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ABSTRACT

Mammalian Argonaute 2 (Ago2) protein associates
with microRNAs (miRNAs) or small interfering RNAs
(siRNAs) forming RNA-induced silencing complexes
(RISCs/miRNPs). In the present work, we character-
ize the RNA-binding and nucleolytic activity of
recombinant mouse Ago2. Our studies show that
recombinant mouse Ago2 binds efficiently to
miRNAs forming active RISC. Surprisingly, we find
that recombinant mouse Ago2 forms active RISC
using pre-miRNAs or long unstructured single
stranded RNAs as guides. Furthermore, we dem-
onstrate that, in vivo, endogenous human Ago2
binds directly to pre-miRNAs independently of
Dicer, and that Ago2:pre-miRNA complexes are
found both in the cytoplasm and in the nucleus
of human cells.

INTRODUCTION

MicroRNAs (miRNAs) associate with proteins of the Ago
family forming ribonucleoprotein complexes (miRNPs or
RISCs) that regulate gene expression at transcriptional or
post-transcriptional level (1-6). miRNAs are derived from
endogenously encoded genes, some of which are found in
clusters, in inter or intragenic regions of protein coding
genes (7). miRNAs are transcribed by RNA polymerase I1
or III into primary microRNAs (pri-miRNAs). Most pri-
miRNAs are processed in the nucleus by the ribonuclease
IIT (RNAselll) enzyme Drosha and Drosha’s partner,
the double stranded RNA-binding (dsRBD) DiGeorge
syndrome critical region gene 8 protein (DGCRS8 or
Pasha) into 65-75 nucleotide (nt), hairpin structured pre-
mature microRNAs (pre-miRNAs) (7-10).

Exportin-5 mediates transport of pre-miRNAs to
the cytoplasm (11-14) where they encounter Dicer,
another RNAselll protein. Human Dicer, like Drosha,
associates with RNA-binding proteins, namely human

immunodeficiency virus 1 (HIV-1) transactivating
response (TAR) RNA-binding protein (TRBP) and
protein activator of PKR (PACT) (15,16). Recombinant
human Dicer can process synthetic pre-miRNAs or long
double stranded RNA duplexes in vitro (17,18). Dicer
binds directly to Ago proteins (19) and interestingly, this
interaction inhibits the RNAse activity of Dicer in vitro,
in a dose dependent manner (19).

In mammals, after Dicer processing of pre-miRNAs,
mature single stranded miRNAs assemble into miRNPs
containing any of the four mammalian Ago proteins,
Agol—4. Ago2 is the only human Ago protein endowed
with nuclease activity, despite remarkable homology
that extends to the PIWI domains among all four
human Agos (20).

In the present work, we studied the RNA binding and
cleavage activities of recombinant mouse Ago2. We dem-
onstrate that, like endogenous Ago2, mouse recombinant
GST-Ago2 forms active RISC complexes in vitro, by
binding efficiently to 22nt RNAs. Surprisingly, our
studies also show that GST-Ago2 assembles into
cleavage-active complexes with pre-miRNAs and RNAs
longer than 22nt. Furthermore, we demonstrate direct
association of endogenous Ago2 with endogenous pre-
miRNAs in the nucleus and cytoplasm of human cells.

MATERIALS AND METHODS

Expression and Purification of GST-Ago2 and
GST-D669A

The full-length coding region of mouse Ago?2 (nucleotides
28-2610 of NM _153178) was amplified by PCR and
subcloned into pFASTBAC-GST. The Ago2-D669A
mutation was generated by substituting A2036C via
Quickchange mutagenesis (Stratagene), resulting in the
following codon change: GAT to GCT. The presence of
the mutation was confirmed by DNA sequence analysis.
Bacmid DNA was transfected into Sf9 cells for virus stock
generation. For protein productions, 1 x 10° Sf9 cells/ml
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of Sf900-11 medium (Invitrogen) were infected with viruses
for the wild-type Ago2 and Ago2-D669A proteins respec-
tively, at an MOI of 1. For protein purification, 500 ml cell
pellets were resuspended in 40 ml of cold buffer A contain-
ing 20mM Tris—HCI (pH 7.5), 2mM EDTA and 1M
NaCl with protease inhibitors (BMB #11697498001) and
sonicated 6 x 10s at 60% amplitude, on ice. Cell lysates
were centrifuged and supernatants were incubated with
4ml of pre-washed glutathione sepharose 4B beads (GE
27-4574-01) at 4°C overnight. The beads were then washed
several times with buffer A-1 (buffer A, containing 2M
NaCl and 0.5% Triton X-100). Subsequently, GST-
Ago2 or GST-D669A protein was eluted, using 200 mM
glutathione in 200mM Tris—HCI (pH 8.0) at room tem-
perature for 15 min and dialyzed against buffer D contain-
ing 20mM Hepes—KOH (pH 7.9), 100 mM KCI, 0.2mM
EDTA and 0.5mM DTT. Proteins were then subjected to
anion exchange chromatography.

5'- and 3'-end labeling of RNAs

RNA oligos (or RNA isolated from immunoprecipitated
Ago) were either 5'- or 3’-end radiolabeled with T4 poly-
nucleotide kinase (NEB) or T4 RNA ligase (Ambion)
respectively, as previously described (21,22).

GST-Ago2 Cleavage assays

Cleavage assays were performed as previously described
(25). A total of 15nM GST-Ago2 or GST-D669A was
pre-incubated with 0.02-0.2 uM 5’P-miRNA at 37°C for
30 min, before addition of 13.6nmol 5-*?P radiolabeled
target and incubation for additional 60 min. Gel extracted
pre-miR-30a was heated at 95°C for 3 min, then at 65°C
for 10min and at 37°C for 30min in RNA annealing
buffer (0.1M NaCl, 10mM Tris=sHCI pH 7.4, ImM
EDTA), prior to use in cleavage assays. Cleavage
products were analyzed on 15% Urea PAGE and
detected by autoradiography. Two different radiolabeled
size markers were used: (M) pBR322/Mspl (NEB
N3032S), and (M1) Decade RNA marker (Ambion
AMT778).

Electrophoretic mobility shift assay

A total of 10.8nM 5-*?P—let-7a was incubated with
increasing concentrations (3—300nM) of GST-Ago2 or
GST-D669A in a 10l reaction containing 5SmM DTT,
0.1mg/ml BSA, 3% (w/v) Ficoll-400 and 5% (v/v)
glycerol at 37°C for 30min. RNA-protein complexes
were then analyzed on 5.25% native polyacrylamide
(37.5:1) gel containing 0.5x TBE and 1.5mM MgCl,,
detected by storage phosphor autoradiography and
quantified using Image Quant VI1.2. Results were
analyzed using Prism software (GraphPad Prism for
Windows, GraphPad Software, San Diego California
USA).

Pre-miRINA processing assays

5-32P-radiolabeled pre-miRNA  (15000c.p.m.) was
incubated with 15nM GST-Ago2 protein or 0.05U of
Dicer (Ambion AM2212) in a 10 ul reaction containing

Ix microRNA buffer (MIB: 40mM KOAc, 2mM
MgCl, and ImM DTT) and 40U Recombinant
Ribonuclease inhibitor (RNAsin, Promega N2515) at
37°C for 60min. Reaction products were analyzed on
15% Urea PAGE and detected by autoradiography. For
reconstitution experiments, radiolabeling of target TD
and cleavage assays were performed as described above,
with the following modifications: 15nM of GST-Ago2 or
GST-D669A and/or Dicer (0.05U) was pre-incubated
with 20200 nM 5'P—pre-let-7a-3 at 37°C for 60 min.

UV Photo-crosslinking

A total of 2000c.p.m. of 3-*P pCp labeled 5'P-let-7a,
let-7a, 5'P—pre-let-7a-3, pre-let-7a-3 or 5’P—73nt single
stranded RNA was incubated with ~16.7nM of recom-
binant Dicer-free GST-Ago2 in 10 pl of 1x MIB at 37°C
for 30min, before irradiation with 254nM UV light
for 60min on ice (UVLMS-38 EL Series 3UV Lamp).
Photo-crosslinked samples were then analyzed on
1.0mm 4-12% NuPAGE (Invitrogen NP0323) and
detected by storage phosphor autoradiography. In com-
petition experiments 10x, 50x, and 100x molar excess of
the same but unlabeled RNA oligos or unlabeled yeast
tRNA (Invitrogen 15401011) were included.

Preparation of immortalized MEF cell lines and
cell culture

The inducible Dicer-null mouse embryonic fibroblasts
(MEFs) were derived from mouse embryos that are
either heterozygous or homozygous for a targeted allele
of dicer with the second RNaselll domain flanked by loxP
sites (23) and are hemizygous at the Rosa 26 allele for a
cre-conditional YFP reporter gene and a tamoxifen
inducible CreERT fusion protein. The primary MEFs
were harvested and processed from the inducible Dicer-
null mouse embryos between E12.5 and E14.5. They were
then immortalized by co-transfection with a SV40 con-
struct and a puromycin expression vector at Passage 2
and selected in 2pg/ml puromycin. The immortalized
MEFs were cultured in DMEM supplemented with 10%
Fetal Bovine Serum and 2mM r-Glutamine. To induce
the recombination of loxP sites and depletion of Dicer,
50nM of 4-hydroxytamoxifen (4-OHT) was added to the
medium for 4 days. Then, 4-OHT was removed and the
MEFs were cultured for additional 4-6 days before they
were collected, snap frozen in liquid nitrogen and stored
at —80°C.

Immunofluorescence microscopy

HeLa cells were grown on autoclaved glass coverslips in
six-well plates to 40 % confluency, washed with 1x PBS
and fixed with 2 % formaldehyde in 1x PBS at room
temperature (RT) for 10 min. The cells were then washed
3x 1 min with 1 x PBS, permeabilized with buffer contain-
ing 0.5% Triton X-100 in 1x PBS at RT for 5 min, and
washed again with 1x PBS before incubation with
Ago2 antibody (Wako, Clone #4GS8, 1:75 dilution) or
cytoplasmic B-tubulin antibody (Developmental studies
hybridoma bank, E7 ascites, 1:1000 dilution) overnight
at 4°C. After 3x 10min washes with gentle agitation in



2% BSA in 1x PBS, cells were incubated with goat anti-
mouse Alexa 488 secondary antibody (Molecular Probes
#A11017, 1:1000 dilution) at RT for 45min. After three
washes with 1x PBS, ProLong Gold antifade mounting
medium with DAPI (Molecular Probes #P36931) was
added to the cells, prior to fixing onto glass slides.
Immunofluorescence images were captured using
Deltavision Spectris Deconvolution Microscope (Applied
Precision, Inc., Issaquah, WA) with a 60x, 1.42 NA
oil immersion lens (Olympus #PLAPON 60XO) and
deconvoluted with its accompanying soft WoRx software.
The images were then adjusted using Image J (NIH)
program.

Nuclear-cytoplasmic fractionation

HeLa cells (~60 x 10° for each experiment) were harvested
without trypsin and pelleted at 500 x g for 5min. Nuclear
and cytoplasmic fractionations were performed with
ProteoJET™  Cytoplasmic and Nuclear Protein
Extraction Kit (Fermentas #K0311) as per manufacturer’s
protocol. Western blot analyses were performed on 25ng
of protein from each extract using antibodies against
Lamin A/C (Santa Cruz, sc-7292 1:100 dilution) and
endoplasmic reticulum (ER)- associated calnexin (Cell
Signaling # 2433, 1:1000 dilution) to determine efficiency
of nuclear fractionation, cytoplasmic  B-tubulin
(Developmental studies hybridoma bank, E7 ascites,
1:2000 dilution), and human Ago2 (Wako, Clone #
4G8, 1:200 dilution) as indicated in figures.

Immunoprecipitation and northern blotting

HeLa cell lysates were incubated with ~80 ul of protein G
agarose beads pre-bound to 10ul of anti-human Ago2
antibody (Wako, Clone # 4GS8) or Sul of non-immune
mouse serum at 4°C overnight. Agarose beads were then
washed copiously with 1% Empigen BB (Fluka 45165) in
RSB-200 [20mM Tris (pH 7.5), 200mM NaCl, 2.5mM
MgCL]. A 10% total of protein G agarose volume
was used for western blots, 45% for pre-miRNA process-
ing assays and 45% for Ago2-bound RNA isolation.
RNA was isolated from the beads as described previously
(21). The aqueous phase was treated with 10 U of Turbo
DNase (Ambion AM2238) at 37°C for 15min prior to
phenol/chloroform/isoamyl alcohol extraction and RNA
precipitation. Northern blot analysis was performed as
described previously (21). Equal amounts of RNA
(~200ng) per sample were loaded. The membranes were
probed with 5-**P-radiolabeled LNA-miR-21 or LNA-
let-7a probe at 45°C overnight, washed and miRNA /pre-
miRNA signals were detected by storage phosphor
autoradiography.

Synthetic RNAs

let-7a-3
5'p-UGAGGUAGUAGGUUGUAUAGUU-3

Pre-let-7a
5p-UGAGGUAGUAGGUUGUAUAGUUUGGGGC
UCUGCCCUGCUAUGGGAUAACUAUACAAUCU
ACUGUcCUUUCC-3
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Target TD
5-UAUACAACCUACUACCUCAUC-3’

73nt RNA
5'p-ACGAGAUUGAACGUUGAGGUAACGUUCCC
GCCCGUUAAUUGGUGGCCUCUAUCUAGACCA
GAGCUCAGAAGAA-3

Target TL
5p-GGUUAUGACGUGCAUGGUGUUAAUUGGU
AUCAACCACUAUACAACCUACUACCUCAACGU
UCAAUCUCGUAUGCGUAAAGUGCUAAGUGCA
UGGAUGCGA-3

Pre-miR-30a
5'p-UGUAAACAUCCUCGACUGGAAGCUGUGAA
GCCACAGAUGGGCUUUCAGUCGGAUGUUUGC
AGC-3

miR-30a
5p -UGUAAACAUCCUCGACUGGAAGCU-3

Target TGS
5-AACCUGCUUCCAGUCGAGGAUGUUUACACC
AAG-3

LNA-miR-21
S-TCAACATCAGTCTGATAAGCTA-3

LNA-let-7a-3
5'p-AACTATACAACCTACTACCTCA-3a

PML-GL3
5-UCGAAGUACUCAGCGUAAGUGGCUGUGAA
GCCACAGAUGGGCCACUUACGGAGUACUUUG
AGC-¥

RESULTS

Expression and purification of wild-type and catalytically
inactive mouse Ago2

Our initial objective was to study the in vitro reconstitu-
tion of mammalian RISC loading complex (RLC).
Wild-type glutathione-S-transferase (GST) tagged mouse
Argonaute 2 (GST-Ago2) was expressed in Sf9 insect cells
infected with baculovirus. Human and mouse Ago2
proteins share extensive sequence similarity (99%
identity, by CLUSTALW?2 of mouse—NP_694818- and
human—NP_036286-Ago2). Although studies with
recombinant mouse Ago2 have not been reported, the
DDH sequence within the P-element induced wimpy
testis (PIWI) domain to which the catalytic activity of
human Ago2 has been ascribed (20) is also present in
mouse Ago2. We therefore expressed catalytically
inactive mouse GST-Ago2 in Sf9 cells by substituting
the aspartate at position 669 with alanine (mutant GST-
D669A). Batch protein purification with GST resin was
followed by elution with glutathione and anion exchange
chromatography, yielding proteins of high purity.
Coomassie-stained NuPAGE gels of GST-Ago2 and
GST-D669A, as well as mass spectrometric analysis
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Figure 1. Recombinant mouse GST-Ago2 and let-7a form active RISC
in vitro. 15nM of either wild-type or catalytically inactive (D669A)
GST-Ago2 was loaded with 0.02puM synthetic 5P-let-7a and then
incubated with 13.6nmol 5-*P target RNA (TD). Reactions were
analyzed by 15% Urea PAGE and detected by autoradiography.
pBR322/Mspl DNA marker (M) and a synthetic 10nt oligo (G10)
were radiolabeled and included as size markers.

results, are shown in Supplementary Figure S1. To test the
activity of GST-Ago2, the protein was first loaded with
synthetic 5-phosphorylated let-7a. The resulting GST-
Ago2:let-7a complex was then incubated with a 21 nt
5/-32P-radiolabeled RNA target (TD) complementary to
let-7a. As shown in Figure 1, GST-Ago2:let-7a, but not
the catalytically inactive GST-D669A:let-7a, cleaved the
target TD.

RNA-binding kinetics of recombinant Ago2 and D669A

Next, we tested the RNA-binding affinity of GST-Ago2
and GST-D669A. Concentrations ranging from 3nM to
300nM of each recombinant protein were incubated with
a fixed amount (10.8nM) of 5-**P-radiolabeled-let-7a.
The GST-Ago2:let-7a and GST-D669A:let-7a complexes
were then analyzed by electrophoretic mobility shift assay
(EMSA, Figure 2A and C). Using the Prism program, the
dissociation constants (Kyg) for GST-Ago2 and GST-
D669A were determined to be 9.8 and 82.45nM, respec-
tively (Figure 2B and D). The higher dissociation constant
of GST-D669A likely reflects the decreased RNA-binding
affinity of the catalytically inactive protein.

Purified, Dicer-free, recombinant Ago2 does not process
pre-miRNAs in vitro

We then sought to determine whether recombinant
GST-Ago2 processes pre-miRNAs in vitro. We used
recombinant human Dicer as positive control for the pro-
cessing reactions. All preparations of GST-Ago2 protein
prior to anion exchange chromatography tested positive
for pre-miRNA processing (data not shown). We consid-
ered this activity to be a result of co-purification of
endogenous Sf9 Dicer, which forms a stable complex
with GST-Ago2. The pre-miRNA processing reactions
proved a sensitive method to detect this complex. To dis-
sociate Dicer from GST-Ago2, we purified the protein
further using anion exchange chromatography. We mon-
itored the purity of the protein by silver staining and
tested the fractions using pre-miRNA processing and
target RNA cleavage assays to assess Dicer and Ago2
activities, respectively. As shown in Figure 3, we identified
fractions that were free of Dicer activity, but retained
Ago2 activity. We used these purified, Dicer-free, GST-
Ago2 fractions for all experiments described in the
present work.

For pre-miRNA processing reactions, GST-Ago2,
GST-D669A, or recombinant human Dicer was incubated
with 5-3?P-radiolabeled pre-let-7a-3. As expected, Dicer
processed the pre-miRNA into an approximately 22nt
S-radiolabeled product (Figure 4A, lane 2). Dicer-free
GST-Ago2 or GST-D669A did not show any pre-
miRNA processing activity (Figure 4A, lanes 3 and 4).

Recombinant Ago2 and pre-miRNAs form active RISC
complexes in vitro

We asked whether the complex of GST-Ago2 and Dicer
would be sufficient to reconstitute active RLC in vitro, in
the absence of TRBP. Combination of recombinant Dicer
and GST-Ago2, in vitro in the presence of pre-let-7a-3
and  5-*’P-radiolabeled target TD, generated a
S'-radiolabeled cleavage product of the expected size
(Figure 4B, lane 2). This could suggest that TRBP was
dispensable for in vitro reconstitution of mammalian
RISC. However, unexpectedly, cleavage of target TD
was also observed by purified, Dicer-free, GST-Ago2,
but not GST-D669A, when Dicer was omitted from the
reactions (Figure 4B, lane 4). Since Dicer was absent, and
therefore pre-let-7a-3 was not processed into mature let-7a
or any other detectable intermediate product, these results
indicate that recombinant GST-Ago2 assembles with pre-
let-7a-3 into a catalytically active complex.

Recombinant Ago2 forms catalytically active complexes
with RNAs longer than miRNAs or siRNAs

In order to address if Ago2 can form complexes with pre-
miRNAs, we first examined whether purified, Dicer-free,
GST-Ago2 can bind to RNAs longer than miRNAs
or siRNAs. We performed photo-crosslinking experi-
ments of purified GST-Ago2 with 3-**P  pCp
radiolabeled RNAs. We used 70nt pre-miRNA (either
S’-phosphorylated or non-phosphorylated pre-let-7a-3)
or 73nt unstructured single stranded RNA (ssRNA).
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Figure 2. GST-Ago2:miRNA binding analysis. 5'->*P-let-7a (10.8 nM) was incubated with increasing concentrations of GST-Ago2 or GST-D669A.
GST-Ago2:let-7a (A) or GST-D669A:let-7a (C) complexes were analyzed by native gel electrophoresis. The fraction of let-7a bound to GST-Ago2

(B) or GST-D669A (D) was plotted against the concentration of the recombinant proteins. Panels show a representative of three independent
experiments.
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Figure 3. Endogenous Dicer activity from Sf9 cells co purifies with GST-Ago2. (A) Silver stained NuPAGE showing fractions obtained from anion
exchange chromatography. GST-Ago2 was present in fractions with NaCl concentrations ranging from 200 to 400 mM. (B) GST-Ago2 containing
fractions A10, All, B3, and B9 were tested for pre-miRNA processing activity by incubation with 5'-3°P radiolabeled pre- let 7a 3. Reactions were
then analyzed by 15% Urea PAGE and detected by autoradiography. Fractions A10 and A1l were Dicer-free. Cleavage of 5'-3*P-target TD by A10,
All, B3, and B9 fractions of purified GST-Ago2 pre-incubated with 5'P-let-7a. Reactions were analyzed on the same 15% Urea PAGE gel.
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Figure 4. Purified, recombinant GST-Ago2 does not process pre-let-7a-3 in vitro and cleaves target TD in the absence of Dicer. (A) GST-Ago2,
GST-D669A or recombinant human Dicer was incubated with 5-*?P-pre-let-7a-3. Reaction products were analyzed by 15% Urea PAGE.
(B) Purified, Dicer-free, GST-Ago2, GST-D669A or Dicer was pre-incubated with 5'P-pre-let-7a-3 before adding 5'-*?P target TD and analyzed

by 15% Urea PAGE.

As controls, we used 22nt miRNAs (5-phosphorylated
let-7a and non-phosphorylated let-7a). After ultraviolet
(UV) crosslinking at 254 nm, the RNA-protein complexes
were analyzed by NuPAGE and autoradiography. As
shown in Figure 5A, purified, Dicer-free, GST-Ago2
bound to 5-phosphorylated and non-phosphorylated
pre-let-7a-3 as well as to unstructured 73nt ssRNA.
Competition by 10-, 50- and 100-fold molar excess of
the corresponding unlabeled RNAs significantly reduced
binding of GST-Ago2 to radiolabeled RNAs (Figure 5A),
compared to the reactions where the same molar excess of
nonspecific unlabeled yeast tRNA was used. These results
indicate that recombinant GST-Ago2 can bind with high
specificity to RNAs longer than miRNAs or siRNAs.
Next, we asked whether ribonucleoprotein complexes
formed by GST-Ago2 and longer RNAs retained RISC
activity. After loading purified, Dicer-free, GST-Ago2
with 5-phosphorylated or non-phosphorylated pre-let-
7a-3 or a 73nt unstructured ssRNA, we performed
in vitro cleavage reactions using a target RNA containing
a sequence complementary to let-7a (TL). Nucleotides 1 to
21 of the 73nt ssRNA have no similarity to the let-7a
sequence (Figure 5C). As shown on Figure 5B,
recombinant Ago2 bound to 5P-pre-let-7a-3 or to 73 nt
sSRNA cleaved the target TL, 10 nt across from the 5'-end
of each guide RNA to produce a 46nt or 60 nt cleavage
product respectively. We also observed cleavage of a
33nt RNA target TGS when GST-Ago2 was pre-loaded
with gel purified 5-phosphorylated pre-miR-30a (Supple-
mentary Figure S4). A stronger signal of the same size,
indicating an 18 nt 5'-cleavage product of target TGS was
observed in control reactions where GST-Ago2 was pre-
loaded with 5-phosphorylated miR-30a but not when

GST-Ago2 was free of RNAs (Supplementary Figure
S4). Again, reactions where GST-Ago2 was incubated
with  5-*?P-radiolabeled pre-miR-30a showed that
recombinant GST-Ago2 did not process pre-miR-30a
into mature miR-30a (Supplementary Figure S4). These
results indicate that, in vitro, recombinant GST-Ago2
forms active RISC complexes using as guides pre-
miRNAs or unstructured single stranded RNAs longer
than miRNAs or siRNAs.

Endogenous mammalian Ago2 associates with
endogenous pre-miRNAs

Next, we asked whether the association of recombinant
Ago2 with pre-miRNAs that we detected in vitro was
also a property of endogenous human Ago2. Since Ago
proteins associate and co-immunoprecipitate with Dicer
(24-26), we first sought to immunopurify endogenous
Ago?2 free of Dicer. We carried out immunoprecipitations
in HeLa cell lysates initially using a monoclonal anti-
body against Ago2 that also cross-reacts with Agol, 3
and 4 (27). Results are shown in Supplementary Figures
S2 and S3. When 4GS, a monoclonal antibody with
specificity for human Ago2 (28) became available, we
continued our experiments using this antibody. We
found that stringent washes using Empigen detergent
dissociated endogenous Dicer from endogenous Ago2.
In order to monitor Dicer association and ensure Dicer-
free preparations of endogenous Ago2, we carried out
in vitro processing reactions, using 5-radiolabeled pre-
let-7a-3 (Figure 6B) or pre-miR-30a (Figure 9C and
Supplementary Figure S2). We considered these reactions
to be a more sensitive test to detect Dicer activity, than
western blots, which are less sensitive than enzymatic
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Figure 5. Purified, Dicer-free recombinant GST-Ago2 binds directly to pre-miRNAs or unstructured RNAs longer than miRNAs or siRNAs and
forms active RISC. (A) A 2000 c.p.m. of 3'-*>P pCp labeled indicated RNA oligo was incubated with ~16.7nM of recombinant, Dicer-free GST-
Ago2, and then irradiated with 254nM UV light. Photo-crosslinked samples were then analyzed by NuPAGE and detected by autoradiography. In
competition experiments, 10x, 50x and 100x molar excess of unlabeled indicated RNA oligos or unlabeled tRNA were included. (B) 15nM of GST-
Ago2 was pre-incubated with 0.02 uM of 5'P-pre-let-7a-3, pre-let-7a-3, 5'P-73 nt unstructured single stranded RNA or mature 5'P-let-7a, followed by
addition of 13.6 nmol 5'-*?P target TL (100nt). Reaction products were analyzed by 10% Urea PAGE with Decade RNA size marker (M1) and
detected by autoradiography. (C) Sequences of 5'P-pre-let-7a-3, 5'P-let-7a, 5P-73nt ssRNA oligo and target RNA (TL).

reactions. Washes with 0.5% Triton-containing solutions
retained Dicer activity, whereas washes with 1% Empigen
yielded immunoprecipitated endogenous Ago2 devoid of
pre-miRNA processing activity (Supplementary Figure
S2). We treated all preparations of endogenous human
Ago2 with Empigen and assayed for pre-miRNA pro-
cessing prior to performing any subsequent experiments.

The presence of Ago2 in purified Empigen-treated agarose
G beads was confirmed by western blotting (Figures 6A,
9B and Supplementary Figures S2B and S3B).

After confirming that neither binding to agarose G
nor the catalytic activity of Ago2 was affected by
Empigen treatment (data not shown), endogenous Ago2
was immunoprecipitated from HeLa cells under Empigen
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Figure 6. Endogenous human Ago2 binds directly to pre-let-7a-3. (A) Western blot of human Ago2 immunoprecipitates from total HeLa cell lysates.
Non-immune mouse serum (NMS) was used as negative control. (B) Beads containing immunopurified Ago2 were washed with Empigen and then
incubated with 5'-3?P-radiolabeled pre-let-7a-3. Recombinant Dicer and NMS were used as positive and negative controls for the processing reaction,
respectively. (C) RNA isolated from immunopurified, Empigen-washed, Ago2 or from NMS was probed on Northern blot with an LNA probe
against let-7a. The three distinct pre-let-7a signals correspond to the three isoforms of pre-let-7a (pre-let-7a-1, pre-let-7a-2 and pre-let-7a-3), detected

by the LNA probe.

conditions, using the 4G8 antibody. Silver nitrate gel
analysis and subsequent mass spectrometry were perfor-
med to ensure purity of the Ago2 immunoprecipitations
(data not shown) before Ago2-bound RNA was isolated
and subjected to northern blot analysis. The blots were
probed with a locked nucleic acid-modified (LNA) probe
against let-7a, a miRNA that is abundant in HeLa cells
[(29) and our unpublished observations]. We detected a
signal corresponding to pre-let-7a, along with the signal
of mature let-7a (Figure 6C). In subsequent experiments,
we used LNA probe for miR-21 and also detected binding
of pre-miR-21 to endogenous human Ago2 (Figure 9D
and data not shown). These findings indicate that, in
addition to mature microRNAs, endogenous Ago2
directly associates with endogenous pre-miRNAs.

Accumulation of endogenous Ago:pre-miRNA complexes
in the absence of Dicer

Our Ago2 immunoprecipitation and northern blot studies
revealed that the precursors of two of the most abundant
miRNAs in HeLa cells (miR-21 and let-7a) formed
complexes with Ago proteins (Figure 6C, Supplementary
Figure S3 and data not shown) and specifically with Ago2
(Figures 6C and 9D). We asked whether the abundance
of Ago:pre-miRNA complexes increases in conditions
where the processing of pre-miRNAs to mature
miRNAs is blocked. Indeed, by immunoprecipitating
with the 2A8 antibody and 3’-end labeling of endogenous
Ago-bound RNAs from Dicer /= MEFs, we
demonstrated a significant enrichment of the Ago:pre-
miRNA complexes in Dicer /= MEFs, compared to
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Figure 7. Accumulation of pre-miRNAs bound to Ago in Dicer-null mouse embryonic fibroblasts (MEFs). (A) Western blot showing similar
amounts of Ago immunoprecipitated from Dicer ™/~ or Dicer™'~ MEFs. The asterisk indicates cross-reaction of 2A8 antibody with radixin (27).
(B) Western blots showing comparable expression of Agos in Dicer "/~ and Dicer™'~ MEFs and absence of Dicer in Dicer '~ MEF lysates. (C) RNA
was isolated from Ago immunoprecipitated with anti-Ago 2A8 antibody or non-immune mouse serum (NMS) from Dicer ™/~ or Dicer”'~ MEFs,
3'-end labeled with **P-pCp and resolved on a 15% Urea PAGE gel. Accumulation of pre-miRNAs concomitant with abrogation of miRNAs was
detected in the anti-Ago IP from Dicer'~ MEFs. (D) Experiment was repeated as described in (A—C), except northern blot analysis of isolated RNA
was performed and probed with LNA-let-7a. A total of 0.1 nM synthetic 5'P-pre-let-7a-3 was included as positive control.

Dicer "/~ MEFs (Figure 7C). This observation was also
confirmed through northern blot analysis with a LNA-let-
7a probe, where a substantial increase in pre-let-7a signal
bound to endogenous Ago was detected in Dicer-null
MEFs, compared to Dicer’/~ MEFs (Figure 7D).
Minimal levels of mature miRNAs were detected in Ago
immunoprecipitations from Dicer '~ MEFs. This is likely
due to residual levels of mature miRNAs that are still
detected after inducible deletion of Dicer and it may
reflect stable mature miRNAs processed prior to the
Dicer deletion. Enrichment of Ago:pre-miRNA complexes
in Dicer’~ MEFs is not due to up-regulation of
endogenous Ago proteins in MEFs in the absence of
Dicer, since western blot studies on all MEF lysates as
well as on 2A8-bound immunoprecipitated proteins,
showed comparable levels of Agos between Dicer '~ and
Dicer "/~ (Figure 7A and B). These results demonstrate

that Ago:pre-miRNA complexes accumulate in the

absence of the pre-miRNA processing machinery.

Subcellular localization of endogenous human Ago2 and
Ago?2 ribonucleoprotein complexes

We then determined the localization of endogenous Ago2
in HeLa cells by immunofluorescence, using the Ago2-
specific 4G8 monoclonal antibody (Figure 8B). We
observed punctate cytoplasmic staining consistent with
previous reports of Ago2 localization in cytoplasmic pro-
cessing bodies (P-bodies) [Figure 8B and D; (28,30-32)].
We also observed diffuse cytoplasmic staining of endo-
genous Ago2 also consistent with previous reports
(31,32). Furthermore, we found that endogenous Ago2
localizes also in the nucleus of HeLa cells (Figure 8B
and D). Control experiments with either secondary
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Figure 8. Endogenous human Ago?2 is localized in the cytoplasm and nuclei of HeLa cells. (A) Differential interference contrast (DIC) image show
the morphology of fixed and immunostained HeLa cells. (B) Endogenous Ago2 was immunostained with Ago2-specific antibody (4G8). The images
were captured using deconvolution microscopy. (C) Nuclei of HeLa cells were co-stained with DAPI. (D) Merged images of (B) and (C), showing

endogenous Ago2 in the cytoplasm and in the DAPI-stained nuclei.

antibody alone (Supplementary Figure SSA) or B-tubulin
antibody (Supplementary Figure S5B) demonstrate
specificity of endogenous Ago2 detection by 4GS.

Since we identified Ago2 in both nucleus and cytoplasm,
we then investigated whether Ago2:pre-miRNA com-
plexes are restricted to any of the two cellular compart-
ments. To address this, we obtained fractions from HeLa
cells enriched in nuclear or cytoplasmic components. We
confirmed by western blot that Ago2 was present in both
fractions (Figure 9A and Supplementary Figure S3A).
Ago2 has been reported to associate with endoplasmic
reticulum [ER (33,34)]. We tested whether components
of the ER attached to the nuclear membrane, co-purified
with the nuclear fractions. Western blot analysis using an
antibody against the ER-associated protein calnexin
showed that the nuclear fraction was essentially free of
ER components (Figure 9A). Subsequently, we carried
out Ago2 immunoprecipitations from nuclear and
cytoplasmic fractions using the Ago2-specific 4GS
(Figure 9) or the monoclonal antibody 2A8 (Supple-
mentary Figure S3). Ago2 binding to Empigen-treated

agarose G beads was confirmed by western blot
(Figure 9B and Supplementary Figure S3B). Processing
reactions using 5'-radiolabeled pre-miR-30a or artificial
PML-GL3 pre-miRNA (25) did not yield mature
miRNA products, indicating that immunoprecipitated
Empigen-treated endogenous Ago2 was Dicer-free
(Figure 9C and Supplementary Figure S3C). Northern
blot analysis of Ago2-bound RNA using a miR-21 LNA
probe detected the presence of Ago2-bound pre-miR-21
primarily in nuclear fractions (Figure 9D). Ago2-bound
pre-let-7a was detected in both nuclear and cytoplasmic
fractions of 4G8 and 2A8 immunoprecipitated Ago?2 (data
not shown and Supplementary Figure S3D, respectively).
We cannot comment on whether lower levels of precursors
and mature miRNAs associated with cytoplasmic Ago2
reflect the actual levels of precursors and miRNAs in the
two different cellular compartments or the effect of strin-
gent washes with Empigen. Although this treatment
resulted in dissociation of Dicer, we believe that some
undesired loss of Ago2 and bound RNAs was unavoid-
able. Taken together, our results indicate that Ago2 and
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Figure 9. Nuclear and cytoplasmic human Ago2 associate with pre-miR-21. (A) Nuclear and cytoplasmic fractions of HeLa cells were probed on
western blot with antibodies against indicated proteins. The same membrane was used with all antibodies. (B) Western blot of Ago2 immunopre-
cipitates from nuclear and cytoplasmic HeLa cell fractions. (C) Beads containing immunopurified Ago2 (or NMS) from nuclear and cytoplasmic
fractions were washed with Empigen and then incubated with 5'-**P-radiolabeled pre-miR-30a. Recombinant Dicer was used as positive control for
the processing reaction. (D) RNA was isolated from nuclear and cytoplasmic Ago2 immunoprecipitates that had been washed with Empigen and

probed on northern blot with an LNA probe against miR-21.

Ago2 ribonuclear complexes containing mature miRNAs
and pre-miRNAs can be found in both nuclear and
cytoplasmic compartments of human cells.

DISCUSSION

One of the objectives of our study was to characterize the
RNA binding and nucleolytic activity of recombinant
mammalian Ago2 in the absence of its binding partners.
Cleavage kinetic analysis of human RISC, Drosophila
melanogaster RISC (35) and reconstituted human RISC
(36) has been previously studied (35-37). Recombinant
human RISC loading complex (RLC) reconstitution by
heterologous expression of human Dicer, Ago2 and
TRBP in Sf9 cells and isolation of the three-protein
complex by size exclusion chromatography has also
been reported (38). With the exception of a study of
recombinant human Ago2 generated in Escherichia coli
by Rivas et al. (36), characterization studies of recom-
binant mammalian Ago2 have not been reported.

To ensure the purity of our preparations, after anion
exchange chromatography, we performed activity assays
to monitor for association of endogenous Sf9 Dicer with
the recombinant mouse Ago2. It has been reported that
endogenous human Ago2 cleaves certain pre-miRNAs to
processing intermediates, termed Ago2-cleaved-precursors
(ac-pre-miRNAs), by generating 10-12nt nicked
products. Our results indicate that recombinant Ago2
does not process pre-miRNAs in vitro as we did not
detect mature miRNAs or any intermediate pre-miRNA
processing products. This may suggest that, besides Ago2,
other unknown factors that are required for generation of
ac-pre-miRNAs were not present in our in vitro assays.

In RNA-binding studies with reconstituted human
recombinant RISC loading complex (RLC) a Ky of
15nM was previously reported for the complex of Ago2-
Dicer-TRBP (38). We detected a higher RNA-binding
affinity using recombinant Ago2, as reflected by a Ky of
9.8nM. We also found that the K4 for the GST-D669A

mutant is higher than that of wild-type Ago2, denoting
less efficient miRNA binding of a catalytically inactive
protein Ago2. The aspartate 669 is part of the Ago2
catalytic triad motif and is involved in coordinating
metal ions vital for substrate cleavage activity (20). Our
results from RNA-binding kinetic analyses of wild-type
Ago2 and mutant GST-D669A suggest that metal ion
coordination may also be critical for efficient RNA
binding by Ago2.

The current paradigm states that Ago2 uses ~22nt
RNAs as guides for cleavage. Our study is the first to
show that purified recombinant mammalian Ago2 binds
miRNA precursors as well as unstructured RNAs longer
than miRNAs or siRNAs. This binding is specific, as
indicated by the competition UV crosslinking studies,
and more importantly, results in the assembly of catalyti-
cally active Ago2 ribonucleoprotein complexes. In our
studies, we have used several miRNA precursors, in
addition to pre-let-7a and pre-miR-30a and we observed
that recombinant Ago2 forms active complexes with all
S’-phosphorylated pre-miRNAs that we have tested so
far (our unpublished data). We performed cleavage
assays by pre-loading GST-Ago2 with pre-miRNAs or
long unstructured RNA guides at concentrations ranging
from 20 to 200nM using approximately 16nM of
recombinant Ago2 protein and observed cleavage
activity even with the lower pre-miRNA concentrations
(our unpublished data). In order to avoid excess of
unbound guide RNAs (pre-miRNAs or unstructured
ssRNAs) in the cleavage reactions, we modified our
protocol by using GST beads-bound recombinant GST-
Ago2, which was washed stringently after loading with
RNAs, before addition of the target RNA. We observed
similar cleavage activity with this modified protocol (our
unpublished data). The use by Ago2 of hairpin structured
RNAs as guides to catalyze target RNA cleavage in vitro
might be suggestive of RNA chaperone activity of Ago2,
resulting in unwinding of the double stranded precursor
stems or spontancous unfolding of the precursors prior to
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binding to their targets. Spontaneous basepair opening of
double-stranded RNA as well as dissociation of RNA
duplexes via strand displacement has been previously
described (39,40).

In human cell lines, we observed that endogenous
Ago2 also associates with endogenous pre-miRNAs.
Using two different monoclonal antibodies that recognize
human Ago2, we immunoprecipitated Dicer-free endo-
genous Ago2 from HeLa cells and showed by northern
blot analyses, association with endogenous pre-let-7a
and pre-miR-21. The ratio of pre-miRNAs to miRNAs
bound to Ago2 reflects the ratio of pre-miRNAs to
mature miRNAs in total RNA as detected previously by
northern blot studies [(41) and our unpublished data] and
most likely reflects the rapid processing of pre-miRNAs by
Dicer. This is supported by our findings in Dicer-null cells
where levels of pre-miRNAs associated to endogenous
Ago2 increase significantly in the absence of Dicer,
compared to wild-type cells, despite comparable expres-
sion of endogenous Ago2. Association of pre-miRNAs
to Ago proteins has not been reported in previous
studies, perhaps because of the lower sensitivity of the
3-end labeling RNAs bound to immunoprecipitated
Ago compared to the sensitivity of LNA probes.
However in Dicer '~ cells where pre-miRNAs accumu-
late, we can clearly detect pre-miRNA association to
Ago, by northern blot or even with 3-end labeling
of RNAs.

Our immunofluorescence studies performed in HelLa
cells detected Ago2 in the cytoplasm and nucleus. The
punctate cytoplasmic staining that we detected is consis-
tent with previous reports of Ago2 localization in process-
ing bodies (P-bodies) (28,30,31). We also detected nuclear
Ago2, consistent with previous reports by recent studies
showing Ago2 localization in the nuclei of human
cells (32,42,43) and RISC activity in nuclear extracts of
mammalian cells indicative of the presence of active
Ago2:miRNA complexes in the nucleus (41,42). Results
from our cell fractionation experiments correlate with
our immunofluorescence studies confirming localization
of Ago2 in the nucleus, in addition to the cytoplasm.
Furthermore the presence of miR-21 in the nucleus has
been previously reported (41,44). Although the role of
Ago2 in the nucleus is not known, it has been previously
reported that nuclear RNAIi defective-3A (NRDE-3A), a
Caenorhabditis elegans Ago protein, transports siRNAs
from the cytoplasm to the nucleus (45). Evidence also
exists for nuclear function of human Ago2 in
transcriptional silencing by RNA duplexes targeting
promoter sequences (46). Recently, a role for Importin
8 in the nuclear transport of human Ago2 has been
reported (43).

In Ago2-null hematopoietic progenitor cells, fibroblasts
and hepatocytes, miRNA microarrays revealed a several
fold decrease in the abundance of mature miRNAs, sug-
gestive of a role for Ago2 in the biogenesis of miRNAs
(47). Since the decrease in mature miRNAs was not depen-
dent on the catalytic activity of Ago2, it was suggested
that Ago2 might increase access of pre-miRNAs to
Dicer or increase Dicer’s enzymatic activity (47). Our
studies, which show direct association of endogenous

human and mouse Ago2 to pre-miRNAs, may imply
that Ago2 encounters miRNA precursors in the nucleus
and cytoplasm at a step earlier than Dicer, perhaps
facilitating access of pre-miRNAs to Dicer. This may
explain why absence of Ago2 affects the abundance of
mature miRNAs. The presence of mature miRNAs in
the nucleus is also intriguing. If this is due to nuclear
transport of miRNA-loaded Ago2 from the cytoplasm,
as is the case for NRDE-3, or if pre-miRNA processing
into mature miRNAs can also take place in the nucleus,
remains to be determined.

In summary, our studies have uncovered a novel
expanded RNA-binding activity of mammalian Ago2,
by demonstrating that recombinant mouse Ago2 can use
pre-miRNAs and RNAs longer than miRNAs as guides
to cleave target RNAs, and that human and mouse
Ago2 associates with pre-miRNAs in vivo. The biological
implications of this novel finding will be the focus of
future studies.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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