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Abstract Genome-wide association studies (GWAS) are a powerful approach for connecting

genotype to phenotype. Most GWAS hits are located in cis-regulatory regions, but the underlying

causal variants and their molecular mechanisms remain unknown. To better understand human cis-

regulatory variation, we mapped quantitative trait loci for chromatin accessibility (caQTLs)—a key

step in cis-regulation—in 1000 individuals from 10 diverse populations. Most caQTLs were shared

across populations, allowing us to leverage the genetic diversity to fine-map candidate causal

regulatory variants, several thousand of which have been previously implicated in GWAS. In

addition, many caQTLs that affect the expression of distal genes also alter the landscape of long-

range chromosomal interactions, suggesting a mechanism for long-range expression QTLs. In sum,

our results show that molecular QTL mapping integrated across diverse populations provides a

high-resolution view of how worldwide human genetic variation affects chromatin accessibility,

gene expression, and phenotype.

Editorial note: This article has been through an editorial process in which the authors decide how

to respond to the issues raised during peer review. The Reviewing Editor’s assessment is that

minor issues remain unresolved (see decision letter).

DOI: https://doi.org/10.7554/eLife.39595.001

Introduction
GWAS have been instrumental in advancing our understanding of complex traits. Indeed, these

studies have successfully mapped thousands of loci associated with hundreds of human diseases and

other traits (Eicher et al., 2015). However, the vast majority of causal variants that drive the associa-

tions remain unknown, since GWAS resolution is limited by the correlations between nearby variants

known as linkage disequilibrium (LD). Pinpointing causal variants is essential not only for accurately

predicting disease risk, but also for understanding the molecular mechanisms that underlie complex

trait variation. Increasing GWAS sample size or genotyping density can improve resolution, but even

the largest studies have yielded only a few dozen causal variants (Farh et al., 2015; Huang et al.,

2017).

To achieve high mapping resolution, an alternative to increasing sample size within a single popu-

lation is trans-ethnic fine-mapping, in which a GWAS is performed across multiple populations

(van de Bunt et al., 2015; Asimit et al., 2016). Shared causal variants should be consistently associ-

ated with a trait across populations, while tag SNPs—those associated only because of their LD with

a causal variant—may only be associated in a subset of populations, due to differing LD structures.

This approach is especially effective when combining populations with disparate LD patterns, such

as Europeans and Africans (Asimit et al., 2016). However, most GWAS have been restricted to Euro-

pean cohorts, limiting not only their mapping resolution, but also their ability to predict disease risk

in non-European individuals (Hindorff et al., 2018).
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Another approach to understanding molecular mechanisms underlying complex traits has been to

intersect GWAS hits with quantitative trait loci (QTLs) for molecular-level traits, which provide an

effective ‘stepping stone’ on the path from genotype to disease. QTLs involved in cis-regulation are

especially informative, since the vast majority of GWAS hits are in noncoding regions

(Hindorff et al., 2009). For example, QTLs for mRNA levels (eQTLs) are enriched for SNPs impli-

cated by GWAS in a wide range of diseases, suggesting specific genes as likely mediators of the

associations (Lappalainen et al., 2013; Battle et al., 2017). Similar enrichments have been reported

for QTLs affecting mRNA splicing (Fraser and Xie, 2009; Li et al., 2016), transcription factor bind-

ing (Waszak et al., 2015; Tehranchi et al., 2016), and chromatin accessibility (Kumasaka et al.,

2016; Gate et al., 2018). However, nearly all of these molecular-level QTL studies have been limited

to a single population (most often either Europeans or Yorubans), thus limiting their utility for under-

standing worldwide human diversity—similar to the bias of GWAS for Europeans. Yet there is a great

deal we could learn about the genetic basis of phenotypic diversity from performing trans-ethnic

fine-mapping on molecular-level QTLs.

We recently developed an efficient approach for mapping molecular QTLs in which samples are

pooled prior to sequencing. This pooling minimizes experimental variability between samples (both

within and between experimental ‘batches’), reducing the cost and effort of QTL mapping by over

25-fold compared to standard unpooled approaches (Tehranchi et al., 2016). However, our initial

study suffered from the same limitations as most other molecular QTL studies: it involved a small

cohort (60 individuals) from a single population. We reasoned that the efficiency of pooling could

enable us to map cis-regulatory QTLs with far greater numbers of individuals and populations than

would otherwise be possible, allowing us to perform trans-ethnic fine-mapping to pinpoint thou-

sands of likely causal variants affecting cis-regulation and, in many cases, complex disease risk.

Results

Pooled QTL mapping of variants affecting chromatin accessibility
We applied pooled QTL mapping (Kaplow et al., 2015; Tehranchi et al., 2016) to chromatin acces-

sibility (CA), a reliable indicator of local cis-regulatory activity, as measured by the Assay for Transpo-

sase-Accessible Chromatin (ATAC-seq) (Buenrostro et al., 2015). In this approach, many samples

are combined into a single pool, in which ATAC-seq (or another assay of interest) is performed only

once. Genetic variants that affect CA in cis will cause the more accessible allele to increase in fre-

quency after ATAC compared to before, whereas variants with no effect on accessibility will have no

significant change in frequency (Figure 1A). For each SNP, we estimated the post-ATAC allele fre-

quency from read counts of each allele present in the ATAC-seq reads and used a regression-based

approach to estimate pre-ATAC allele frequency; the significance of the difference between these

two frequencies is our caQTL p-value (Tehranchi et al., 2016).

We selected a total of 1000 lymphoblastoid cell lines (LCLs) with full genome sequences

(Auton et al., 2015) from 10 diverse populations: four European, four African, one African-American,

and one Han Chinese (Figure 1A, Figure 1—source data 1). We combined 66–112 unrelated indi-

viduals from each population into one pool per population, and performed ATAC-seq with two bio-

logical replicates per population (Figure 1—figure supplement 1), resulting in a total of ~808

million informative autosomal reads from 20 pools. All populations showed a high correlation

between pre-ATAC and post-ATAC allele frequencies (average Pearson r = 0.92; Figure 1A, Fig-

ure 1—figure supplement 2), as expected if most SNPs do not affect CA and thus have similar pre-

and post-ATAC frequencies (Tehranchi et al., 2016). At a nominal p<5�10�4—corresponding to an

irreproducible discovery rate (IDR, analogous to a false discovery rate; Figure 1—figure supplement

3) of ~1%—we mapped 13,657 to 26,182 independent caQTLs per population. This comprised 1.5–

3.0% of all testable SNPs, defined as those with >2% minor allele frequency (MAF) and covered by

at least 20 reads (Figure 1B, Figure 1—figure supplement 4). A total of 126,773 caQTLs were sig-

nificant in at least one population (Supplementary file 1).

Accuracy and efficiency of pooled QTL mapping
To gauge the accuracy of our caQTLs, we compared them with previously mapped QTLs. DNase-

seq is another method used to assay chromatin accessibility, and SNPs affecting DNase read
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Figure 1. Outline and results of pooled ATAC-seq. (A) Performing ATAC-seq in a pool of individuals selects DNA molecules with higher CA, thus

enriching for more accessible alleles. In this example (ASW population), the G allele has a low pre-ATAC frequency but a high post-ATAC frequency,

due to its increased CA. The ten population abbreviations refer to: CEU, Utah residents with North European ancestry; FIN, Finnish; TSI, Tuscan; IBS,

Iberian; ASW, African-American from Southwest US; YRI, Yoruban; ESN, Esan; LWK, Luhya; GWD, Gambian; and CHB, Han Chinese. (B) The number of

Figure 1 continued on next page
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density—known as dsQTLs—have been mapped using 70 individual (non-pooled) Yoruban LCLs

(Degner et al., 2012). We compared our caQTLs to dsQTLs in three ways. First, testing the overlap

between these two sets, we found a 33- to 76-fold enrichment of dsQTLs among caQTLs, with high-

est enrichment in the five African/African-American populations (Figure 1C; enrichments for other

QTLs in Figure 1—figure supplement 5). Second, we compared the quantitative effect sizes of

caQTLs and dsQTLs, and found excellent agreement (Pearson r = 0.85; Figure 1D). Third, we tested

how the directionality agreement (whether caQTLs and dsQTLs call the same allele as more accessi-

ble) changes with the caQTL p-value, and found that agreement increased with more stringent cut-

offs, reaching 96.7–98.1% agreement at caQTL p<5�10�4 (Figure 1E). These three tests show that

our caQTLs are consistent with dsQTLs mapped with unpooled samples.

Because accessible chromatin is more often bound by TFs, we also tested the directionality

agreement between overlapping caQTLs and TF binding QTLs (bQTLs) aggregated for five TFs

(Tehranchi et al., 2016), since we expect increased TF binding to be associated with increased CA.

Once again, we found that the agreement increases with more stringent p-value cutoffs, reaching

97.3–98.9% agreement at caQTL p<5�10�4 (Figure 1F). This high level of agreement suggests a

low rate of false positive caQTLs, consistent with our estimated 1% IDR.

To assess the efficiency of our pooling approach, we compared our results with caQTLs mapped

with RASQUAL—a computational QTL mapping approach that accounts for many possible con-

founding variables—in non-pooled European LCLs (Kumasaka et al., 2016). At a matched cutoff in

our CEU population, we mapped 2.8-fold more caQTLs with 15-fold fewer reads and 12-fold fewer

ATAC-seq libraries—a ~ 40 fold improvement in cost per caQTL (see Supplemental Note). Overall,

our comparisons with previously mapped QTLs (Figure 1C–F, Figure 1—figure supplement 5) sug-

gest that pooling is an efficient strategy that agrees well with unpooled QTL mapping.

caQTLs shared across populations
We next assessed the extent of caQTL sharing across populations. A caQTL might not be shared

due to biological causes, such as dependence of a variant’s effect on the genetic background (epis-

tasis), or due to trivial causes such as not meeting our 20 read cutoff in one population. To exclude

trivial cases we focused on 142,049 variants that were testable in all ten populations. Among these,

we observed a clear trend for increased sharing within continents: the mean fraction of shared

caQTLs was 59.9% within Africans and 59.8% within Europeans, compared to 48.4% between these

two groups (Figure 2A). The Han Chinese (CHB) caQTLs were shared moderately with Europeans

(52.4%) and less well with Africans (47.7%), reflecting their closer relatedness to Europeans. In addi-

tion, African-American (ASW) caQTLs showed greater sharing with all five European/Han populations

Figure 1 continued

caQTLs (top), and the percent of all tested SNPs called as caQTLs (bottom). (C) Enrichment of caQTLs among dsQTLs (Degner et al., 2012), at a range

of caQTL p-value cutoffs. (D) Quantitative effect sizes of caQTLs and dsQTLs are highly correlated (scales of each axis are not comparable, and do not

affect the correlation coefficient).( E–F) The degree of allelic concordance between our caQTLs and: (E) dsQTLs (Degner et al., 2012). (F) bQTLs

aggregated for five TFs (Tehranchi et al., 2016). Full results available in Figure 1—source data 1.

DOI: https://doi.org/10.7554/eLife.39595.002

The following source data and figure supplements are available for figure 1:

Source data 1. Detailed results of analyses shown in the Figures.

DOI: https://doi.org/10.7554/eLife.39595.008

Figure supplement 1. Comparison of post-ATAC reference allele frequencies between biological replicates of each population pool.

DOI: https://doi.org/10.7554/eLife.39595.003

Figure supplement 2. Pre-ATAC vs post-ATAC reference allele frequencies for nine populations, similar to ASW plot in Figure 1A.

DOI: https://doi.org/10.7554/eLife.39595.004

Figure supplement 3. Top row: caQTL p-values for SNPs on chr one in ASW and CEU, shown separately for each biological replicate.

DOI: https://doi.org/10.7554/eLife.39595.005

Figure supplement 4. QQ plots of expected (under the null) vs observed caQTLs p-values.

DOI: https://doi.org/10.7554/eLife.39595.006

Figure supplement 5. caQTLs enrichments among other molecular QTLs (Ding et al., 2014, Lappalainen et al. (2013), Waszak et al., 2015,

Tewhey et al., 2016, Banovich et al., 2014).

DOI: https://doi.org/10.7554/eLife.39595.007
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Figure 2. Fine-mapping shared caQTLs. (A) Heatmap showing the overlap in caQTLs for every pair of populations (only for variants that were testable

in all ten). To avoid issues related to arbitrary p-value cutoffs, we used the shift in p-value distribution, known as p1 (Storey et al., 2004), to assess

overlap. (B) Mapping a trait in multiple populations differing in LD structure allows fine-mapping of causal variants, which will show the most consistent

associations. (C) caQTLs shared across many populations (at p<5�10�4) are more highly enriched for experimentally-determined causal eQTL variants

(Tewhey et al., 2016). Full results available in Figure 2—source data 1.

DOI: https://doi.org/10.7554/eLife.39595.009
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than any of the four African populations did, consistent with their admixed ancestry. Restricting the

analysis to caQTLs with similar allele frequencies across populations led to a similar pattern (Fig-

ure 2—figure supplement 1). The concordance between caQTL sharing and known phylogenetic

relationships suggests that some caQTLs may have population-specific effects, as has also been

observed for other types of molecular QTLs (Stranger et al., 2012; Fraser et al., 2012), though the

biological mechanisms underlying this divergence will require further study.

A fundamental limitation of human GWAS is their inability to pinpoint most causal variants, due

to linkage disequilibrium (LD) that often results in many variants with equally strong associations

(van de Bunt et al., 2015). However, causal variants can be fine-mapped by combining association

data across populations, especially with African populations due to their low LD (Asimit et al.,

2016). Causal variants should be consistently associated with a trait across populations, while tag

SNPs—those associated only because of their LD with a causal variant—may only be associated in a

subset of populations, due to differing LD structures (Figure 2B).

We performed fine-mapping by searching for caQTLs present in multiple populations. To test

whether this was indeed enriching for causal variants, we intersected our caQTLs with a collection of

experimentally verified causal eQTL variants (Tewhey et al., 2016). We found increasing enrichment

for known causal variants with increasing number of significant caQTL populations (Figure 2C), sug-

gesting that combining the diverse LD patterns improved our mapping resolution substantially. In

order to account for both the number of significant populations as well as the caQTL strength within

each population (Figure 2—figure supplement 2), we calculated Fisher’s combined p-value for each

caQTL across all ten populations; at a combined p<5�10�6, we identified 45,243 SNPs, which we

refer to as ‘shared caQTLs’ (Supplementary file 2). Nearly all (99.8%) of these were significant

across multiple populations, and 98.6% showed concordance of the more accessible allele across

populations.

Characterizing fine-mapped caQTLs
Leveraging the high resolution of our fine-mapped shared caQTLs, we first investigated their geno-

mic locations. We found that they were most highly enriched near active enhancers and transcription

start sites (TSSs) (Ernst and Kellis, 2012), accounting for 54% of shared caQTLs in just 3.1% of the

genome (Figure 3A, purple and dark green). However, these enrichments were primarily driven by

ATAC-seq read density, reflecting greater chromatin accessibility in these regions; after controlling

for read density, we found the strongest enrichments in weak enhancers (2.3-fold) and quiescent

regions (3.6-fold), and 8.7-fold depletion near TSSs. We hypothesize that mutations affecting acces-

sibility near TSSs are more likely to be deleterious, and thus selected against, resulting in the

observed depletion. This 8.7-fold depletion near TSSs is greater than the analogous depletion of

nonsynonymous changes in exons; in fact, we estimated that that these caQTLs are ~81% more likely

to be deleterious, and removed by selection, than nonsynonymous mutations (see Supplemental

Note). Consistent with this, we also found that caQTLs near active TSSs have lower minor allele fre-

quencies than elsewhere in the genome (median MAF = 0.17 for active TSS regions and 0.18 for

flanking active TSS regions, compared to 0.21 for caQTLs elsewhere; Wilcoxon p=1.5�10�28 and 8

� 10�6 respectively).

Disruption of TF binding motifs can lead to caQTLs (Degner et al., 2012; Kumasaka et al.,

2016). To investigate the effects of caQTL variants on TF binding motifs we searched for motifs

enriched specifically in the more accessible caQTL alleles (by using the less accessible alleles as the

background set), or in the less accessible alleles (see Materials and methods). We found 80 known

Figure 2 continued

The following source data and figure supplements are available for figure 2:

Source data 1. All caQTLs testable (at least 20 reads and MAF >0.01) in all ten populations.

DOI: https://doi.org/10.7554/eLife.39595.012

Figure supplement 1. Sharing of caQTLs across populations, as in Figure 2A, but excluding comparisons with divergent allele frequencies.

DOI: https://doi.org/10.7554/eLife.39595.010

Figure supplement 2. Example of a shared caQTL (rs79979970) that is individually significant in only one population (CHB) out of eight tested, but

reaches a shared caQTL p=5.6�10�7 because it has p<0.1 in an additional four populations.

DOI: https://doi.org/10.7554/eLife.39595.011
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Figure 3. Characterizing shared caQTLs. (A) The fraction of the genome (left) and of shared caQTLs (right) in each of four classes, annotated based on

chromatin signatures (Ernst and Kellis, 2012). TSS includes TSS flanking regions; full results in Supplementary file 2. (B) Searching for motifs enriched

specifically among open alleles (using closed alleles from the same caQTLs as the background comparison set), we found 80 motifs enriched among

open alleles (points below the diagonal). Repeating the analysis for closed alleles, we found no motifs enriched (above diagonal). Note that many

motifs are partially overlapping, and thus not independent. Inset: fold-enrichment in open/closed alleles for five selected TFs. Full results in Figure 3—

source data 1. (C) The number of caQTLs overlapping each position within the CTCF motif strongly mirrors the information content (i.e. the

importance for binding) of that position, as expected if these caQTLs are causal variants affecting CA via CTCF binding. Full results available in

Figure 3—source data 1.

DOI: https://doi.org/10.7554/eLife.39595.013

The following source data and figure supplement are available for figure 3:

Source data 1. Fig 3A: Numbers in Figure 3A, and chromatin states for every caQTL .

DOI: https://doi.org/10.7554/eLife.39595.015

Figure 3 continued on next page
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TF motifs enriched in the open allele sequences (FDR � 0.1% for each; Figure 3B), but none

enriched in the closed alleles from the same caQTL loci. This striking asymmetry supports the idea

that a major mechanism leading to caQTLs is disruption of TF binding, where caQTL variants match-

ing the consensus motif—and thus promoting TF binding—result in more accessible chromatin. The

most highly enriched motifs included TFs specific to immune cells like BATF, as well as more ubiqui-

tous factors like CTCF (Figure 3B inset).

To further investigate fine-mapped caQTLs in TF binding motifs, we focused on CTCF, due to its

long and well-characterized motif (Ding et al., 2014). We reasoned that the most critical positions in

the CTCF motif (i.e. those with the least variation across CTCF binding sites, represented by high

information content in the position weight matrix) should be more likely to affect CTCF binding and

chromatin when disrupted, and thus should be the most enriched for caQTLs (Ding et al. 2012,

Maurano et al., 2015). Comparing shared caQTL density with the CTCF motif, we indeed found

that the caQTL density is strongly correlated with the information content of each motif position

(Pearson r = 0.86; Figure 3C).

Since the shape of the DNA double helix is sequence-dependent, and can affect interactions with

TFs (Chiu et al., 2016), we then tested whether shared caQTL variants tend to cause larger changes

in DNA shape than non-caQTL variants matched for ATAC-seq read depth. We found small but sig-

nificant differences in how caQTLs impact DNA shape (Figure 3—figure supplement 1) suggesting

that DNA shape may contribute to variation in CA.

In sum, our analyses of the fine-mapped caQTLs support the idea that these are highly enriched

for causal variants, since non-causal SNPs in LD with causal variants would not be expected to dis-

rupt known motifs (Figure 3B) or critical motif positions (Figure 3C).

Chromatin accessibility impacts long-range chromosomal interactions
CTCF has a well-established role in mediating long-range interactions between chromosomal loci,

an essential component of transcriptional regulation (Guo et al., 2015; Sanborn et al., 2015;

Rao et al., 2014). Consistent with this role, we previously reported that bQTL alleles increasing

CTCF binding also increase these long-range interactions (Tehranchi et al., 2016). To test if caQTLs

also affect long-range interactions, we measured how often the more accessible allele had signifi-

cantly more long-range interactions (with loci > 20 kb away) (Rao et al., 2014) than the less accessi-

ble allele, and vice versa; we found a 2.5-fold enrichment of the more accessible allele having more

interactions (Figure 4A; binomial p<10�36), similar to the 2.2-fold bias of CTCF bQTLs

(Tehranchi et al., 2016). The allelic ratio increased slightly (to 2.7-fold) when restricted to interac-

tions > 100 kb apart. This enrichment was not observed for inter-chromosomal interactions (Fig-

ure 4—figure supplement 1), suggesting it is unlikely to be due to a nonspecific bias in the Hi-C

assay. These results establish a role for CA in polymorphic long-range chromosomal interactions of a

similar magnitude as CTCF.

Our previous work showed that in addition to CTCF bQTLs, bQTLs for five other TFs also affect

long-range chromosomal interactions, suggesting a possible role for many TFs in chromosomal archi-

tecture (Tehranchi et al., 2016); however, the underlying mechanism and causality has not been

investigated. We hypothesized that we could isolate the effects of TF binding and CA by separating

bQTLs into two groups: those that affect TF binding and CA, and those that affect TF binding but

not CA (Figure 4—figure supplement 2). Comparing the effects of these two groups on long-range

interactions could then shed light on whether TFs can shape chromosomal interactions independent

of CA, or if instead CA effects are essential for TFs to impact these interactions.

We found a strong and consistent effect on long-range interactions for bQTLs that affect accessi-

bility, in which the allele with increased TF binding is biased towards having more interactions

(Figure 4B left; binomial p<0.008 for each). In contrast, we found no significant effect for the bQTLs

that do not affect accessibility, for all six TFs (Figure 4B right; binomial p>0.08 for each). This sug-

gests that TF binding alone has no detectable association with long-range interactions; even for

Figure 3 continued

Figure supplement 1. Effect of shared caQTLs on DNA shape.

DOI: https://doi.org/10.7554/eLife.39595.014
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Figure 4. TF binding and chromatin accessibility. (A) Using allele-specific 3D chromosomal interaction (Hi-C) data from an LCL (Rao et al., 2014), we

found that open alleles of caQTLs tend to have more long-range interactions than do the closed alleles, establishing a role for CA in polymorphic

chromosomal interactions.(B) Splitting bQTLs into two groups (Figure 4—figure supplement 2), we found that bQTLs were strongly associated with

the extent of long-range interactions only when they also affect CA (left panel; ** indicates Bonferroni-corrected binomial p<0.008 for all six TFs); for

bQTLs that do not affect CA, no allelic bias was observed (right panel; Bonferroni-corrected binomial p>0.08 for all six TFs). (C) caQTLs are strongly

enriched for both local and distal eQTLs; however among those that do not affect long-range chromosomal interactions, only local eQTLs are enriched.

(D) Model summary: our results suggest that bQTLs generally cannot affect long-range chromosomal interactions without an effect on CA, and caQTLs

generally cannot affect distal transcription without an effect on long-range interactions. The model shown represents a plausible interpretation, but is

not the only possible causal scenario. Full results available in Figure 4—source data 1.

DOI: https://doi.org/10.7554/eLife.39595.016

The following source data and figure supplements are available for figure 4:

Source data 1. Fig 4A: Numbers going into Figure 4A, including additional distance cutoffs.

Figure 4 continued on next page
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CTCF, an effect on CA is also necessary. Together with additional evidence (See Supplemental

Note), we propose that CA is a key intermediary between TF binding and chromosomal interactions

(Figure 4D).

caQTLs that regulate distal genes alter the landscape of long-range
interactions
We then asked whether these polymorphic chromosomal interactions are involved in the regulation

of transcription by distal caQTLs (defined as a caQTL that is also an eQTL for a gene whose TSS

is >100 kb away). Enhancers can act through physical interactions with promoters, and genetic var-

iants can impact chromatin and transcription at distal loci with which they physically interact

(Waszak et al., 2015, Grubert et al., 2015, Tehranchi et al., 2016). However, whether these long-

range effects of SNPs depend on changes in the patterns of chromosomal interactions—as opposed

to being mediated by static interactions—has not been investigated.

To address this question, we controlled for the effect of changes in long-range interactions by

analyzing caQTLs with no measurable effect on these interactions (see Methods). If caQTL effects on

distal genes do not depend on changes in these interactions, then eQTL enrichment should not be

affected by controlling for them; if instead changes in these interactions are necessary for long-range

regulation, then we would expect to see a sharp reduction in eQTL enrichment when controlling for

them.

As expected, we found that overall caQTLs were strongly enriched for local eQTLs (TSS <10 kb

from the caQTL); restricting the analysis to caQTLs with no effect on interactions reduced the magni-

tude of this enrichment, but it was still highly significant in both cases (Figure 4C left; Fisher’s exact

p<10�300 for each enrichment), suggesting that changes in long-range interactions are not necessary

for caQTLs to affect transcription of nearby genes. caQTLs were also enriched for distal eQTLs

(p<10�70), but this enrichment was entirely lost when restricting the analysis to caQTLs with no

change in long-range interactions (Figure 4C right; p=0.20). This suggests that alterations in the pat-

terns of long-range chromosomal interactions are necessary for caQTLs to affect distal gene expres-

sion (Figure 4D), and therefore that these polymorphic interactions may be an important mechanism

by which eQTLs can act over vast genomic distances.

Fine-mapping GWAS associations with caQTLs
In addition to revealing insights into transcriptional regulation, caQTLs also provide a means to

explore genotype/phenotype associations by identifying likely causal variants and their molecular

mechanisms of action. To compare our fine-mapping approach with standard GWAS fine-mapping,

we asked whether our shared caQTLs were more likely to be assigned a high probability of being

causal for disease risk (Farh et al., 2015). We found that for several autoimmune diseases—the class

of disease most directly relevant to LCLs—shared caQTLs were highly enriched for likely causal var-

iants (e.g. for Crohn’s disease, mean causal probability for shared caQTLs was 2.4-fold higher than

for non-caQTLs, p=0.002; for ankylosing spondylitis, mean causal probability for shared caQTLs was

2.6-fold higher, p=0.001). However for most diseases, the number of overlaps between these two

data sets was too small to conduct a meaningful test. Together with other evidence of the efficacy

of our fine-mapping approach (Figure 2C), this suggests that our shared caQTLs are an effective

means of resolving likely causal cis-regulatory variants.

Figure 4 continued

DOI: https://doi.org/10.7554/eLife.39595.021

Figure supplement 1. Allelic bias of shared caQTLs for inter-chromosomal interactions.

DOI: https://doi.org/10.7554/eLife.39595.017

Figure supplement 2. Venn diagram indicating three possible combinations of caQTL/bQTL overlaps, and how we used these to infer their

downstream effects in Figure 4B.

DOI: https://doi.org/10.7554/eLife.39595.018

Figure supplement 3. Causal probabilities of SNPs affecting disease risk (Farh et al., 2015) for two examples discussed in the main text.

DOI: https://doi.org/10.7554/eLife.39595.019

Figure supplement 4. Likelihood of caQTLs from LCLs acting as eQTLs in other tissues.

DOI: https://doi.org/10.7554/eLife.39595.020
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We illustrate different types of insights with three examples from autoimmune diseases. In rare

cases, a lack of LD allows GWAS to implicate a single likely causal variant; this is the case for

rs4409785, which is associated with rheumatoid arthritis, multiple sclerosis, and vitiligo

(Sawcer et al., 2011; Jin et al., 2012, Okada et al., 2014), and was predicted to be the causal vari-

ant for vitiligo with 85% probability (Farh et al., 2015) (Figure 4—figure supplement 3). The SNP is

bound by CTCF in LCLs (ENCODE Project Consortium, 2012) and disrupts a CTCF motif; we found

that it is a caQTL in two European populations (FIN and TSI, p<3�10�6 in each; not tested in African

or ASW populations due to its low MAF), thus providing evidence of an effect on accessibility that is

likely mediated by CTCF.

In other cases, multiple SNPs in LD have conflicting evidence of causality. For example, rs479844

is a lead SNP associated with atopic dermatitis in Europeans, and although it was assigned a 90%

probability of being causal (Farh et al., 2015) (Figure 4—figure supplement 3), it has not replicated

in some populations (Lepre et al., 2013). A meta-analysis reported that when non-European ethnici-

ties are included, the only consistent association is for another nearby SNP, rs10791824

(Paternoster et al., 2015), which is in strong LD with rs479844 in Europeans (r2 = 0.92) but not in

our four African populations (r2 = 0.21). This variant is a strong caQTL in all six non-European popu-

lations (p<10�42 in each) and also significant in 2/4 European populations (p<5�10�4 in each), sup-

porting the trans-ethnic GWAS (Paternoster et al., 2015) implicating it as the likely causal variant.

In addition, the caQTL is an eQTL for OVOL1 (Lappalainen et al., 2013; Battle et al., 2017), a TF

involved in skin development, and has been found to affect transcription in a large-scale reporter

assay in LCLs (Tewhey et al., 2016).

The third and most frequent case is where many SNPs are in strong LD, and thus have almost

equally strong associations with a disease. For example, a large LD block of 62 variants on chromo-

some three is associated with multiple sclerosis, all of which have <5% probability of being causal

based on GWAS signal alone (Farh et al., 2015). However one of these, rs485789, is a caQTL shared

across 8/10 populations (p<2�10�5 in each). Interestingly, this was also predicted as a causal variant

by a sequence-based predictor of regulatory variants (Lee et al., 2015), and is an eQTL for IL12A

(Lappalainen et al., 2013), a cytokine implicated in several autoimmune diseases (Guo et al., 2016).

Therefore, rs485789 is a likely causal variant for multiple sclerosis that acts on IL12A via its effect on

CA.

More broadly, we found 5598 caQTLs that were also associated with disease risk or other com-

plex traits (GWAS p<5�10�8; Supplementary file 3). Although most GWAS loci include dozens of

potential causal variants in LD, there are only ~2.2 caQTLs per GWAS locus, providing a far smaller

credible set for targeted follow-up studies. Among these, 115 caQTLs were shared across all ten

populations, suggesting that many of these are likely to be causal for disease risk; we highlight ten

examples in Table 1. We note that although our caQTLs were measured in LCLs, the traits they are

associated with are related to a wide range of tissues. Consistent with this, we found that the regula-

tory effects of caQTLs are typically shared across most tissues, suggesting that their effects on CA

are broadly shared as well (Supplemental Note, Figure 4—figure supplement 4). Therefore, it

should not be surprising that these caQTLs can contribute to risk for diseases that have no clear con-

nection to LCLs.

Discussion
By applying pooled QTL mapping in 1000 cell lines from 10 diverse populations, we achieved

unprecedented power and resolution to fine-map cis-regulatory variants. The resulting collection of

over 100,000 caQTLs allowed us to refine our understanding of the sequence-level causes, as well as

the phenotypic consequences, of natural variation in chromatin accessibility.

More generally, our results show that molecular QTL mapping and trans-ethnic fine-mapping are

complementary in several respects. Molecular QTL mapping provides information about molecular

mechanisms and allelic effect direction, while including multiple populations allows for fine-mapping

of causal variants; combined, these can provide unprecedented insights into the genetic basis of

human variation. Moreover, since variation in molecular-level traits such as CA can be mapped to

over 105 QTLs, they provide tremendous opportunities for fine-mapping regulatory variants through-

out the genome, which can then inform follow-up studies for diseases or other traits where trans-eth-

nic fine-mapping may not be feasible (e.g. Table 1). We expect that future studies will greatly
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benefit from this combination, and that the ease of pooled QTL mapping will facilitate the adoption

of this integrated approach.

As a first step towards understanding how caQTLs impact phenotypes, we have explored their

effects on local and distal transcriptional regulation. This strategy is conceptually similar to experi-

ments involving genome editing of specific regulatory elements (Guo et al., 2015; Sanborn et al.,

2015), except that we are utilizing natural genetic variation as our source of perturbations; this

allows us to examine many more variants, though we are restricted to those that are not strongly

deleterious (since these are too rare for us to observe). Our results suggest that TF binding affects

long-range chromosomal interactions via its effect on CA, and that CA affects transcription of distal

genes via its effect on long-range chromosomal interactions (Figure 4). This latter inference is espe-

cially intriguing, since it suggests a molecular mechanism underlying distal eQTLs: variants alter

enhancer activities, which in turn alter the physical interactions of enhancers with distal genes. To

our knowledge, this represents the first evidence that variation in the landscape of chromosomal

interactions underlies long-range genetic effects on transcription.

There are several important limitations to our study. First, we have yet to map the majority of

human caQTL variants—for example those specific to other cell types, those that affect CA of distal

loci (in trans or long-range cis), or those involving rare variants or small effect sizes. Second, our

shared caQTLs should be regarded only as candidate causal variants to guide future experiments,

similar to other statistically fine-mapped associations. Third, our fine-mapping approach is distinct

from typical GWAS fine-mapping where many variants in a locus are genotyped in a large cohort;

our pooled approach can only map caQTLs that are covered by ATAC-seq reads. Within these

regions of open chromatin, our approach genotypes essentially all common variants, but variants

outside these regions are not covered. Despite this limitation, our increased efficiency resulted in

over 10-fold more caQTLs than previous studies (Degner et al., 2012; Kumasaka et al., 2016).

Fourth, like all forms of trans-ethnic fine-mapping, our method will only work when a variant is pres-

ent at an appreciable frequency, and affects the same trait, across multiple populations. And finally,

much work remains to understand how the caQTLs we have mapped affect human phenotypes.

Looking ahead, we expect that combining GWAS with pooled QTLs mapped in diverse popula-

tions and cell types will be an efficient and highly effective strategy for identifying causal variants

and their molecular mechanisms of action, two major bottlenecks in bridging the gap between

GWAS and disease etiologies.

Table 1. Ten candidate causal variants, shared as caQTLs across all 10 populations.

GWAS information is from the GRASP database (Eicher et al., 2015). See Supplementary file 3 for all caQTL/GWAS overlaps.

Chr caQTL position caQTL rsID GWAS rsID GWAS p-value GWAS trait Candidate gene

15 86018746 rs7161880 rs4281668 9.90E-09 Aggressive
prostate cancer

AKAP13

9 5097544 rs3780372 rs10974944 5.10E-32 Myeloproliferative
neoplasms

JAK2

12 111351439 rs11065769 rs10849917 3.21E-08 Coronary
artery disease

MYL2

2 68598955 rs17035378 rs17035378 8.00E-09 Celiac disease PLEK

6 167433948 rs6904946 rs2301436 1.00E-12 Crohn’s disease RNASET2

14 69273905 rs194749 rs194749 2.70E-10 Inflammatory
bowel disease

ZFP36L1

1 154359411 rs9651053 rs11265608 2.75E-08 Juvenile
idiopathic arthritis

IL6R

4 1731653 rs798764 rs798766 3.90E-13 Urinary
bladder cancer

FGFR3

13 40334852 rs9603612 rs9532434 4.52E-08 Juvenile
idiopathic arthritis

COG6

11 118560857 rs73001406 rs11216930 1.40E-09 Glioma PHLDB1

DOI: https://doi.org/10.7554/eLife.39595.022
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Materials and methods

Cell culture conditions
Lymphoblastoid cell lines (LCLs) from unrelated individuals were obtained from the Coriell Institute

(http://www.coriell.org). No authentication of cell line identity or mycoplasma contamination was

performed. The LCLs were grown in RPMI-GlutaMAX-HEPES media (Life Technologies, 72400) with

15% FBS, 100 I.U./mL penicillin, and 100 mg/mL streptomycin at 37˚C, 5% CO2.

ATAC-seq
We used a modified version of the ATAC-seq protocol (Buenrostro et al., 2015). Each individual

cell line was grown to a density of 6�8 � 105 cells/mL and 2 � 103 cells were collected and pooled

by population such that each individual was approximately equally represented in the pool. Sub-

pools were frozen in liquid nitrogen at �180˚C. After all 1000 individuals were collected, subpools

were combined by population and fresh media was added up to 15 ml, centrifuged at 1500 rpm for

10 min, and supernatant removed. The pellet was resuspended in 0.75 ml media with 200 units/mL

DNase and incubated in a ThermoMixer for 30 min at 37˚C at 300 rpm. 0.8 mL of Ficoll-paque Plus

(GE Cat #17-1440-03) was added to a 2 mL tube and the 0.75 mL cell suspension was carefully lay-

ered on top. Samples were centrifuged at 500x g for 20 min at room temperature with no brake.

The thin cloud of live cells in the middle layer were pipetted to a new tube, washed in 1 ml 1x PBS

buffer, and split into two tubes with 105 cells for replicates. Tubes were centrifuged at 500 � g for 5

min at 4˚C and supernatant was removed.

ATAC-seq was performed simultaneously on all 20 replicates. To each cell pellet, 100 ul of trans-

position mix was added (50 uL 2x TD Buffer (Illumina Cat #FC-121–1030), 5.0 uL Tn5 Transposase

(Illumina Cat #FC-121–1030), 42 uL nuclease-free water, 1 uL 10% Tween-20, 3 uL 1% Digitonin).

Samples were incubated in a ThermoMixer at 37˚C for 30 min @ 750 rpm, then purified using Qiagen

MinElute Kit with DNA eluted in 11 uL 10 mM Tris buffer, pH 8. Transposed DNA fragments were

amplified using PCR where total cycles were calculated using qPCR as described in

(Buenrostro et al., 2015). Amplified libraries were purified using Qiagen PCR Cleanup Kit and

eluted in 21 uL 10 mM Tris pH 8. An additional purification step was performed using a 1:1.2 ratio of

DNA:AMPure XP beads. Libraries were sequenced on an Illumina HiSeq 4000 (150 bp, paired-end

reads).

Mapping ATAC-seq reads
To remove adapters, reads were trimmed using cutadapt (Martin, 2011) with the following com-

mand: cutadapt -e 0.20 -a CTGTCTCTTATACACATCT -A CTGTCTCTTATACACATCT -m 5 -o fastq1-

out -p fastq2out fastq1 fastq2

Trimmed reads were mapped using a modified version of the WASP pipeline for controlling map-

ping bias (van de Geijn et al., 2015) with scripts find_intersecting_snps_2.py and filter_remapped_-

reads_2.py that can be found at: https://github.com/TheFraserLab/WASP/tree/atac-seq-analysis/

mapping. Briefly, for each read overlapping a SNP, we remapped hypothetical reads with the other

allele, and discarded any reads that do not map uniquely, to the same location, for both alleles.

Duplicate reads were filtered out for each replicate using https://github.com/eilon-s/bioinfo_scripts/

blob/master/rmdup.py.

Mapping and analyzing caQTLs
Pre- and post-ATAC allele frequencies, and the resulting p-values, were calculated using our pub-

lished pipeline (Tehranchi et al., 2016). This uses post-ATAC allele frequencies together with indi-

vidual sample genotypes to infer pre-ATAC allele frequencies.

To estimate pre-ATAC allele frequencies, the pre-ATAC pool could be sequenced; however this

suffers from two major drawbacks. First, although sequencing the pre-ATAC pool could yield accu-

rate pre-ATAC allele frequencies, it cannot account for genome-wide differences between samples

such as the total amount of open chromatin. If one sample has more open chromatin than another,

its alleles will be over-represented in the post-ATAC fraction. This will constitute a source of noise in

our analysis, since our goal is to map cis-acting variation affecting individual sites. Second, sequenc-

ing the pre-ATAC pool would require very deep sequencing to achieve accurate allele frequency
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estimates at each potential caQTL SNP, since the sequencing would not be restricted to SNPs in

open chromatin regions (as they are for the ATAC fraction).

Therefore, we previously developed an alternative which does not require any additional

sequencing, and does account for genome-wide differences between samples. Our regression-based

approach (Tehranchi et al., 2016) uses the post-ATAC frequencies together with genotypes of each

sample to infer the proportion of each sample in the pool. These proportions will be weighted by

any genome-wide differences, since these will be naturally incorporated into the post-ATAC frequen-

cies used as input to the regression. In this way, our pre-ATAC allele frequencies already account for

some types of trans-acting variation, increasing our power for mapping cis-acting differences.

In the regression, our goal is to estimate the pooling weights (i.e. fraction of each individual in

the pool, accounting for global trans-acting differences between samples). Using pi to denote the

proportion of the minor allele of SNP i in the pool:

pi ¼
X

n

j¼1

wjGij

where wj is the pooling weight of the j’th individual, and Gij is the genotype of the j’th individual

at the i’th SNP, coded as minor allele dosages (0, 0.5 or 1).

Estimation of weights
Assuming that most SNPs are not caQTLs, our post-ATAC frequencies can be considered as unbi-

ased estimates pi of pi for many SNPs (with the exception of any bias due to trans-acting variation

that we seek to eliminate, as explained above). Our goal is to estimate the weights. From the equa-

tion above, one strategy to estimate the weights is to use linear regression, and regress the esti-

mates onto the genotypes to obtain estimates of the weights w1; . . . ;wn. We used weighted linear

regression with weights proportional to the inverse square-root of the read depth, since allele fre-

quencies estimated from SNPs with more reads are likely to have less sampling error (however the

results are similar if non-weighted regression or logistic regression is used instead).

Note that this approach ignores the set of constraints on the pooling weights, namely:

0 � wj � 1 for all j and
P

wj ¼ 1. The former constraint is effectively not an issue, since in practice all

of the estimates are in the legitimate range. To handle the second constraint, we replace wn

by 1�
P

n�1

j¼1

wj. Rearranging we get:

E p̂i �Gin½ � ¼
X

n�1

j¼1

wj Gij �Gin

� �

So we can still use linear regression to estimate w1; . . . ;wn�1. This is done by regressing p̂i �Gin

onto Gi1 �Gin; . . . ;Gi;n�1 �Gin. The estimate of the missing weight is given by ŵn ¼ 1�P
n�1

j¼1

ŵj.

Inference of pre-ATAC allele frequencies
Given that the estimated weights are not too close to 0 or 1, the joint distribution of the estimates

of the weights follows approximately:

ŵ�n ~MVN w�n;Sð Þ,
where S is the covariance matrix (which is given by the regression) and w�n is the vector of

weights without the n’th coordinate. We estimate the pre-ATAC proportions as

p̂
pre
i ¼

X

n

j¼1

ŵjGij;

and the variance of the estimate is given by

V p̂
pre
ið Þ ¼ V

X

n

j¼1

ŵjGij

 !

¼ V
X

n�1

j¼1

ŵjGijþ 1�
X

n�1

j¼1

ŵj

 !

Gin

 !

¼
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X

n�1

j;k¼1

GijGikSjk þ
X

n�1

j;k¼1

G2

inSjk � 2

X

n�1

j;k¼1

GijGinSjk:

As a sanity check, note that in the hypothetical case when all the genotypes are identical, the vari-

ance of the pre-ATAC proportion is 0, and indeed when all the genotypes are the same, the pre-

ATAC proportion would be the same for any set of weights, so no uncertainty is introduced by not

knowing the weights.

Testing for difference between pre-ATAC and post-ATAC proportions
Having estimated the pre-ATAC and post-ATAC allele frequencies, our next goal is to identify signif-

icant differences while accounting for uncertainty in the pre-ATAC estimates. The binomial distribu-

tion is a natural choice for this, if its assumptions are met. To test whether the binomial distribution

is appropriate, we fit a negative binomial regression and observed that the estimated dispersion

parameter was very close to 1, hence the depth (after duplicate removal) follows a Poisson distribu-

tion, and the binomial distribution is appropriate (Golan and Rosset, 2013).

Conditional on the number of reads covering each SNP ni, we model the number of minor allele

reads mi as following a binomial distribution Bin pi; nið Þ. Under the null hypothesis of no change

between the pre-ATAC and post-ATAC pools we have pi ¼ p
pre
i .

One possibility is to standardize the pre- and post-ATAC proportion estimates and to apply a

Z-test. However, we found that this test results in an inflated rate of type-1 errors, since the normal

approximation is not always adequate for the post-ATAC reads, especially when ni or p
pre
i are small.

Instead, we compute the p-value directly using numerical integration. First, imagine that p
pre
i were

known. In that case, the p-value is given by:

pv p
pre
ið Þ ¼

P

ni

j¼0

ni
j

� �

p
pre
ið Þj 1� p

pre
ið Þni�j

l mi

ni
� j

ni

�

�

�

�

�

� � p
pre
i � mi

ni

�

�

�

�

�

�

n o

.

In other words, we sum the binomial probabilities for any possible number of reads that is as far

or further from the expected proportion under the null hypothesis. To make this more concrete, con-

sider the following toy example: the pre-ATAC proportion is 0.5, the read depth is 10, and we

observe 3 reads with the minor allele. The p-value is defined as the probability of observing a value

that is as likely or less likely than the actual observed value, under the null hypothesis. Here we

expect to see 5 reads with the minor allele. Since the alternative hypothesis is two-sided (we do not

know which allele will increase post-ATAC), being less likely means being further away from 5.

Hence, the p-value is calculated as the probability of observing 0, 1, 2, 3, 7, 8, 9 or 10 reads with the

minor allele, under the null hypothesis that the number of minor allele reads follows a

Bin n ¼ 10; p ¼ 0:5ð Þ distribution. However, p
pre
i is not known. One option is to plug in the

estimate p
pre
i , but this practice ignores the variance of the estimate, and will result in optimistic p-val-

ues. Instead, we integrate over all possible values of pv p
pre
ið Þ to get the actual p-value, thus factoring

in the variance of the estimate:

pv¼ 1

C

Z

1

0

1
ffiffiffiffiffiffiffiffiffi

2pvi
p e

� 1

2vi
p�p̂

pre

ið Þpv pð Þdp;

where:

C¼
Z

1

0

1
ffiffiffiffiffiffiffiffiffi

2pvi
p e

� 1

2vi
p�p̂

pre

ið Þdp

is a normalizing constant, meant to deal with cases where the tails of the normal distribution that

fall outside of the [0,1] are non-negligible (which could result in optimistic p-values), and vi ¼ V p̂
pre
ið Þ.

SNPs were considered testable in a population if they were covered by at least 20 ATAC-seq

reads and had minor allele frequency >0.01 in that population. No peak calling was performed; each

SNP was tested for allelic bias using only the reads overlapping it, since these reads are the only

ones that give information about its allelic bias (Tehranchi et al., 2016). Genotypes were down-

loaded from the 1000 Genomes Project. Scripts and documentation can be found at: https://github.

com/tehranchi/public.
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Directionality and enrichment tests were performed as described in Tehranchi et al., 2016. Num-

bers underlying specific analyses are reported in source data files provided for all figures.

Fisher’s combined probability test
Shared caQTLs were calculated using Fisher’s combined probability test, where pi is the caQTL

p-value for population i. Any SNP not tested in population i was assigned pi = 1.

X2

2k ¼�2

X

k

i¼1

ln pið Þ

Motif analysis
We used HOMER (Heinz et al., 2010) to search for motifs that were differentially enriched among

the high-CA alleles compared to the low-CA alleles in our shared caQTLs. The caQTL plus 15 bp on

each side (31 bp total) was used as input to HOMER, with the less accessible alleles of the same

caQTLs used as the background comparison set. Therefore all significant enrichments are due to

caQTL variants within the motifs themselves (since any motifs flanking the caQTLs would be present

in both comparison sets). We ran the findMotifs.pl script from the HOMER package where the tar-

getSequences.fa file contained the high-CA alleles and the background.fa file contained the low-CA

alleles, and then repeated the analysis with the two files swapped: findMotifs.pl <targetSequences.

fa> fasta < output directory> -fasta <background.fa>

Long-range interaction analysis
To obtain Figure 4A–B, we restricted the analysis to shared caQTLs (Fisher’s combined p<5�10�6)

with consistent directionality in a majority of the populations tested, and counted the number of

Hi-C reads connecting each caQTL allele with any distal locus (>20 kb or >100 kb away). In order to

use only allele-specific Hi-C reads, we restricted the analysis to read pairs where at least one read

overlaps a heterozygous variant in the GM12878 cell line (as described in Rao et al., 2014). We then

determined the number of caQTLs where the more accessible allele had significantly more Hi-C con-

tacts (using a binomial test of allele-specific read counts), compared to the number where the less

accessible allele was more interactive. See Figure 4—source data 1 for detailed results.

For Figure 4C we first obtained two subsets of eQTLs (Lappalainen et al., 2013): those that are

proximal to their target TSSs (<10 kb) and those that are distal (>100 kb). Next, we calculated the

enrichments of these proximal and distal subsets among shared caQTLs. To obtain the p-values in

Figure 4C, we used Fisher’s exact test to compare the significance of these enrichments with the

respective enrichments of proximal and distal eQTLs among non-caQTLs (Fisher’s combined p>0.5).

We repeated this analysis on the subsets of caQTLs and non-caQTLs in regions without significant

allelic bias (binomial p>0.5) in the number of reads supporting long range (>100 kb) interactions,

requiring each SNP to have at least 100 reads supporting long-range interactions in order to be con-

fident in the lack of strong allelic bias. The non-significant (p=0.20) enrichment in Figure 4C is based

on a relatively large number of SNPs (1680 caQTLs with no effect on interactions, and 5719 non-

caQTLs with no effect on interactions)—the same background set as used for the significant

(p<10�70) enrichment in the same figure—suggesting that a small sample size is not driving the lack

of significant enrichment. See Figure 4—source data 1 for further details of this analysis.

GWAS overlaps
We used all reported GWAS associations at p<5�10�8 from the GRASP database (28), excluding

those for gene expression levels (eQTLs). In order to include cases where the reported SNP is not

the causal variant, we expanded the GWAS list to include any variants in strong LD with GWAS hits

(r2 >0.8 in the CEU population; CEU is similar to the European cohorts in which nearly all of the

GWAS were conducted). We then intersected this LD-expanded list with our caQTLs

(Supplementary file 3). Because most GWAS hits are in strong LD with other variants, many of the

caQTLs that overlap GWAS hits may not be causal SNPs for the GWAS trait; we cannot apply pub-

lished co-localization methods to quantify this, since these require association data across an entire

locus or LD block for comparison, and our pooled approach is limited to SNPs covered by the

ATAC-seq reads.
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IDR analysis
For IDR calculation, we used parameters similar to the ENCODE project (mu = 0.1, sigma = 1.0,

rho = 0.2, p=0.5, eps = 10�6, max.ite = 3000). Since IDR does not allow tied p-values, we broke ties

by adding a small random number (normally distributed with zero mean and standard deviation

10�17).

Controlling for ATAC-seq read density
In Figure 3A we present the chromatin states of caQTLs compared to the genome as a whole. Much

of the difference is driven by ATAC-seq read density; that is we would see strong enrichments for

TSS and enhancers in any ATAC-seq experiment. To ask the more specific question of where caQTLs

are enriched or depleted after controlling for read density, we selected non-caQTL variants matched

for the number of reads to each shared caQTL, and then quantified the difference in chromatin state

enrichments for shared caQTLs vs read-matched non-caQTLs. Details of read-matching are given in

the ’Effects of caQTLs on DNA shape’ section below.

Effects of caQTLs on DNA shape
Since the shape of the DNA double helix is sequence-dependent, and can affect interactions with

TFs (Chiu et al., 2016), we tested whether shared caQTL variants tend to cause larger changes in

DNA shape than non-caQTLs. To compare caQTLs vs non-caQTLs, we defined a non-caQTL as a var-

iant with caQTL p=1 and at least 20 ATAC-seq reads. We first computed the total read depth for

each shared caQTL and non-caQTL across all populations. We then created a read-matched set of

shared caQTLs and non-caQTLs in the following way: For each shared caQTL, we identified a unique

non-caQTL where | log2(shared caQTL reads) - log2(non-caQTL reads) |<0.5. If no such non-caQTL

existed, we eliminated the shared caQTL. We were able to find unique read-matched non-caQTLs

for 11,416 of the shared caQTLs.

After identifying read-matched shared caQTLs and non-caQTLs, we used BEDTools version 2.26.0

(Quinlan and Hall, 2010) to extract the genome sequence at each variant ±5 bp. For each shared

caQTL, we created four sequences – one with the open allele ±5 bp, one with the closed allele ±5

bp, one with the read-matched non-caQTL reference allele ±5 bp, and one with the read-matched

non-caQTL alternate allele ±5 bp. We then used DNAshapeR version 1.0.2 (Chiu et al., 2016) to esti-

mate the minor groove width (MGW), propeller twist (ProT), Roll, and helix twist (HelT) for each of

the sequences for each shared caQTL. We computed the difference in each shape parameter

between the sequences for the open and closed caQTL alleles as well as between alleles for the

read-matched non-caQTLs, where the ‘open’ and ‘closed’ alleles were randomly selected. To com-

pute whether the shared caQTLs have a stronger association with DNA shape than the read-

matched non-caQTLs, we used the Wilcoxon rank-sum test to compare the two difference distribu-

tions at the position of the variant. Since Roll and HelT shapes are computed in groups of two

nucleotides, we concatenated the difference distributions for the two windows of 2 bp that overlap

the variant. We multiplied each p-value by four as a Bonferroni correction.

Supplementary Text
Assessing caQTL reproducibility with IDR
A standard approach for estimating an FDR in association studies is to randomize the data,

for example randomly pairing one sample’s genotypes with another sample’s ATAC-seq data, and

then recalculate the associations to gauge the extent of false positives. Since our approach does not

have separate data for each individual, such randomization is not possible, and thus we cannot esti-

mate an FDR for our caQTLs using standard approaches. However, we can apply a related method

known as the irreproducible discovery rate (IDR), developed as part of the ENCODE project

(Li et al., 2011; ENCODE Project Consortium, 2012) to assess the statistical reproducibility of our

caQTL p-values. To measure this, we calculated caQTL p-values separately for each biological repli-

cate of two populations, ASW and CEU. The IDR estimates the fraction of data points that are not

reproducible at any given p-value cutoff. For a range of potential cutoffs, we observed a similar

trend in both populations: at p=5�10�3 we observed IDR » 0.03, and p=5�10�4 corresponds to

IDR » 0.01 (dashed red line in Figure 1—figure supplement 3). These numbers are consistent with
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other results suggesting a low FDR among our caQTLs, such as their ~ 97–99% agreement with

dsQTL and bQTL directionality (Figure 1E–F).

Comparison to non-pooled chromatin accessibility studies
In our comparison with RASQUAL caQTLs (Kumasaka et al., 2016), we first sought to identify a

matched significance cutoff. Among their 2707 caQTLs (FDR = 10%), 3.5% were previously identified

as dsQTLs (Degner et al., 2012) (the most closely matched type of QTL available for comparison).

This 3.5% overlap between two previous studies of chromatin accessibility QTLs may seem low, but

likely results from differences in experimental methods (ATAC-seq vs DNase-seq), analysis methods,

and populations, as well as incomplete power. In CEU, our population most closely matched to the

British (GBR) population used for RASQUAL, we found that our top 7587 caQTLs (p<3�10�6)

yielded the same overlap of 3.5% dsQTLs. Our approach does not involve calling CA peaks, but in a

separate analysis we estimated that <20% of our caQTLs fall into the same peak as another caQTL,

so removing these would not have a major effect on the results.

In addition to the RASQUAL comparison, we also compared our caQTLs to variants associated

with allelic imbalance of chromatin accessibility (Maurano et al., 2015). In that study, 493 samples

from 166 individuals were profiled with a total of 2.6 � 1010 DNase-seq reads. At the most stringent

cutoff (FDR = 0), they called 2420 imbalanced SNPs, 2.1% of which were also dsQTLs. Comparing

this to our study, our top 16,990 CEU caQTLs (p<3.5�10�4) had the same 2.1% enrichment. There-

fore we mapped 7-fold more caQTLs from 246-fold fewer libraries and 443-fold fewer reads, though

their inclusion of diverse tissues likely decreased the overlap with dsQTLs from LCLs.

We note that dsQTLs are not the only possible benchmark we could use to select caQTL lists of

equal quality across studies. When using CTCF bQTLs (Ding et al., 2014) instead, our estimated

improvement in cost per QTL was even greater than when using dsQTLs, due to the high enrichment

of CTCF bQTLs in our data (~190 fold in our CEU caQTLs [Figure 1—figure supplement 5], com-

pared to ~7 fold in RASQUAL caQTLs (Kumasaka et al., 2016) and 4.5-fold in the imbalanced

DNase-seq SNPs (Maurano et al., 2015).

Comparing selection against caQTLs and nonsynonymous variants
If this depletion of caQTLs near TSSs (Figure 3A) is due to selection against deleterious effects of

these caQTLs, then we can compare this with human Ka/Ks ratios, which reflect the depletion of non-

synonymous changes in protein-coding regions. Across all human genes, Ka/Ks since divergence

with chimpanzee was estimated as 0.208 (Chimpanzee Sequencing and Analysis Consortium,

2005), implying ~4.8 fold depletion for nonsynonymous changes. Therefore we observed 8.7/

4.8 = 1.81 fold (i.e. 81%) greater depletion for the caQTLs. This comparison is only an approxima-

tion, since it ignores effects of positive selection, as well as the possibility that caQTLs are depleted

near TSSs for reasons other than selection (e.g. CA having greater robustness to mutations near

TSSs). We also note that if there is any negative selection against TSS-proximal SNPs that are not

caQTLs then the 1.81-fold difference will be an underestimate.

Causality of joint bQTLs/caQTLs affecting long-range chromosomal
interactions
In addition to CTCF, we previously reported an association between long-range chromosomal inter-

actions and binding of five additional TFs in LCLs (Tehranchi et al., 2016). However, in that work we

did not explore the mechanism by which this occurs or the direction of causality: it could be that TF

binding impacts long-range interactions, though other causal scenarios are also possible. For exam-

ple, joint bQTLs/caQTLs could be cases where a variant first affects TF binding and then CA as a

result; or the variant’s direct effect could be on CA, which then changes the local landscape of TF

binding; or there may be independent effects on TF binding and CA that are not causally linked

(either via two distinct causal variants in linkage disequilibrium, or one variant with independent

effects on TF binding and CA). In general, the strong enrichment for overlap between caQTLs and

bQTLs suggests that causal independence is rare at these joint QTLs, since under such a model one

would not expect to see either strong enrichment for overlap, or the nearly perfect concordance in

directionality that we observed (~98–99%). In most cases we cannot distinguish between the first

two scenarios, that is whether the TF binding or CA effect ‘comes first’; however in cases where a
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joint bQTL/caQTL disrupts a known TF binding motif, then we can infer that its primary effect is likely

to be on TF binding to DNA, and thus any other effects—on CA or other traits—are likely to be

downstream consequences of this.

We used this logic to ask whether TF binding affects long-range chromosomal interactions, by

restricting our test for long-range interactions only to those caQTLs that disrupt a known TF binding

motif and are present within a DNase hypersensitive footprint indicative of TF binding

(Degner et al., 2012; Maurano et al., 2015); these caQTLs are most likely caused by the SNP’s

direct effect on TF binding having a subsequent effect on CA. For these caQTLs, we observed a sta-

tistically indistinguishable enrichment for the more accessible allele having more interactions (63/

24 = 2.6 fold), indicating that disruptions of TF binding lead to changes in both CA and long-range

chromosomal interactions. We therefore show TF binding upstream of CA in Figure 4D, though the

reverse causality could also occur in some cases.

We could not test the possibility that some other variants may have a primary effect on CA and

secondary effects on TF binding, since we cannot determine which caQTLs are not bQTLs for any

TF, given the limited amount of bQTL information available (Figure 4—figure supplement 2).

Regulatory effects of caQTLs across tissues
To explore the effects of caQTLs on gene expression across tissues, we intersected our caQTLs with

eQTLs mapped in a meta-analysis across 44 tissues/cell types (Battle et al., 2017). Each eQTL was

assigned a posterior probability of being active in each tissue, and following the GTEx authors, we

required p>0.9 (i.e. 90% probability) to call an eQTL as likely active in a given tissue. Overall, the

median number of tissues per eQTL was 19 out of 44. In contrast, among 2833 caQTLs that were

also eQTLs, the median number of active tissues was 25/44 (Wilcoxon p=4�10�21). This implies that

the underlying caQTL effects are probably shared across most tissues as well, with 25/44 being a

likely underestimate of the extent of tissue sharing, since caQTLs present in a tissue do not necessar-

ily act as eQTLs (as we have seen for LCLs).

We then asked in what tissues/cell types were our caQTLs most likely to affect gene expression.

To measure this, we calculated the ratio of [fraction of joint eQTL and caQTL with posterior p>0.9 in

tissue X] / [fraction of all eQTLs with posterior p>0.9 in tissue X]; values greater than one indicate

that the joint eQTL and caQTLs are more likely to affect expression in tissue X than are eQTLs overall

(this accounts for differences in numbers of eQTLs per tissue, which is largely driven by sample sizes).

All 44 tissues had values > 1.06, with two clear outliers, LCLs and whole blood, having the highest

chance of caQTLs affecting expression (Figure 4—figure supplement 4); this is not surprising

because LCLs were used in our study and whole blood is the most similar tissue to LCLs in this data-

set. At the other extreme, the ten sampled brain regions and testes had the 11 lowest ratios, indicat-

ing that caQTLs active in LCLs are slightly less likely to affect gene expression in these tissues.

caQTLs in one cell type can underlie eQTLs specific to other cell types/
conditions
Our multi-tissue analysis above (Figure 4—figure supplement 4) suggested that caQTLs from LCLs

can be informative about transcriptional regulation in other cell types. We hypothesized that even in

cases where a caQTL is not an eQTL in LCLs, if the effect on CA is preserved across other cell types

or conditions, then a change in the expression of a trans-acting factor could cause a constitutive

caQTL to be a condition-specific eQTL. Indeed, in our multi-tissue analysis, we observed 200 caQTLs

that had a posterior p<0.1 of being an eQTL in LCLs, but nevertheless were called as likely eQTLs

(p>0.9) in an average of 11.4 other tissues. We have also come across several examples of this out-

side of the GTEx data, and highlight two of these below.

A previous study identified a SNP, rs9806699, that acts as an eQTL for GATM in LCLs only after

exposure to the statin drug simvastatin (Mangravite et al., 2013). This SNP was also associated with

statin-induced myopathy in two cohorts, though the molecular mechanism underlying this condition-

specific eQTL was not investigated. We found that this same SNP is also a caQTL in the GWD popu-

lation (p=6.3�10�5), which may underlie its statin-dependent transcriptional response.

Another example is a caQTL that is one of five linked variants associated with rheumatoid arthri-

tis, all in strong LD (r2 >0.95) and with similar GWAS p-values (1.3 � 10�7 < p<3.1�10�7) that pre-

clude fine-mapping (Farh et al., 2015). The caQTL is in a ‘super-enhancer’ (long enhancers bound
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by many TFs) 6 kb upstream of LBH, a regulator of synoviocyte proliferation (Ekwall et al., 2015).

This same variant was recently shown to causally affect LBH transcription in fibroblast-like synovio-

cytes (Hammaker et al., 2016), with the less accessible allele associated with reduced expression (as

well as higher RA risk). This variant has not been found as an eQTL for LBH in LCLs (Battle et al.,

2017; Lappalainen et al., 2013).

These two examples illustrate how caQTLs mapped in one cell type/condition can have transcrip-

tional effects that are specific to other cell types/conditions.

Acknowledgements
We would like to thank members of the Fraser lab, J Pritchard, and W Greenleaf for helpful advice,

and M Simon for sharing lab space. This work was supported by NIH grant 2R01GM097171-05A1.

Additional information

Funding

Funder Grant reference number Author

National Institute of General
Medical Sciences

2R01GM097171-05A1 Hunter B Fraser

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Ashley Tehranchi, Formal analysis, Writing—review and editing, Experiments; Brian Hie, Michael

Dacre, Irene Kaplow, Kade Pettie, Peter Combs, Formal analysis, Writing—review and editing;

Hunter B Fraser, Conceptualization, Formal analysis, Supervision, Funding acquisition, Writing—orig-

inal draft, Writing—review and editing

Author ORCIDs

Michael Dacre http://orcid.org/0000-0002-5561-1656

Peter Combs https://orcid.org/0000-0003-2835-5623

Hunter B Fraser https://orcid.org/0000-0001-8400-8541

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.39595.032

Author response https://doi.org/10.7554/eLife.39595.033

Additional files
Supplementary files
. Supplementary file 1. All cell lines used, and all caQTLs at a nominal p<5�10�4. The numbers of

caQTLs are greater than those shown in Figure 1B, since for Figure 1B and the associated text we

removed those in LD (r2 >0.8 in YRI).

DOI: https://doi.org/10.7554/eLife.39595.023

. Supplementary file 2. Shared caQTLs at a Fisher’s combined p<5�10�6.

DOI: https://doi.org/10.7554/eLife.39595.024

. Supplementary file 3. All caQTL/GWAS overlaps. Rows where the GWAS rsID is the same as the

caQTL rsID indicate that the GWAS variant was itself a caQTL; rows where they do not match indi-

cate the two variants are in LD (r2 >0.8 in CEU). caQTLs with p<0.005 were included.

DOI: https://doi.org/10.7554/eLife.39595.025

. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.39595.026

Tehranchi et al. eLife 2019;8:e39595. DOI: https://doi.org/10.7554/eLife.39595 20 of 24

Research Communication Chromosomes and Gene Expression Genetics and Genomics

http://orcid.org/0000-0002-5561-1656
https://orcid.org/0000-0003-2835-5623
https://orcid.org/0000-0001-8400-8541
https://doi.org/10.7554/eLife.39595.032
https://doi.org/10.7554/eLife.39595.033
https://doi.org/10.7554/eLife.39595.023
https://doi.org/10.7554/eLife.39595.024
https://doi.org/10.7554/eLife.39595.025
https://doi.org/10.7554/eLife.39595.026
https://doi.org/10.7554/eLife.39595


Data availability

All ATAC-seq reads are available at NCBI SRA, project ID PRJNA383900. All genome sequence data

are available at http://www.internationalgenome.org.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Ashley Tehranchi 2018 ATAC-seq in 10 populations https://www.ncbi.nlm.
nih.gov/sra/?term=
PRJNA383900

Sequence Read
Archive,
PRJNA383900

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

1000 Genomes Pro-
ject

2015 Genome sequence data from the
1000 Genomes Project

ftp://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/re-
lease/20130502/

1000 Genomes
Project, 20130502

References
Asimit JL, Hatzikotoulas K, McCarthy M, Morris AP, Zeggini E. 2016. Trans-ethnic study design approaches for
fine-mapping. European Journal of Human Genetics 24:1330–1336. DOI: https://doi.org/10.1038/ejhg.2016.1,
PMID: 26839038

Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA,
Abecasis GR, 1000 Genomes Project Consortium. 2015. A global reference for human genetic variation. Nature
526:68–74. DOI: https://doi.org/10.1038/nature15393, PMID: 26432245

Banovich NE, Lan X, McVicker G, van de Geijn B, Degner JF, Blischak JD, Roux J, Pritchard JK, Gilad Y. 2014.
Methylation QTLs are associated with coordinated changes in transcription factor binding, histone
modifications, and gene expression levels. PLOS Genetics 10:e1004663. DOI: https://doi.org/10.1371/journal.
pgen.1004663, PMID: 25233095

Battle A, Brown CD, Engelhardt BE, Montgomery SB, GTEx Consortium, Laboratory, Data Analysis
&Coordinating Center (LDACC)—Analysis Working Group, Statistical Methods groups—Analysis Working
Group, Enhancing GTEx (eGTEx) groups, NIH Common Fund, NIH/NCI, NIH/NHGRI, NIH/NIMH, NIH/NIDA,
Biospecimen Collection Source Site—NDRI, Biospecimen Collection Source Site—RPCI, Biospecimen Core
Resource—VARI, Brain Bank Repository—University of Miami Brain Endowment Bank, Leidos Biomedical—
Project Management, ELSI Study, Genome Browser Data Integration &Visualization—EBI, Genome Browser
Data Integration &Visualization—UCSC Genomics Institute, University of California Santa Cruz, Lead analysts:,
Laboratory, Data Analysis &Coordinating Center (LDACC), NIH program management, Biospecimen collection,
Pathology:, eQTL manuscript working group. 2017. Genetic effects on gene expression across human tissues.
Nature 550:204–213. DOI: https://doi.org/10.1038/nature24277, PMID: 29022597

Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. 2015. ATAC-seq: a method for assaying chromatin accessibility
Genome-Wide. Current Protocols in Molecular Biology 109:1–9. DOI: https://doi.org/10.1002/0471142727.
mb2129s109

Chimpanzee Sequencing and Analysis Consortium. 2005. Initial sequence of the chimpanzee genome and
comparison with the human genome. Nature 437:69–87. DOI: https://doi.org/10.1038/nature04072,
PMID: 16136131

Chiu TP, Comoglio F, Zhou T, Yang L, Paro R, Rohs R. 2016. DNAshapeR: an R/Bioconductor package for DNA
shape prediction and feature encoding. Bioinformatics 32:1211–1213. DOI: https://doi.org/10.1093/
bioinformatics/btv735, PMID: 26668005

Degner JF, Pai AA, Pique-Regi R, Veyrieras JB, Gaffney DJ, Pickrell JK, De Leon S, Michelini K, Lewellen N,
Crawford GE, Stephens M, Gilad Y, Pritchard JK. 2012. DNase I sensitivity QTLs are a major determinant of
human expression variation. Nature 482:390–394. DOI: https://doi.org/10.1038/nature10808, PMID: 22307276

Ding Z, Ni Y, Timmer SW, Lee BK, Battenhouse A, Louzada S, Yang F, Dunham I, Crawford GE, Lieb JD, Durbin
R, Iyer VR, Birney E. 2014. Quantitative genetics of CTCF binding reveal local sequence effects and different
modes of X-chromosome association. PLOS Genetics 10:e1004798. DOI: https://doi.org/10.1371/journal.pgen.
1004798, PMID: 25411781

Eicher JD, Landowski C, Stackhouse B, Sloan A, Chen W, Jensen N, Lien JP, Leslie R, Johnson AD. 2015. GRASP
v2.0: an update on the Genome-Wide Repository of Associations between SNPs and phenotypes. Nucleic
Acids Research 43:D799–D804. DOI: https://doi.org/10.1093/nar/gku1202, PMID: 25428361

Ekwall AK, Whitaker JW, Hammaker D, Bugbee WD, Wang W, Firestein GS. 2015. The Rheumatoid Arthritis Risk
Gene LBH Regulates Growth in Fibroblast-like Synoviocytes. Arthritis & Rheumatology 67:1193–1202.
DOI: https://doi.org/10.1002/art.39060, PMID: 25707478

Tehranchi et al. eLife 2019;8:e39595. DOI: https://doi.org/10.7554/eLife.39595 21 of 24

Research Communication Chromosomes and Gene Expression Genetics and Genomics

http://www.internationalgenome.org
https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA383900
https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA383900
https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA383900
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://doi.org/10.1038/ejhg.2016.1
http://www.ncbi.nlm.nih.gov/pubmed/26839038
https://doi.org/10.1038/nature15393
http://www.ncbi.nlm.nih.gov/pubmed/26432245
https://doi.org/10.1371/journal.pgen.1004663
https://doi.org/10.1371/journal.pgen.1004663
http://www.ncbi.nlm.nih.gov/pubmed/25233095
https://doi.org/10.1038/nature24277
http://www.ncbi.nlm.nih.gov/pubmed/29022597
https://doi.org/10.1002/0471142727.mb2129s109
https://doi.org/10.1002/0471142727.mb2129s109
https://doi.org/10.1038/nature04072
http://www.ncbi.nlm.nih.gov/pubmed/16136131
https://doi.org/10.1093/bioinformatics/btv735
https://doi.org/10.1093/bioinformatics/btv735
http://www.ncbi.nlm.nih.gov/pubmed/26668005
https://doi.org/10.1038/nature10808
http://www.ncbi.nlm.nih.gov/pubmed/22307276
https://doi.org/10.1371/journal.pgen.1004798
https://doi.org/10.1371/journal.pgen.1004798
http://www.ncbi.nlm.nih.gov/pubmed/25411781
https://doi.org/10.1093/nar/gku1202
http://www.ncbi.nlm.nih.gov/pubmed/25428361
https://doi.org/10.1002/art.39060
http://www.ncbi.nlm.nih.gov/pubmed/25707478
https://doi.org/10.7554/eLife.39595


ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA elements in the human genome.
Nature 489:57–74. DOI: https://doi.org/10.1038/nature11247, PMID: 22955616

Ernst J, Kellis M. 2012. ChromHMM: automating chromatin-state discovery and characterization. Nature
Methods 9:215–216. DOI: https://doi.org/10.1038/nmeth.1906, PMID: 22373907

Farh KK, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S, Shoresh N, Whitton H, Ryan RJ, Shishkin AA,
Hatan M, Carrasco-Alfonso MJ, Mayer D, Luckey CJ, Patsopoulos NA, De Jager PL, Kuchroo VK, Epstein CB,
Daly MJ, Hafler DA, et al. 2015. Genetic and epigenetic fine mapping of causal autoimmune disease variants.
Nature 518:337–343. DOI: https://doi.org/10.1038/nature13835, PMID: 25363779

Fraser HB, Lam LL, Neumann SM, Kobor MS. 2012. Population-specificity of human DNA methylation. Genome
Biology 13:R8. DOI: https://doi.org/10.1186/gb-2012-13-2-r8, PMID: 22322129

Fraser HB, Xie X. 2009. Common polymorphic transcript variation in human disease. Genome Research 19:567–
575. DOI: https://doi.org/10.1101/gr.083477.108, PMID: 19189928

Gate RE, Cheng CS, Aiden AP, Siba A, Tabaka M, Lituiev D, Machol I, Gordon MG, Subramaniam M, Shamim M,
Hougen KL, Wortman I, Huang SC, Durand NC, Feng T, De Jager PL, Chang HY, Aiden EL, Benoist C, Beer
MA, et al. 2018. Genetic determinants of co-accessible chromatin regions in activated T cells across humans.
Nature Genetics 50:1140–1150. DOI: https://doi.org/10.1038/s41588-018-0156-2, PMID: 29988122

Golan D, Rosset S. 2013. Statistical modeling of coverage in high-throughput data. Methods in Molecular Biology
1038:61–79. DOI: https://doi.org/10.1007/978-1-62703-514-9_4, PMID: 23872969

Grubert F, Zaugg JB, Kasowski M, Ursu O, Spacek DV, Martin AR, Greenside P, Srivas R, Phanstiel DH, Pekowska
A, Heidari N, Euskirchen G, Huber W, Pritchard JK, Bustamante CD, Steinmetz LM, Kundaje A, Snyder M. 2015.
Genetic control of chromatin states in humans involves local and distal chromosomal interactions. Cell 162:
1051–1065. DOI: https://doi.org/10.1016/j.cell.2015.07.048

Guo Y, Xu Q, Canzio D, Shou J, Li J, Gorkin DU, Jung I, Wu H, Zhai Y, Tang Y, Lu Y, Wu Y, Jia Z, Li W, Zhang
MQ, Ren B, Krainer AR, Maniatis T, Wu Q. 2015. CRISPR Inversion of CTCF sites alters genome topology and
enhancer/promoter function. Cell 162:900–910. DOI: https://doi.org/10.1016/j.cell.2015.07.038,
PMID: 26276636

Guo CC, Wang M, Cao FD, Huang WH, Xiao D, Ye XG, Ou ML, Zhang N, Zhang BH, Liu Y, Yang G, Jing CX.
2016. Meta-analysis on associations of rgs1 and il12a polymorphisms with celiac disease risk. International
Journal of Molecular Sciences 17:457. DOI: https://doi.org/10.3390/ijms17040457, PMID: 27043536
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