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Glioma, characterized by infiltrative growth and treatment resistance, is regarded as the most
prevalent intracranial malignant tumor. Due to its poor prognosis, accumulating investigation
has been performed for improvement of overall survival (OS) and progression-free survival
(PFS) in glioma patients. Valproic acid (VPA), one of the most common histone deacetylase
inhibitors (HDACIs), has been detected to directly or synergistically exert inhibitory effects on
glioma in vitro and in vivo. In this review, we generalize the latest advances of VPA in treating
glioma and its underlying mechanisms and clinical implications, providing a clearer profile for
clinical application of VPA as a therapeutic agent for glioma.
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1 INTRODUCTION

Glioma, originating from the neuroglial stem or progenitor cells, is the most prevalent and
aggressive primary intracranial tumor (1, 2). Clinically, the standard therapy for glioma patients
includes surgical intervention and adjuvant radiotherapy and chemotherapy (3). However, owing to
its infiltrative growth and resistance to comprehensive treatment, the mortality and recurrence rate
of glioma patients are still high, leading to poor prognosis (4). Therefore, it is crucial to summarize
latest advances in glioma treatment and grope for promising investigational directions.

Valproic acid (VPA), one of the most common histone deacetylase inhibitors (HDACIs), is known
as an anticonvulsant and mood-stabilizing drug clinically (5). Gathering evidence have manifested that
VPA directly or synergistically exerted anti-tumor effects on various solid tumors (6, 7). For instance,
VPA suppressed gastric cancer cell proliferation and induced autophagy through HDAC1/PTEN/Akt
signaling (8). Similarly in breast cancer, the inhibitory role of VPA is mainly reflected in cellular
Abbreviations: VPA, valproic acid; OS, overall survival; PFS, progression-free survival; HDACIs, histone deacetylase
inhibitors; GSCs, glioma stem cells; EMT, epithelial–mesenchymal transition; MMPs, matrix metalloproteinases; AIF,
apoptosis-inducing factor; PARP, poly ADP-ribose polymerase; EM, electron microscopy; VEGF, vascular endothelial
growth factor; HDAC, histone deacetylase; MT1, melatonin 1; MeCP2, methyl CpG binding protein 2; H3, histone 3;
BDNF, brain-derived neurotrophic factor; GDNF, glial cell line-derived neurotrophic factor; TMZ, temozolomide; MGMT,
O6-methylguanine-DNA methyltransferase; EGFR, epidermal growth factor receptor; LC3-II, light chain 3-II; LKB1, liver
kinase-B1; AMPK, AMP-activated protein kinase; ICIs, immune checkpoint inhibitors; EHV-1, equine herpesvirus type 1;
DNMTi, DNA-methyltransferase inhibitors; HSV-TK, herpes simplex virus type I thymidine kinase; DIPG, diffuse intrinsic
pontine glioma; AED, anti-epilepsy drug; BTE, brain tumor-related epilepsy; FGR, fluorescence-guided resection;
AR, amphiregulin.
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proliferation, cell cycle, and apoptosis via Hsp70 acetylation (9),
while in most cancers, VPA tended to serve as an adjuvant drug for
chemotherapy, radiotherapy, and other therapies. In lung cancer,
VPA and arsenic trioxide markedly potentiated cell death in vitro
and in vivo (10). VPA also modulated invasion capability targeting
MMP-1, MMP-3, andMMP-13 to enhance the radiotherapy effect
of breast cancer cells (11). Furthermore, VPA sensitized pancreatic
cancer cells to NK cell-mediated lysis by upregulating MICA and
MICB via PI3K/Akt signaling pathway (12). Currently, various
studies have ascertained that application of VPA is effectively
involved in glioma treatment (13–15). In this review, we generalize
the latest advances of VPA in treating glioma and its underlying
mechanisms (Figures 1–3 and Tables 1, 2) and clinical
implications (Table 3), providing a clearer profile for clinical
application of VPA as a therapeutic agent for glioma.
2 INDIVIDUAL ANTI-TUMOR EFFECTS OF
VPA IN GLIOMA

2.1 Involvement With Cellular Activities
2.1.1 VPA Inhibited Glioma Cell Proliferation,
Migration, and Invasion
Cell proliferation, one of the important physiological functions of
tumor cells, is the basis of growth, development, reproduction,
and heredity (43). Moreover, cellular migration and invasion are
also the most important features of malignant tumors, mainly
Frontiers in Oncology | www.frontiersin.org 2
involved in cancer metastasis (44). In most glioma cells and
glioma stem cells (GSCs), VPA repressed cell viability in a dose-
and time-dependent manner (2-10 mM for 48, 72, and 96 h) at
varying degrees due to tumor heterogeneity (13, 17, 20).
Subsequently, Trypan Blue dye exclusion assay was utilized to
detect proliferative rates. Treatment with VPA induced a
statistically significant reduction of the cell growth, ranging
from 10% to 40%, with an increase in the LDH release (16, 17).
Benıt́ez et al. further validated the particular correlation between
the decreased cell proliferation and increased cell death (21).

Indeed, VPA was verified to impair the migratory process of
glioma cells according to Boyden chamber findings (16, 21).
Meanwhile, the invasive capability of glioma cells was also
influenced by VPA treatment (18, 45). As is well-known, the
epithelial–mesenchymal transition (EMT) process and matrix
metalloproteinases (MMPs) are vital for migration and invasion
(46, 47). Concluding from results of Western blot and
immunofluorescence, VPA treatment potentiated downregulation
of Snail1 and Twist1 levels and relocalization of E-Cadherin, thus
inactivating the EMT process (16). Ryu et al. also found that MMP-
2 and MMP-9 were knocked down by VPA (18). Therefore, VPA
exerted inhibitory effects on cellular proliferation, migration, and
invasion in glioma via the EMT process and MMPs.

2.1.2 VPA-Induced Glioma Cell-Cycle Arrest
and Apoptosis
Cell cycle refers to the whole process that the genetic material of
a cell is duplicated and equally distributed to the two daughter
FIGURE 1 | VPA exerted therapeutic effects via involvement with cellular activities of glioma. VPA, valproic acid; EMT, epithelial–mesenchymal transition; MMP2/9,
matrix metalloproteinase 2/9; AIF, apoptosis-inducing factor; VEGF, vascular endothelial growth factor.
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cells (48). It could be modulated by gene mutations and physical
and chemical factors, which is indicative of apoptosis (49). Cell
apoptosis is an active process of the orderly death of cells
controlled by genes to maintain the stability of the internal
environment for better adaptation to the living environment
(50). To explore whether VPA had an inhibitory effect on cell
cycle, DNA flow cytometric analyses and immunocytochemistry
were carried out (20, 21). Obviously, VPA treatment could
increase the population at the G0/G1 phase and decrease the
population at the S phase, indicating that VPA induces G0/G1
arrest in malignant glioma cell lines (20). A growth arrest process
is also involved in the decrease of cell proliferation, together with
cell death and inhibition of cell migration (21). However, the
cell-cycle-related proteins and mechanisms have not been
detected, which appeals to additional experiments.

The apoptosis induced by VPA was measured by flow
cytometry Annexin V-FITC/PI and TUNEL staining. Zhang
et al. found that apoptotic rates of glioma cells were induced
by VPA in a dose-dependent manner (17, 18). Further functional
investigation illustrated that VPA upregulated expression of
cleaved caspase 3 and cleaved caspase 9. Moreover, the
expression of Bcl-2 family protein Bax and Bak was increased,
whereas Bcl-2, Bcl-xl, and Mcl-1, the anti-apoptotic members,
were decreased by VPA treatment (13, 17). Additionally, the
release of cytochrome c from the mitochondria under VPA
treatment has also been increased. The expression of
apoptosis-inducing factor (AIF) and poly ADP-ribose
Frontiers in Oncology | www.frontiersin.org 3
polymerase (PARP) was also upregulated (17). Moreover, Chen
et al. found that VPA treatment mildly suppressed the expression
of JNK1 and increased the expression of phospho-JNK1 and
phospho-ERK1/2, but had no effect on the expression of ERK1/2
(18). However, inhibition of JNK1 and/or ERK1/2 reversed the
VPA-induced cytotoxicity and changes in apoptosis (18).
Similarly, ERK and Akt proteins were phosphorylated,
indicating that their activities were induced but GSK3b activity
was inhibited, because of increased GSK3b phosphorylation (17).
In summary, VPA promoted cell-cycle arrest at the G0/G1 phase,
thus inducing apoptosis via activation of the mitochondria-
mediated apoptosis and ERK/Akt pathway.
2.1.3 VPA Was Involved in Cellular Autophagy
and Angiogenesis
Autophagy is a highly conserved process that is essential for cell
survival, host defense, and energy consumption (51). Autophagy
in cancer is often described as a “double-edged sword”, which
either promotes tumor survival under microenvironmental stress
and increases growth and aggressiveness or suppresses
tumorigenesis via its quality control function (52). Results of
electron microscopy (EM), MDC staining, and GFP-LC3-
labeling analyses revealed that autophagic vacuoles increased
under treatment with VPA (13, 20). Since LC3-II is closely
associated with the membrane of autophagosomes and p62 is a
selective autophagy adaptor/receptor, binding ubiquitinated
FIGURE 2 | VPA exerted therapeutic effects via involvement with signaling pathways and molecular targets. VPA, valproic acid; HDAC, histone deacetylase; MT1,
MT1: melatonin 1; MeCP2, methyl CpG binding protein 2; H3/4, histone 4; VEGF, vascular endothelial growth factor.
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proteins and LC3 for engulfment, the expression of LC3-II and
p62 was examined byWestern blot analysis (53). Han et al. found
that p62 expression was downregulated, while LC3-II expression
was obviously upregulated in glioma cells treated with VPA (13).
Similar promotion of autophagy could also be seen for Beclin-1
(20). Subsequently, p-Akt/Akt and p-mTOR/mTOR expression
Frontiers in Oncology | www.frontiersin.org 4
was apparently downregulated, thus inhibiting the Akt/mTOR
pathway to promote autophagy (13). All these data suggested
that VPA facilitated the induction of autophagy via the Akt/
mTOR signaling pathway.

Angiogenesis refers to the formation of new blood vessels from
existing capillaries or veins behind capillaries, which plays an
TABLE 1 | VPA was involved in cellular activities of glioma through signaling pathways and molecular targets.

Glioma cell lines Concentration and Duration (VPA) Targets Biological activities Ref.

U251, SNB19 2 mM/48 h Akt/mTOR signaling ↓cell viability, ↑apoptosis, ↑autophagy (13)
GBM2, G144 2 mM/96 h Wnt/b-catenin signaling ↓proliferation, ↓invasion (16)
U87 4 mM/72 h ERK/Akt signaling ↓cell viability, ↑apoptosis (17)
A172, T98G A172:0–50 mM/24–48 h

T98G:0–100 mM/24–48 h
MAPK signaling ↑cytotoxicity, ↓invasion, ↑apoptosis (18)

U87, U251, U343 0–5 mM/24–96 h VEGF ↓angiogenesis (19)
U87MG, SF295, T98G 0–10 mM/96 h ERK signaling ↓cell viability, ↑cell-cycle arrest, ↑autophagy (20)
C6, U373 0–10 mM/24–72 h H4 ↓proliferation, ↓migration, ↑cell-cycle arrest (21)
C6 0.5 mM/1 or 7 days MT1 receptor, MeCP2, HDAC1, 2, 3 \ (22)
A172, U373, U138, U87, SW1783 2 mM/96 h H3 and H4 ↓proliferation (23)
C6 5 mM/24 h or 48 h MT1 receptor, BDNF, GDNF, HDACs ↑neuroprotection (24)
C6 100 mg/ml/20 h 5-HT2A receptor signaling \ (25)
A172, 85HG66 0–1 mM CD56, CD44 ↓proliferation (26)
September 2021 | Volume 11 | Article 68
VPA, valproic acid; VEGF, vascular endothelial growth factor; H3, histone 4; MT1, melatonin 1; MeCP2, methyl CpG binding protein 2; HDAC, histone deacetylase; BDNF, brain-derived
neurotrophic factor; GDNF, glial cell-derived neurotrophic factor.
↓ -Inhibition, ↑ -Promotion.
FIGURE 3 | VPA served as an adjuvant agent in chemotherapy, radiotherapy, and immunotherapy of glioma. VPA, valproic acid; ACNU, nimustine; BCNU, 1, 3-bis
(2-chloroethyl)-1-nitrosourea; EHV-1, equine herpesvirus type 1; HSV-TK, herpes simplex virus type I thymidine kinase.
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important role in the development and metastasis of tumors (19).
VPA reduced vascular endothelial growth factor (VEGF) secretion
of glioma cells in a dose-dependent manner under both normoxic
and hypoxic conditions. VPA was also found to inhibit tube
formation in the angiogenesis assay. In vivo, treatment with VPA
combined with irinotecan reduced the number of vessels expressing
factor VIII in the brain tumor model. Therefore, VPA inhibited
glioma angiogenesis by direct inhibition of endothelial cell
proliferation and tube formation and indirectly decreased
secretion of VEGF by glioma cells (14). Above all, VPA inhibited
angiogenesis in vitro and in vivo targeting VEGF (Figure 1
and Table 1).
Frontiers in Oncology | www.frontiersin.org 5
2.2 Signaling Pathways and
Molecular Targets
2.2.1 Signaling Pathways
Several signaling pathways have been verified to participate in
the initiation and progress of malignant tumors (54, 55). In
addition, all these pathways have been involved in proliferation,
migration, invasion, cell-cycle progression, apoptosis, autophagy,
and angiogenesis, which could also be therapeutic targets for
multiple therapies, especially for chemotherapy (56, 57).

In VPA treatment, VPA activated the Akt/mTOR signaling
by decreased expression of p-Akt/Akt and p-mTOR/mTOR in
U251 and SNB19 (13). While Zhang et al. reported that
TABLE 3 | Clinical implications of VPA in glioma patients.

Patients Concentration (VPA) Other Therapeutic Agents Clinical Implications Ref.

38 children with DIPGs or HGGs 15 mg/kg/day Radiation: 50.4–54 Gy ↑EFS, ↑OS (37)
112 patients with HGGs 800 mg/day TMZ: 75 mg/m2/day

Radiation: 60 Gy
↓hair loss, ↑OS, ↑PFS (38)

165 GBM patients 10–15 mg/kg/day Radiation: 18 Gy
Carboplatin: 175 mg/m2

Vincristine: 1.5 mg/m2

↑median event-free survival, ↑median survival (39)

44 glioma patients 10 mg/kg/day in week 1
20 mg/kg/day in week 2

\ ↑median overall survival, ↓toxicity (40)

2379 HGG patients ≥84 DDD (1,212)
<84 DDD (1,167)

TMZ: 75 mg/m2/day ↑OS, ↓hazard ratio (41)

359 glioma patients (WHO II-IV) GBM patients (0.49–1825 g)
Grade II/III patients (10.5–4,106.25 g).

TMZ: 75 mg/m2/day ↑OS (GBM)
↓histological progression, ↑PFS (Grade II/III)

(42)
September 2021 | Volume 11 | Article 68
VPA, valproic acid; DIPG, diffuse intrinsic pontine glioma; HGG, high-grade glioma; EFS, event-free survival; OS, overall survival; TMZ, temozolomide; PFS, progression-free survival; DDD,
defined daily dose.
↓ -Inhibition, ↑ -Promotion.
TABLE 2 | VPA served as an adjuvant agent in glioma treatment via involvement with cellular activities and biological targets.

Glioma cell lines Concentration and
Duration (VPA)

Other Therapeutic
Agents

Targets Biological Activities Ref.

U251, LN229, SNB19 1 mM/48 h Luteolin/20 mM/48 h Akt signaling ↓cell viability, ↓migration, ↓cell-cycle progression,
↑apoptosis

(27)

G1, G2, G3 1 mM/72 h TMZ/0–500 mM/72 h
ACNU/0–250 mg/ml/72
h

MGMT ↓cell viability, ↑apoptosis (28)

U87, T98G 1 mM/24 h Gefitinib/10 mM/24 h LKB1/AMPK
signaling

↓cell viability, ↑apoptosis, ↑autophagy (29)

U251, SNB19 1 mM/24 h EHV-1/MOIs (1, 3, 10) \ ↓cell viability (30)
T98, U138 4 mM/72 h TMZ/50 mM/72 h MGMT ↓cell growth, ↓migration, ↑apoptosis, ↑autophagy,

↓xenograft growth
(31)

U87 4 mM/72 h MSCs-TK \ ↓cell viability, ↑apoptosis, ↓xenograft growth, ↓survival (32)
D384, T98 D384: 5 mM/48 h

T98: 2.5 mM/48 h
D384: TMZ/0–20 mM/
24 h
T98: TMZ/0–500 mM/
24 h

\ ↓proliferation, ↓clonogenic capacity (33)

D384, T98 D384: 5 mM/48 h
T98: 2.5 mM/48 h

Radiation/4 Gy \ ↓proliferation, ↓clonogenic capacity (33)

U87MG, Hs683, DBTRG-
05MG

125 mM/72 h/144 h TMZ/100 mM/72 h/144
h

Nrf2 signaling ↓cell-cycle progression, ↑apoptosis (34)

U251, T98 0.5 mM/48 h NY-ESO-1 NY-ESO-1 \ (35)
A172, U373, U138, U87,
SW1783

0–5 mM/96 h BCNU/0–125 mg/ml/96
h

H3, H4 ↓proliferation, ↓cell-cycle progression, ↑apoptosis (23)

C6 0.5 mM/48 h Radiation/0–8 Gy Bax/Bcl-2 ↓cell viability (36)
VPA, valproic acid; TMZ, temozolomide; ACNU, nimustine; MGMT, O6-methylguanine-DNA methyltransferase; EHV-1, equine herpesvirus type 1; BCNU, 1, 3-bis (2-chloroethyl)-1-nitrosourea.
↓ -Inhibition, ↑ -Promotion.
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incubation with VPA increased phosphorylation of ERK and Akt
in ERK/Akt signaling in U87, thus in turn inhibiting GKS3b
activation by the induction of GKS3b phosphorylation (17).
Further loss-of-function experiments illustrated that inhibitors
of MAPK and PI3K pathways abolished apoptotic induction of
VPA, but GSK3b inhibitor mimicked effects of VPA (17).
Furthermore, p-JNK1 and p-ERK1/2 were also increased by
VPA, while inhibition of JNK1 and/or ERK1/2 partially
reversed the VPA effects, involved in MAPK signaling (18, 20).
Moreover, DNA methylation changes of Wnt pathway-related
genes and transcriptional activity of the b-catenin/TCF complex
were obviously induced by VPA via a TOP/FOP flash reporter
assay (16). Additionally, VPA treatment resulted in an
enhancement of 5-HT2A receptor-stimulated PI hydrolysis
(25). Hence, Akt/mTOR signaling, ERK/Akt signaling, MAPK
signaling, Wnt/b-catenin signaling, and 5-HT2A signaling play
vital roles in the functional activities of VPA.

2.2.2 Molecular Targets
In addition to main signaling pathways, molecular targets also
participated in functional activities of VPA. As one of the most
common HDACIs, VPA caused significant time-dependent
changes in histone deacetylase (HDAC) 1, 2, and 3 (22). The
mRNA expression of the melatonin 1 (MT1) receptor and
methyl CpG binding protein 2 (MeCP2) was also decreased by
VPA (22, 24). At the same time, histone 3 (H3) and H4
acetylation were induced by VPA (21, 23). Rincón Castro et al.
also detected the upregulation of brain-derived neurotrophic
factor (BDNF) and glial cell line-derived neurotrophic factor
(GDNF) in VPA activities (24). Apart from these, VPA reduced
VEGF secretion of glioma cells in a dose-dependent manner
under both normoxic and hypoxic conditions (14). Moreover,
incubation with VPA markedly increased the expression level of
CD44 and CD56 (26). All these findings manifested that VPA
mainly exerted its biological activities via signalings and
molecular targets mentioned above, providing evidence for
pre-clinical experiments (Figure 2 and Table 1).
3 SYNERGISTIC EFFECTS OF VPA WITH
THERAPEUTIC AGENTS IN GLIOMA

3.1 VPA-Adjuvant Chemotherapy
3.1.1 VPA and Temozolomide (TMZ)
TMZ, a 3-methyl derivative of mitozolomide, is the first-line
chemotherapy drug of patients with gliomas, which easily pass
through the blood–brain barrier (58). Despite its primary
efficiency in glioma treatment, drug resistance is inevitable in
patients with high O6-methylguanine-DNA methyltransferase
(MGMT) (59). Gathering experiments have suggested that the
combination of VPA with TMZ has combined or enhanced
antitumor effects in glioma. For cytotoxic response, the
combination of VPA and TMZ suppressed the survival rate
and migration of glioma cells compared with that of the TMZ
alone, which verified the sensitivity of VPA (28, 31, 33). More
importantly, the combination induced apoptotic cell death,
Frontiers in Oncology | www.frontiersin.org 6
accompanied by enhanced DNA damage, intracellular GSH
depletion, ROS production, and mitochondrial transmembrane
potential disruption, via upregulation of Bax/Bcl-2 and cleaved
caspase-3/caspase-3 (31, 34). Additionally, autophagic effects
could also be activated by the combination of VPA and
TMZ (31).

3.1.2 VPA and ACNU/BCNU
ACNU and BCNU, referred to as common nitrosourea alkylating
agents, have affinity to the blood–brain barrier. Researchers have
verified their direct or indirect inhibitory effects on several
tumors, including brain tumors, lung cancer, and gastric
cancer (60, 61). Li et al. found that VPA enhanced the
inhibitory effects of ACNU on the growth and apoptosis of
MGMT-negative/positive cells, particularly in the MGMT-
positive cells. Further mechanical investigation illustrated that
VPA downregulated the expression of MGMT protein and
promoted the methylation of MGMT promoter (28). As for
BCNU, detailed analysis of combination of VPA and BCNU
revealed that the synergistic effect was mainly reflected in cell
growth inhibition and cell-cycle arrest rather than an increased
programmed cell death (23).

3.1.3 VPA and Luteolin
Luteolin is a natural flavonoid that could be extracted from
traditional Chinese medical herbs (62). Indeed, it has been well
established that luteolin has a variety of pharmacological effects,
including anti-tumor, anti-inflammation, anti-oxidation, and
immune regulation (63). Luteolin was verified to exert limited
inhibitory effects on glioma cells, which contributes to
application of VPA and luteolin. In this study, VPA enhanced
the anticancer effects of luteolin in cell viability, colony
formation, and migration. More importantly, VPA treatment
induced cell-cycle arrest and cellular apoptosis via upregulation
of p-PARP/PARP, cleaved caspase 3/caspase 3, and Bax/bcl-2.
Moreover, VPA activated Akt signaling to promote autophagic
response via accumulation of LC3-II and decrease of p62 (27).

3.1.4 VPA and Gefitinib
Gefitinib, an oral tyrosine kinase inhibitor, selectively targeted
the epidermal growth factor receptor (EGFR) (64). Due to its
application in cancer treatment, its inhibitory effects, especially
anti-angiogenesis, have been extensively acknowledged (65).
However, a nontoxic concentration of VPA sensitized U87 and
T98G glioma cells to gefitinib by inhibiting cell growth and long-
term clonogenic survival via increased intracellular reactive
oxygen species generation. In addition, the combination
therapy induced autophagic response, accompanied by
conversion of microtubule-associated protein-1 light chain 3-II
(LC3-II), and degradation of p62 through activation of liver
kinase-B1 (LKB1)/AMP-activated protein kinase (AMPK)/
ULK1. Subsequent loss-of-function assay ascertained that
knockdown of AMPK and ULK1 reversed the biological effect
of the combination therapy-induced autophagy and growth
inhibition (29). Therefore, VPA served as an adjuvant
therapeutic agent for chemotherapy of glioma, contributing to
subsequent exploration for novel chemotherapy drugs.
September 2021 | Volume 11 | Article 687362
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3.2 VPA-Adjuvant Radiotherapy
Radiotherapy, used in over 50% of cancer patients, mainly targets
tumor tissues by using ionizing radiation with a little damage on
normal tissues (66). However, emerging resistance to
radiotherapy is the main obstacle in the clinical application
(67). Therefore, it is an urgent need to combine an effective
sensitizer with radiotherapy to obtain better outcome of tumor
patients. Accumulating evidence showed that VPA enhanced
radiation-induced cell death and the clonogenic formation at
varying radiation doses from 0 to 6 Gy (33). Zhou et al. also
explored that VPA induced apoptotic responses to irradiation by
inhibiting Bcl-2 and increasing Bax at the mRNA and protein
levels (36). However, the amount of trials focusing on VPA-
adjuvant radiotherapy is too rare to verify its sensitization role
in glioma.

3.3 VPA-Adjuvant Immunotherapy
Immunotherapy has made much progress with the cropping up of
the immune checkpoint inhibitors (ICIs) (68). Apart from this,
several immunotherapies, concerning dendritic cell, T lymphocytes,
and oncolytic viruses, have been applied in the treatment of glioma
(69). White et al. firstly evaluated the combination therapy of the
lytic animal virus equine herpesvirus type 1 (EHV-1) with VPA.
Surprisingly, VPA pretreatment promoted the infection and the
yield of EHV-1, thus strengthening the ability spread laterally
among cells (30). NY-ESO-1, an immunogenic cancer antigen,
has been a specific target for immunotherapy. Sachie Oi et al.
explored that VPA enhanced the induction of NY-ESO-1 by DNA-
methyltransferase inhibitors (DNMTi). Further chromatin assays
illustrated that the combination induced DNA demethylation, H3
Lys9 demethylation, and acetylation (35). Additionally, MSCs with
high expression level of herpes simplex virus type I thymidine
kinase (HSV-TK) were applied into glioma treatment. The results
demonstrated that VPA and MSCs-TK synergistically induced
cellular apoptosis of glioma cells via caspase activation, which was
evaluated by TUNEL staining assay. Subsequent in vivo treatment
also contributed to the same effects, including the suppression of
tumor growth and survival time (32). Thus, the effects of VPA-
adjuvant immunotherapy in glioma were so satisfactory that
investigation should be carried out for more immunotherapy
agents (Figure 3 and Table 2).
4 CLINICAL TRIALS OF GLIOMAS
WITH VPA

A few clinical trials have illustrated that the clinical application of
VPA showed ambiguous significance in glioma patients. For 44
glioma patients, only 3 patients developed somnolence, and
average trough blood levels of VPA were below the safe
standard, which verified that it had no severe toxicity (40).
Further investigation performed by Francisco et al. revealed
that compared to the non-treated group of six patients, median
event-free survival and median survival of VPA group were
much longer (15). Meanwhile, VPA seemed to serve as an
adjuvant drug in glioma patients. Watanabe et al. explored that
Frontiers in Oncology | www.frontiersin.org 7
VPA contributed to survival improvement, including delayed
hair loss and prolonged survival time (38). Similar improvements
in prognosis of 165 GBM patients were also detected (39). In 38
children with DIPGs or HGGs, treatment of radiation and VPA
could prolong event-free survival and overall survival, while only
three patients developed thrombocytopenia, weight gain, and
pancreatitis, respectively (37). Due to the different pathological
grades and types of gliomas, more detailed research has been
carried out. For GBM patients, VPA could reduce hazard ratio
and improve overall survival (41, 42). For grade II/III glioma
patients, prolonged PFS and decreased histological progression
were correlated with positive VPA treatment (42). However,
clinical significance of VPA treatment for recurrent diffuse
intrinsic pontine gliomas (DIPGs) have not been testified (70).
Therefore, though its safety has been initially confirmed, the
clinical efficacy of VPA is still uncertain, appealing to a certain
number of clinical studies (Table 3).

Additionally, application of VPA has been equipped with
auxiliary benefits. Aiming at irreversible damage of radiotherapy,
including apoptotic response of normal neuronal cells and
neurocognitive deficits, VPA specifically protected hippocampal
neurons from radiation-induced damage in vivo and in vitro (71).
More concretely, VPA improved radiation-related hair loss in 112
glioma patients (39). Castro et al. also attributed the neuroprotective
properties of VPA to modulation of BDNF, GDNF, and melatonin
receptors (24), while there were still a few adverse effects, mainly in
psychiatric, neurological, gastrointestinal, hematopoietic, and
metabolic disorders (72). Firstly, hyperammonemia induced by
VPA treatment would lead to unpredictable damage of nervous
system, contributing to psychiatric disorders and neurological
disorders, including cognitive dysfunction, Parkinsonism,
emotional instability, insomnia, and neurasthenia (73–76). The
defects of neural tube and axial skeleton further verified the role
of VPA as a teratogen (77). Secondly, VPA would induce nausea,
vomiting, indigestion, diarrhea, and constipation in a certain
proportion of patients receiving VPA treatment (78). Thirdly,
VPA might alter hematopoietic homeostasis for occurrence of
thrombocytopenia and megakaryocyte dysplasia (38, 79).
Fourthly, endocrine disturbances and subsequent weight gain
were also main side effects of VPA (80). In addition, allergic
symptoms, fever, hearing loss, menstrual disorders, and damage
of liver and kidney function could also be observed (72, 81). Of
course, stopping oral VPA and applying symptomatic drugs would
be a great option for these related clinical symptoms (37).
5 DISCUSSION

The reviewed data have provided supporting evidence for
application of VPA as a therapeutic agent in glioma treatment.
VPA was involved in several cellular activities, including cell
proliferation, migration, invasion, cell-cycle arrest, apoptosis,
autophagy, and angiogenesis. These biological actions focused on
several signaling pathways, including Akt/mTOR, ERK/Akt, JNK1,
ERK1/2, Wnt pathway, and 5-HT2A signalings. Apart from these
targets, molecules like HDAC 1, 2, and 3, MeCP2, H3, H4, VEGF,
September 2021 | Volume 11 | Article 687362
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CD44, and CD56 also played vital roles in treating glioma.
Meanwhile, VPA was also verified to be an adjunctive agent in
the treatment of chemotherapy, radiotherapy, and immunotherapy.
Of course, a few clinical trials demonstrated that VPA improved
survival of glioma patients. Surprisingly, knockdown of SEL1L, a
crucial protein involved in homeostatic pathways, cancer
aggressiveness, and stem cell state maintenance, increased VPA
sensitivity to glioma (82). All these evidence have confirmed the
therapeutic role of VPA in glioma treatment.

However, results of a few experiments were contrary to
findings above. For example, Riva et al. reported that VPA
induced the genome-wide DNA methylation profile and the
differentiation behavior to elevate the sensitivity of VPA, while
not TMZ (83). However, incubation of VPA promoted secretion
of amphiregulin (AR), facilitating TMZ resistance (84). In
addition to this, Han et al. found that VPA inhibited the Akt/
mTOR pathway by reducing the expression of p-Akt/AKT and
p-mTOR/mTOR in glioma cell lines U251 and SNB19 (13),
while in the study conducted by Zhang et al., VPA could increase
the phosphorylation of ERK and Akt in the ERK/Akt pathway in
U87 (17). The reason for these differential expressions might be
attributed to tumor heterogeneity, origin, gene drift, and
experimental conditions. Therefore, more experimental and
clinical investigation should be carried out for qualification of
the inhibitory role of VPA.

Furthermore, many other signaling pathways and molecular
targets have been detected in the functional processes of VPA in
other tumors. For example, the STAT3/Bmi1 pathway could be
modulated by VPA to increase the sensitivity of gemcitabine to
pancreatic cancer cells (10). VPA also triggered the EMT process
of colorectal cancer cells targeting Snail via the Akt/GSK-3b
pathway (85). In addition, HIF-1a and Survivin played
significant roles in the activities of VPA (86, 87). Gathering
evidence demonstrated that synergistic antitumor effects of VPA
and other therapeutic agents have been explored. The
combination therapy of VPA and simvastatin sensitized
prostate cancer cells via YAP inhibition (6). VPA and Arsenic
Trioxide were verified to induce cell-cycle arrest at the G2/M
phase and apoptotic cell death in lung cancer (88). Moreover,
Frontiers in Oncology | www.frontiersin.org 8
VPA could also enhance anti-PD-L1 tumor immunotherapy in
blocking myeloid-derived suppressor cell function (89). To our
surprise, VPA was also involved in gene therapy and antiblastic
therapy (90, 91), which might be directions for subsequent
research. Hence, it is an urgent demand to explore more
reliable signaling pathways and adjuvant therapeutic agents in
biological activities of VPA.

Currently, more and more anti-epilepsy drugs (AEDs),
including VPA, phenobarbital, carbamazepine, clonazepam,
levetiracetam, lamotrigine, topiramate, and oxcarbazepine,
have been concerned in studying tumors of CNS. Among these
AEDs, VPA and levetiracetam exhibits superiority in the clinical
application of brain tumor-related epilepsy (BTE), due to their
sensitization of TMZ through MGMT-dependent or MGMT-
independent mechanisms (92, 93). In addition, levetiracetam and
VPA would be beneficial to verbal memory and cognitive
function via downregulating excitatory amino acid transporter-
2 expression (94, 95). However, further evidence-based
guidelines demonstrated that levetiracetam is the best first-line
agent for BTE patients due to its efficacy and tolerability,
especia l ly in pat ients undergoing 5-ALA-mediated
fluorescence-guided resection (FGR) (96). Different from
levetiracetam, VPA contributed to prolonged survival of
glioma patients, particularly in glioblastomas (97). Therefore,
prospective evaluation of VPA and levetiracetam treatment for
glioma patients is warranted to confirm these findings.

Despite these deficiencies and prospects of VPA treatment in
glioma, accumulating evidence demonstrated that VPA exerted
inhibitory effects on glioma targeting several signaling pathways
or molecules individually or with chemotherapy, radiotherapy,
and immunotherapy, contributing to further exploration.
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