plexiglas lid. The arms radiating from an octagonal central arena with a diameter of 12
cm, were 30 cm long, 5 cm wide and 4 cm high. Several extra-maze visual cues surrounded the
apparatus. Starting one week before testing, the mice were water-deprived by allowing them
water for only one hour a day. One day before starting the task schedule, a habituation trial was
run. The mice were placed in the center of the maze and left free to explore the environment
for 5 minutes. The next day the arms of the radial maze were baited with 50 μl of water. Ani-
mals were placed in the center of the maze and the arm-entry sequence was recorded. The task
ended once all eight arms of the maze had been visited or after a maximum of 16 trials, which-
ever came first. Repeated entry into an arm that had already been visited constituted an error.
The number of errors and the latency to complete the test were recorded manually by an opera-
tor (I.B.) blind to the experimental groups. Animals were tested for 16 consecutive days.

Object Recognition
Mice were tested in an open-square grey arena (40 x 40 cm), 30 cm high, with the floor divided
into 25 squares by black lines. The following objects were used: a black plastic cylinder (4 x 5
cm), a glass vial with a white cap (3 x 6 cm) and a metal cube (3 x 5 cm). The task started with a
habituation trial during which the animals were placed in the empty arena for 5 minutes and
their movements were recorded as the number of line-crossings. The next day, mice were
placed in the same arena containing two identical objects (familiarization phase). Exploration
was recorded in a 10-minute trial by an investigator (C.B.) blinded to the experimental group.
Sniffing, touching and stretching the head toward the object at a distance of not more than 2
cm were scored as object investigation. Twenty-four hours later (test phase) mice were placed
in the arena containing two objects: one identical to one of the objects presented during the fa-
miliarization phase (familiar object), and a new, different one (novel object), and the time
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spent exploring the two objects was recorded for 10 min. Memory was expressed as a discrimi-
nation index, i.e. the time spent exploring the novel object minus the time spent exploring the
familiar object, divided by the total time spent exploring both objects; the higher the discrimi-
nation index, the better the performance.

MRI
Animals were anesthetized with 1% isoflurane in a 30:70% O2:N2O gas mixture and imaged in
a horizontal bore 7-Tesla USR preclinical MRI system (BioSpec 70/30, Bruker BioSpin, Ger-
many) with a shielded gradient insert (BGA 12, 400 mT/m; rise time, 110 us). A 72-mm bird-
cage resonator for RF transmission, and a 10-mm diameter single-loop receiver coil were used
to receive the signal. 3D T2-weighted anatomical images of the mouse brain were acquired
with the following parameters: TR 2500 ms, TE 50 ms, RARE factor 16, FOV 3 x 1.5 x 1.5 cm,
Matrix 256 x 102 x 102, voxel 0.147 x 0.117 x 0.147. The scan time was approximately 25 min.
The volumes of the whole brain and individual brain areas (frontal cortex, hippocampus, thala-
mus, striatum and cerebellum) were quantified manually using Fiji software [79], after a rigid
body registration (6 dof) to a reference image to avoid bias due to bad head positioning.

Histology
Mice were euthanized by CO2 inhalation, brains were removed and fixed in Alcolin (Diapath)
or Carnoy’s fixative (ethanol, chloroform, acetic acid, 6:3:1), dehydrated in graded ethanol so-
lutions, cleared in xylene, and embedded in paraffin. Serial sections (8 mm thick) were cut and
stained with hematoxylin and eosin, Nissl, or thioflavin S. For PrP immunohistochemistry, sec-
tions were incubated with PK (2 μg/ml in H2O) for 1 h at room temperature, and exposed to
guanidine thyocianate (3M in H2O) for 30 min [80]. PK-resistant PrP was detected with mono-
clonal antibody 12B2 (1:2000), using the ARK kit (Dako), with 3,3’ diaminobenzidine (DAB)
as chromogen.

For glial fibrillary acidic protein (GFAP) and ionized calcium binding adapter molecule 1
(Iba1) immunohistochemistry, mice were deeply anesthetized by intreperitoneal injection of
100 mg/kg ketamine hydrochloride and 1 mg/kg medetomidine hydrochloride (Alcyon), and
perfused through the ascending aorta with phosphate buffered saline (PBS, 0.05 M; pH 7.4) fol-
lowed by 4% paraformaldehyde (PFA) in PBS. Brains were removed, post-fixed, cryoprotected
and frozen at -80°C. Sections were cut using a Leica cryostat and incubated for 1 h at RT with
10% normal goat serum (NGS), 0.3% Triton X-100 in PBS 0.1M, pH 7.4, then overnight at 4°C
with mouse monoclonal anti-GFAP antibody (Millipore, 1:2500) or rabbit polyclonal anti-Iba1
(Wako Reagent, 1:1000), followed by visualization with the Vectastain ABC kit (Vector), using
DAB as chromogen.

Electron Microscopy
One 503-day-old Tg(WT-E1+/-)/Prnp0/0 mouse, one 269-day-old Tg(WT-E1+/+)/Prnp0/0

mouse, two non-Tg/Prnp0/0 mice aged 208 and 374 days, four non-Tg/Prnp+/+ mice 152, 268,
280 and 392 days old, one 302 and two 367 days old Tg(FFI-26+/-)/Prnp0/0 mice, one 444 days
old Tg(FFI-26+/-)/Prnp+/0 and two Tg(FFI-10+/-)/Prnp0/0 mice aged 331 and 379 days were an-
alyzed by electron microscopy. Mice were deeply anesthetized and perfused through the as-
cending aorta with phosphate buffered saline (PBS, 0.1 M; pH 7.4) followed by 4%
paraformaldehyde (PFA) and 2.5% glutaraldehyde in PBS. The brain was excised, cut along the
sagittal plane with a razor blade, and postfixed in 3% glutaraldehyde in PBS then for 2 h in
OsO4. After dehydration in graded series of ethanol, tissue samples were cleared in propylene
oxide, embedded in epoxy medium (Epon 812 Fluka) and polymerized at 60°C for 72 h. From
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each sample, one semithin section (1 μm) was cut with a Leica EM UC6 ultramicrotome and
mounted on glass slides for light microscopic inspection to identify the area of interest. Ultra-
thin sections (70 nm thick) were obtained, counterstained with uranyl acetate and lead citrate,
and examined with an Energy Filter Transmission Electron Microscope (EFTEM, ZEISS
LIBRA1 120) equipped with a YAG scintillator slow-scan CCD camera. Lipofuscin granules
and cytoplasm of neurons were manually outlined, and areas were calculated with image analy-
sis software (iTem, Olympus). The sum of the areas occupied by lipofuscin in each neuron was
expressed as a percentage of the cytoplasmic area. Electron tomography and three-dimensional
reconstruction was done as described [81]. Immuno-electron microscopy of PrP in cultured
cerebellar granule neurons, quantification of gold particles in the different compartments of
the secretory pathway, and analysis of total cell, ER and Golgi volumes, were as described [14].

Protein Misfolding Cyclic Amplification
The detailed protocol for serial PMCA has been published elsewhere [82]. Briefly, 50 μl of 10%
brain homogenate were loaded into 0.2-ml PCR tubes and positioned on an adaptor on the
plate holder of a S-700MPX sonicator (QSonica, Newtown, CT, USA). Each PMCA cycle con-
sisted of 30 min incubation at 37°C followed by a 20 s sonication pulse at a potency of 70–90.
Samples were incubated without shaking immersed in the water of the sonicator bath. After a
round of 48 cycles, a 10 μl portion of the amplified material was diluted into 90 μl of brain ho-
mogenate and a new round of 48 PMCA cycles was done. This procedure was repeated 10
times. For seeded PMCA, RML-derived, in vitro amplified PrPSc was added to the brain ho-
mogenates before PMCA. Samples were digested with 80 μg/ml of PK for 1h at 42ºC and ana-
lyzed by Western blot with anti-PrP antibody SAF84. To produce enough material for
transmission studies, and to rule out the possibility of residual RML in the seeded PMCA inoc-
ula, the reactions were run for seven additional rounds (final dilution 10-20) [29].

Transmission Studies
Ten-percent (w/v) homogenates of mouse brain were prepared in PBS and cleared by centrifu-
gation at 900 x g for 5 min. Serial PMCA reactions were diluted 1:10 in PBS before inoculation.
25 μl of the cleared homogenate, or diluted PMCA reactions, was injected intracerebrally into
the right parietal lobe of recipient mice using a 25-gauge needle.

Supporting Information
S1 Fig. Detergent-Insoluble and PK-Resistant PrP Is Detectable in Presymptomatic Mice.
(A) Brain lysates from Tg(WT-E1+/-)/Prnp0/0, Tg(FFI-26+/-)/Prnp0/0 and Tg(CJD-66+/-)/Prnp0/
0 mice of the indicated ages were ultracentrifuged at 186,000 x g for 40 min, and PrP in the su-
pernatants (S lanes) and pellets (P lanes) was analyzed byWestern blotting using the 12B2 anti-
body. (B) Brain lysates were incubated with 0–2 μg of PK for 30 min at 37°C, and PrP was
visualized by Western blotting using antibody 12B2. The undigested samples (0 μg/ml PK) rep-
resent 25 μg of protein, and the other samples 100 μg.
(TIF)

S2 Fig. Neurological Symptoms in Tg(FFI) mice. (A) The Tg(FFI-28+/-)/Prnp+/+ founder at
443 days of age shows kyphosis (hunchback position) and abnormal gait with extension of the
hind limbs. (B) When suspended by its tail a Tg(FFI-10+/+)/Prnp0/0 mouse aged 702 days tight-
ly clasps its hind limbs, whereas a Tg(FFI-10+/-)/Prnp0/0 littermate (C) splays its limbs. (D) A
Tg(FFI-26+/-)/Prnp0/0 mouse at 418 days is incapable of deambulating on a metal grill.
(TIF)
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S3 Fig. Tg(FFI) Mice Show Proliferation of Astrocytes and Microglia in Several Brain Re-
gions. (A-F) Brain sections from Tg(FFI-26+/-)/Prnp0/0 and non-Tg littermates aged 473 (A
and B, hippocampus), 204 (C and D, cerebral cortex) and 198 (E and F, cerebellum) days, were
stained with anti-glial fibrillar acidic protein (GFAP) antibody. Immunostaining revealed
marked astrocytosis in Tg(FFI) but not in non-Tg mice. (G-L) Immunostaining with anti-ion-
ized calcium binding adapter molecule 1 (Iba1) shows marked microgliosis in the hippocam-
pus (G-J), and periaqueductal gray (K and L) of Tg(FFI-26+/-)/Prnp0/0 mice at 533 (H and L) or
473 (J) days compared to non-Tg/Prnp0/0 littermates. Results were similar with the anti-CD11b
antibody. Scale bars = 100 μm in A and B, 50 μm in C, D, I and J, 200 μm in E and F, and
500 μm in G, H, K and L.
(TIF)
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