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Abstract

To assess- the release of calcium and phosphate ions from a fissure sealant containing

amorphous calcium phosphate (ACP), and to determine the re-release capacity of these

ions when charged with a solution containing casein phosphopeptide-amorphous calcium

phosphate (CPP-ACP). Nine blocks of ACP resin-based sealant were prepared and

immersed in three solutions at different pH (4.0, 5.5, 7.0), and calcium and phosphate ion

release was measured with ion chromatography at 1, 3, 5, 7, 14, 21 and 28 days after

immersion. Sixty days after immersion, each block was charged with CPP-ACP solution in

three 7-day cycles to investigate the re-release of these ions, which was measured on days

1, 3, and 7. No difference was observed in initial calcium ion release at pH 4.0 and pH 5.5.

At both values, ion release was significantly higher than at pH 7.0 (p<0.001). Initial phos-

phate release was significantly different among the three pH values (p<0.001). After re-

charging the specimens, calcium ion re-release was greater than phosphate ion release. Ini-

tial ion release from ACP resin-based sealant was greatest at the lowest pH. Ion release

decreased with time. As the number of recharge cycles increased, ion re-release also

improved. Phosphate ion re-release required more recharge cycles than calcium ion re-

release.

1. Introduction

The occlusal surface of newly erupted teeth is an area susceptible to dental caries [1]. One of

the most effective methods to prevent tooth caries is using a pit and fissure sealant (FS), which

acts as a physical barrier to the penetration of bacteria and fermentable sugars in the deepest

parts of tooth pits and fissures [2]. However, several factors may influence the long-term suc-

cess of FS, such as oral biofilms containing S. mutans, which has esterase activity that hydro-

lyzes the ester bonds in materials containing methacrylate [3, 4], or enamel demineralization
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in some parts of the teeth [5]. For this reason, particles such as fluoride or amorphous calcium

phosphate (ACP) are added to FS materials to improve the preventive properties of sealants by

increasing enamel remineralization and decreasing subsequent demineralization and second-

ary caries [6–9].

Materials used in dentistry can be classified as bioinert (passive), bioactive, and bio-respon-

sive based on their interactions with the environment [10]. Smart materials, also referred to as

responsive materials, are able to change their properties in controlled conditions such as tem-

perature, moisture, pH and light [11, 12]. They can also be modified by forms of mechanical

stress such as tensile and compressive stress [10–12]. Ion release from these materials has been

measured in some studies [13–20].

Amorphous calcium phosphate acts as an important intermediate product for in vitro and

in vivo apatite formation, and was the first product to be used as artificial hydroxyapatite [21].

Its unstable and reactive nature in aqueous media causes the release of calcium and phosphate

ions and their transformation into crystalline phases due to microcrystalline growth. This

makes it a candidate for tissue repair, remineralization and regeneration [10, 21, 22]. The com-

bination of ACP with restorative materials leads to enhanced remineralization of tooth struc-

tures, and provides anticariogenic properties [23, 24]. Amorphous calcium phosphate can be

added to restorative materials such as adhesives, resin composites and fissure sealants [3, 25–

28]. Bioactive resin composites containing ACP release ions after the dental plaque is exposed

to acidic condition. Several studies have shown that changing the pH of dental plaque from a

neutral to a cariogenic value (pH 4.0) is less occur in the presence of calcium and phosphate-

containing materials [14–17, 28]. However, one study reported that ion release was not

affected by pH changes [18].

Aegis1 is a light-cured FS containing a urethane dimethacrylate (UDMA) base and a resin

base of mono- and dimethacrylate filler; the ACP filler accounts for 38% of its weight ratio [29,

30]. At neutral or high pH values ACP remains stable. However, when the pH drops to 5.8 or

lower, calcium and phosphate ions are released from ACP into the saliva, where they act as a

buffer and are deposited onto tooth structures as apatite mineral, which is similar to hydroxy-

apatite found naturally in teeth and bone. This phenomenon helps to change the pH from

acidic to neutral, i.e. 7.4 [11, 29, 31]. Thus ACP-containing sealants may help prevent caries in

two ways: as a physical barrier due to micromechanical adhesion, and as a mineral ion reser-

voir thanks to the presence of the ACP filler, which increases enamel remineralization and pre-

vents further demineralization [8, 13, 14, 32].

Some research reported that ion release from smart materials was not sustained in the long

term, and diminished with time [19, 20]. Therefore, the recharge capacity of these materials is

considered a useful characteristic that allows them to maintain their properties, and thereby

enhances their ability to prevent caries in the long term [3]. The recharge capacity of smart

materials was investigated in previous studies, which yielded different results depending on

the materials and methods used to evaluate recharge ability. Most ACP-containing materials

include a commercial resin composite or synthetic materials [3, 25, 26]. Only one earlier study

measured calcium and phosphate ion release from Aegis1 sealant compared to three labora-

tory-synthesized pit and fissure sealants. The results showed better ion release from the nano-

ACP sealant than from the commercial Aegis1 sealant [27]. However, that study provided no

information about ion re-release after the sealants were recharged.

Therefore, the objective of the present in vitro study was to measure the release of calcium

and phosphate ions from the ACP-containing Aegis1 fissure sealant after exposure to neutral

pH (pH 7.0) and two acidic conditions (pH 4.0 and pH 5.5). In addition, the calcium and phos-

phate recharge capacity of the sealant following exposure to a solution containing casein phos-

phopeptide—amorphous calcium phosphate (CPP-ACP) was determined by ion
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chromatography. Our hypothesis (H0) was that the release of calcium and phosphate ions

from the ACP-containing Aegis1 fissure sealant would be similar and lower under the two

acidic conditions compared to the neutral pH condition, and would approach zero in neutral

pH assays. The null hypothesis was tested against an alternative hypothesis (HA) that differ-

ences in ion release would be found between the two acidic pH conditions.

2. Materials and methods

The research protocol was approved by the Human Ethics Review Committee of the Faculty of

Dentistry, Shiraz University of Medical Sciences.

2.1. Sample preparation

According to the previous studies on ion release, a total of nine Aegis1 fissure sealant (Bos-

worth Aegis, Keystone Industries, Gibbstown, NJ, USA) (S1 Table) specimens were prepared

[3, 25, 26]. Molds of condensational silicone impression material (Speedex, Coltene, Altstätten,

Switzerland) measuring 2×2×12 mm were prepared, then the sealant was inserted into each

mold and each 1-mm layer was light cured for 40 s with a halogen light curing unit (Coltolux,

Coltene/Whaledent AG, Altstätten, Switzerland) at a power density of 550 mW/cm2. Each pre-

pared sealant specimen was removed from the mold and cured for 40 s from a distance of 1

mm perpendicular to the surfaces [3, 25, 26].

Three solutions at different pH were used to simulate various pH conditions as follows:

Group 1 (control) consisted of solutions at pH 7.0 (deionized distilled water, SKG, Ahvaz,

Iran).

Group 2 consisted of solutions at pH 5.5 (buffer solution, Vaheb, Ahvaz, Iran).

Group 3 consisted of solutions at pH 4.0 (buffer solution, Merck, Darmstadt, Germany).

The solutions were used to store three samples for each pH value. The specimens were

immersed in 16 ml of the solutions to yield a specimen volume per solution of 3 mm3/ml,

which was similar to the sample volume per solution used in a previous study [26]. During the

first week of the study (days 1, 3, 5, and 7) each solution was replaced every 48 h. After day 7

the solutions were replaced weekly. The storage period lasted for 3 weeks. The pH of each

immersion solution was monitored in each step of the study. At the beginning of this research,

Clinpro™ Sealant was used as a control group. Since no ion release was observed in our solu-

tions, this group was excluded. Supporting information (S1 Table) shows the detailed chemical

composition of the buffer solutions.

2.2. Initial ion release measurement

Initial ion release from the specimens was determined first, to differentiate this variable from

ion re-release after sample recharge. To determine the concentration of calcium and phosphate

ions in initial release tests, after 24 h of immersion in the three buffer solutions, a volume of 5

ml from each sample was collected and analyzed by ion chromatography (883 Basic IC plus,

Metrohm AG, Herisau, Switzerland). In addition, the concentration of calcium and phosphate

ions released was measured on days 3, 5, 7, 14, 21 and 28. At each time 5 ml of the solutions

from each sample was removed for analysis. The remaining solutions were discarded and the

samples were immersed in fresh solutions (dynamic approach) [18, 27]. After solution samples

were obtained on day 28, the sealant specimens were immersed in the solutions for 1 month to

ensure no further ion release on days 58 and 60 of the study. On day 60, measurements

revealed no further ion release.
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2.3. Recharging solution

To prepare the recharging solutions, CPP-ACP paste (Tooth Mousse, GC, Tokyo, Japan) (S1

Table) and deionized water were used at a ratio of 1:3 [33]. Each 5 ml of deionized water was

stirred with 1.7 g CPP-ACP in a vortex machine (ZX3 Vortex Mixer, VELP Scientifica, Usmate

Velate MB, Italy) at a power setting of 3 for 1 min [26]. Tooth Mousse contains 10% CPP-ACP

with 325 mM calcium and 187 mM phosphate [34, 35].

2.4. Specimen recharge and re-release

After 60 days, sealant samples were removed from the storage solutions and rinsed with dis-

tilled water. These exhausted specimens were used for ion recharge. After the recharge solution

was prepared, each specimen was immersed in 5 ml of this solution and stirred gently with a

vortex machine for 1 min. Next the specimen was left in the recharging solution for 30 min to

simulate clinical conditions, i.e. instructions that the mouth should not be rinsed for at least

half an hour after application [33]. Then the sample was rinsed with 10 ml deionized water to

remove any loosely attached deposits and ions on the surfaces. Each sealant sample was

recharged twice at the beginning and end of the day in each cycle (at 9 AM and 5 PM) to simu-

late mouth usage in the morning and evening [3, 25, 26]. Next, the specimens were transferred

to individual dishes with 16 ml fresh buffer solution (pH 4.0, pH 5.5, pH 7.0). On days 1, 3,

and 7, as in the first step of the study, 5 ml of solution was collected from each dish to measure

the concentration of re-released calcium and phosphate ions. At each time the blocks were

immersed in fresh buffer solutions. To test the influence of increasing numbers of recharge

cycles, ion recharge and re-release was repeated in three cycles during 3 weeks (21 days). In

other words, the specimens were recharged after day 7, and then tested for ion re-release in

cycle 2 (day 14). The same procedure was repeated to measure ion release in cycle 3 (day 21).

2.5. Statistical analysis

The data were analyzed with SPSS version 22.0 (IBM SPSS, Chicago IL, USA). To evaluate the

effect of pH and immersion time on initial ion release, two-way analysis of variance (ANOVA)

was used. To evaluate the effect of the number of recharge cycles, pH and immersion time on

ion recharge and re-release, three-way ANOVA was used. If there was a significant interaction

effect between variables, subgroup analysis was done based on one-way ANOVA and the

Duncan post hoc test. The level of significance was set at 0.05.

3. Results

3.1. Initial calcium and phosphate ion release

Two-way ANOVA of the data for initial ion release indicated a significant interaction effect

between time (day) and pH for both Ca2+ and PO43− (p<0.001). Therefore, subgroup analysis

was done with one-way ANOVA and the Duncan test.

Table 1 and Fig 1 show the mean calcium ion release at three different pH values (pH 7.0,

pH 5.5, pH 4.0) from day 1 to day 28. There was no significant difference between pH 4.0 and

pH 5.5. Ca2+ release at pH 7.0 on days 1, 3, 14, 21 and 28 was significantly lower than at the

other two pH values. However, this difference was not statistically significant for day 5

(p = 0.170) and day 7 (p = 0.127). The ratios of calcium ion release at pH 4.0 relative to pH 7.0

were between 1.6 and 2.6 on study days 1 to 28.

Table 2 and Fig 2 show the initial mean PO43− release at three different pH values (pH 7.0,

pH 5.5, pH 4.0) from day 1 to day 28. Comparisons of phosphate ion release between the three

pH values on each day showed a statistically significant difference on all days except day 28,
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when the differences between release at the three pH values were not significant (p = 0.327).

The ratios of phosphate ion release at pH 4.0 relative to pH 7.0 were between 2.5 and 5 on

study days 1 to 28.

Comparisons of ion release on different days at each pH showed that on day 1, calcium and

phosphate ion release was significantly greater than on any other day (p<0.001). In the first

week, ion release decreased with time, and some decreases between successive days were sig-

nificant. Between days 7 and 14, a small increase was observed in both calcium and phosphate

Table 1. Mean and standard deviation for calcium ion release from three blocks (millimoles per liter) at three dif-

ferent pH values.

Day Mean±SD (mmol/L) p value�

pH 4.0 pH 5.5 pH 7.0

1 0.448±0.034 A,a 0.414±0.017 A,a 0.168±0.022 B,a <0.001

3 0.225±0.018 A,b 0.260±0.090 A,b 0.087±0.026 B,bc 0.019

5 0.161±0.027 A,c 0.128±0.062 A,c 0.088±0.016 A,bc 0.170

7 0.141±0.005 A,c 0.138±0.053 A,cd 0.086±0.006 A,bc 0.127

14 0.225±0.020 A,b 0.235±0.052 A,bc 0.099±0.026 B,bc 0.006

21 0.228±0.050 A,b 0.239±0.052 A,bd 0.107±0.004 B,b 0.015

28 0.168±0.011 A,c 0.162±0.019 A,bd 0.069±0.014 B,c <0.001

p value† <0.001 <0.001 <0.001

�: One-way ANOVA F test to compare different pH values.
†: One-way ANOVA F test to compare different days.

Similar uppercase letters indicate lack of significant differences among three different pH values. Three pairwise

comparisons were done in each row using Duncan’s multiple comparison test only in the case of a significant result

with one-way ANOVA.

Similar lowercase letters indicate lack of significant differences among different days. Twenty one pairwise

comparisons were done in each column using Duncan’s multiple comparison test only in the case of a significant

result with one-way ANOVA.

https://doi.org/10.1371/journal.pone.0241272.t001

Fig 1. Calcium ion release (millimoles per liter) at three different pH values before recharge (pH 4.0, pH 5.5, pH

7.0).

https://doi.org/10.1371/journal.pone.0241272.g001
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ion release in all groups, which was due to the longer sampling interval compared to the first

week of the study.

Calcium ion release at all three pH values showed no significant difference between days 14

and 21. On day 28, ion release decreased compared to day 21 at all three pH values. From day

14, phosphate ion release remained uniform at pH 5.5 and pH 7.0. At pH 4.0, phosphate ion

release was significantly greater than at the other two values; however, ion release decreased

thereafter and on day 28, it reached the same values as recorded at pH 5.5 and pH 7.0.

For more information about the cumulative calcium and phosphate ion release see S1 and

S2 Figs.

Table 2. Mean and standard deviation for phosphate ion release from three blocks (millimoles per liter) at three

different pH values.

Day Mean±SD (mmol/L) p value�

pH 4.0 pH 5.5 pH 7.0

1 1.194±0.091 A,a 0.694 ±0.023 B,a 0.217±0.066 C,a <0.001

3 0.322±0.001 A,bc 0.308±0.021 A,b 0.102 ±0.013 B,bc <0.001

5 0.258±0.001 A,bd 0.123±0.003 B,c 0.077±0.006 C,bc <0.001

7 0.251±0.015 A,bd 0.115±0.002 B,d 0.067±0.019 C,bc 0.001

14 0.468±0.015 A,c 0.200±0.001 B,e 0.135±0.064 B,b 0.038

21 0.186±0.056 A,bd 0.155±0.052 AB,cde 0.066±0.018 B,bc 0.041

28 0.091±0.083 A,d 0.099±0.032 A,cd 0.036±0.003 A,c 0.327

p value† <0.001 <0.001 <0.001

�: One-way ANOVA F test to compare different pH values.
†: One-way ANOVA F test to compare different days.

Similar uppercase letters indicate lack of significant differences among three different pH values. Three pairwise

comparisons were done in each row using Duncan’s multiple comparison test only in the case of a significant result

with one-way ANOVA.

Similar lowercase letters indicate lack of significant differences among different days. Twenty one pairwise

comparisons were done in each column using Duncan’s multiple comparison test only in the case of a significant

result with one-way ANOVA.

https://doi.org/10.1371/journal.pone.0241272.t002

Fig 2. Phosphate ion release (millimoles per liter) at three different pH values before recharge (pH 4.0, pH 5.5, pH

7.0).

https://doi.org/10.1371/journal.pone.0241272.g002
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3.2. Recharge and re-release

Three-way ANOVA of the data for calcium ion re-release after the samples were recharged

indicated no significant interaction effects between cycle, pH, and day (p = 0.901), between

cycle and pH (p = 0.696), between cycle and day (p = 0.708), or between pH and day

(p = 0.543). When the effect of time and cycle were controlled for, a significant difference was

observed between the three pH values (p<0.001). The Duncan test indicated that mean cal-

cium ion release at pH 4.0 was significantly greater than at pH 5.5 or pH 7.0. In addition, when

time and pH were controlled for, a significant difference was observed between all three cycles

(p<0.001), such that ion release was higher in cycle 3 compared to cycle 2, and was higher in

cycle 2 compared to cycle 1. When the effect of pH and cycle was controlled for, no significant

difference was observed between the three days (p = 0.557) (Table 3 and Fig 3).

Three-way ANOVA of the data for phosphate ion re-release after the samples were

recharged indicated significant interaction effects between cycle, pH and time (p<0.001), cycle

and pH (p<0.001), cycle and time (p = 0.012), and between pH and time (p<0.001). Ion

release on all days of cycle 1 showed no significant differences among the three pH values

Table 3. Mean and standard deviation for calcium ion re-release from three blocks (millimoles per liter) at three

different pH values and different days of the 7-day cycle.

Effect Category Mean±SD (mmol/L) p value�

pH 4.0 0.0746±0.0176 A <0.001

5.5 0.0681±0.0194 A

7.0 0.0436±0.0159 B

Cycle 1 0.0519±0.0181 A <0.001

2 0.0613±0.0219 B

3 0.0731±0.0212 C

Day 1 0.0604±0.0228 A 0.557

3 0.0649±0.0257 A

7 0.0610±0.0174 A

Three-way ANOVA detected no significant interaction effect between pH, cycle or day.

�: Three-way ANOVA F test to test main effects.

The same letters in each category indicate lack of significant differences. If the p value for main effect was significant,

3 pairwise multiple comparisons were done with Duncan’s multiple comparison test.

https://doi.org/10.1371/journal.pone.0241272.t003

Fig 3. Calcium ion re-release (millimoles per liter) at three different pH values and different days of the 7-day

cycle (pH 4.0, pH 5.5, pH 7.0).

https://doi.org/10.1371/journal.pone.0241272.g003
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(p>0.05). However, on all days of cycles 2 and 3, average ion release at pH 4.0 was significantly

higher than at the other two pH values. At pH 5.5 and pH 7.0, no significant difference was

observed between cycles in mean ion release on any of the days. At pH 4.0 on all days, mean

ion release was higher in cycle 2 than in cycle 3, and was higher in cycle 3 than in cycle 1.

Except for cycle 3 at pH 4.0, no significant difference was observed in ion release on any of the

three days. In cycle 3 at pH 4.0, mean ion release was higher on day 1 compared to days 3 and

7 (Table 4 and Fig 4).

4. Discussion

The results of the present study show that a lower pH environment led to enhanced release of

calcium and phosphate ions. This finding is in accordance with previous studies of the effect of

Table 4. Mean and standard deviation for phosphate ion re-release from three blocks (millimoles per liter) at

three different pH values and different days of the 7-day cycle.

Cycle Day Mean±SD (mmol/L)

pH 4.0 pH 5.5 pH 7.0

1 1 0.0037±0.0009 A,a 0.0056±0.0042 A,a 0.0032±0.0000 A,a

3 0.0038±0.0010 A,a 0.0037±0.0009 A,a 0.0056±0.0042 A,a

7 0.0038±0.0010 A,a 0.0033±0.0002 A,a 0.0032±0.0000 A,a

2 1 0.0808±0.0056 A,b 0.0098±0.0042 B,a 0.0059±0.0033 B,a

3 0.0594±0.0187 A,b 0.0170±0.0083 B,a 0.0060±0.0035 B,a

7 0.0950±0.0174 A,b 0.0056±0.0042 B,a 0.0081±0.0042 B,a

3 1 0.0515±0.0080 A,c 0.0046±0.0024 B,a 0.0046±0.0024 B,a

3 0.0339±0.0016 A,d 0.0072±0.0039 B,a 0.0102±0.0030 B,a

7 0.0300±0.0042 A,d 0.0032± 0.0000 B,a 0.0046±0.0024 B,a

Three-way ANOVA detected significant interaction effects between pH, cycles and days.

Similar uppercase letters indicate lack of significant differences among three different pH values. Three pairwise

comparisons were done in each row with Duncan’s multiple comparison test.

Similar lowercase letters indicate lack of significant differences among different days and different cycles. Three

pairwise comparisons were done to compare both cycles and days in each column with Duncan’s multiple

comparison test.

https://doi.org/10.1371/journal.pone.0241272.t004

Fig 4. Phosphate ion re-release (millimoles per liter) at three different pH values and different days of the 7-day

cycle (pH 4.0, pH 5.5, pH 7.0).

https://doi.org/10.1371/journal.pone.0241272.g004
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reducing pH on ion release from calcium- and phosphate-containing materials [15–18]. In

addition, the present study found no significant difference between mean calcium ion release

at pH 4.0 and pH 5.5, which was in accordance with our null hypothesis. However, ion release

at these values was considerably greater than at pH 7.0. As claimed by the Aegis1 sealant man-

ufacturer, calcium and phosphate ions are released when the pH decreases to 5.8 [29].

Although our results show that ion release occurred at pH 7.0, the values were significantly

lower than at the two other pH values. Thus, the null hypothesis (H0) was partially rejected.

In the present study, calcium and phosphate ion release at all three pH values declined sig-

nificantly from day 1 to day 3. The reduced ion release may be directly related to pH. At pH

4.0 (acid condition), a decreasing trend in ion release with a steep slope was seen until day 3,

whereas at pH 5.5 the slope of this decrease was gentle up to day 5, due to the lower acidity of

the test solution. At pH 7.0, calcium ion release was lower compared to the two lower pH

groups, and the rate of release remained stable from day 3 to 21. On day 28, calcium ion release

was similar at pH 4.0 and pH 5.5, and was lower than on previous days. Phosphate ion release

was lowest on day 28 and was similar at all three pH values. A previous study reported reduc-

tions in calcium ion release from a resin composite containing ACP from days 7 to 21, which

is consistent with the results of the present study [18]. However, that study also found that

mean calcium ion release increased on day 28 [18], which contrasts with the present results.

The difference between studies may be due to the composition of the materials investigated,

the type of acid used, different environments, solution conditions, and different methods used

to measure ion release [28]. For phosphate ion release, that study found the same values from

day 14 to 28 [18], in agreement with the results of the present study at pH 5.5 and pH 7.0.

In the present study, mean ion release at pH 4.0 relative to pH 7.0 was between 1.6- and

2.6-fold as high for calcium, and between 2.5- and 5-fold as high for phosphate. However,

some studies reported higher values of ion release. Xu et al. measured the amount of ions

released from a resin composite with Nano-ACP filler. Their results showed that after 28 days,

phosphate and calcium ion release at pH 4.0 was, respectively, 5-fold and 10-fold the amount

released at pH 7.0 [16]. In a study by Melo et al. [17], calcium and phosphate ion release from

a nanocomposite containing a bisphenol A-glycidyl methacrylate (bis-GMA)-tetraethylenegly-

col dimethacrylate (TEGDMA) base and ACP filler was greater than in the present study. This

may be due to the difference in the chemical structure of the materials used in their study, and

to differences in the volume ratio between the specimen and immersion medium [28]. Ure-

thane dimethacrylate is a hydrophobic monomer that is more resistant to water absorption

and degradation due to its higher molecular weight and fewer binary bonds compared to

TEGDMA—characteristics that reduce the possibility of ion release [36, 37].

In the present study, the specimens were kept in the storage solutions for 1 more month

after 28 days. On day 57, they were rinsed and placed in fresh solution, and on days 58 and 60

they were tested for calcium and phosphate ion release. On these two days, ion release was

undetectable by ion chromatography. After verifying the lack of ion release from the speci-

mens, the recharge phase of each block started in three 7-day cycles [3, 25, 26]. In total, we

recorded data for ion release from each block on 9 different days during the release phase

(days 1, 3,5, 7, 14, 21, 28, 58 and 60) and on 9 different days during the recharge phase (days 1,

3, 7, 8, 10, 14, 15, 17 and 21).

One of the techniques to recharge exhausted specimens is soaking in a supersaturated solu-

tion of similar ionic composition. The most likely recharge mechanism is the space-occupying

effect. After initial calcium and phosphate ion release, the sites that were previously occupied

by these ions become available to incoming ions from the recharge solution. [3, 25, 26]. Thus,

a better recharge capacity would be expected in smart materials with greater initial ion release.

In a study by Zhang et al., adhesives containing the hydroxyethyl methacrylate (HEMA)
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monomer showed higher initial calcium and phosphate ion release, and also showed greater

re-release in the recharging phase [3]. However, in another study the authors reported that the

difference in composition between the types of ACP-containing composites led to different

ion release rates after recharging compared to ion release in the initial stage [26]. In the present

study, there was no difference in calcium ion release at pH 4.0 and pH 5.5 in the initial phase

or after recharging. In other words, after further calcium ion release in the initial phase of the

experiment, more free spaces were created to accept calcium ions in the specimens, and better

rechargeability was provided. However, there were differences in phosphate ion release

between the initial phase of the study and the recharge phase. Phosphate ion re-release follow-

ing recharge at pH 4.0 was significantly higher compared to pH 5.5 and pH 7.0, whereas ion

release was lower and did not differ significantly at pH 5.5 and pH 7.0. This may be due to the

presence of higher levels of calcium than phosphate in the composition of Tooth Mousse [33,

34]. The greater release of calcium than phosphate ions after recharging in the present study

was consistent with previous findings [3, 25, 26]. Another explanation for recharged mecha-

nism is the presence of carbonyl groups in the structure of this sealant that make it possible to

chelate with calcium and phosphate ions from the exterior environment such as a recharge

solution [38]. One of the reasons for this chelation is the ions release from the sealant after

being placed in an acidic solution for 48 hours (without recharging).

The present results show that by increasing the number of recharge cycles, ion release can

be enhanced. This finding may be due to the cumulative effects of ions after several recharge

cycles. In particular, more recharge cycles are required to recover phosphate ion release.

Because of the chemical structure of ACP, it is easier to place calcium in its structure than

phosphate [18, 39]. Moreover, CPP-ACP solution contains more calcium ions than phosphate,

which results in more calcium uptake and consequently more release [40, 41]. Perhaps with

longer exposure times, the ability to release phosphate ions would increase. But we found that

the potential for recharging the block with phosphate ions was limited because phosphate

release in cycle 3 was lower than in cycle 2. The reasons for this finding may be elucidated

more fully by doing experiments with more recharge cycles. However, earlier studies reported

that increasing the number of cycles had no effect on ion release [3, 25, 26]. This may be

related to the different materials used for recharging, and to the methods of ion measurement

used in those studies.

Tooth Mousse was selected for the recharge solutions in the present study because it is a

common, well known and commercially available product. This makes it easily available for

both personal use and for use in experimental research. The total release of calcium and phos-

phate ions from smart materials depends on several factors, including the type of base material

(e.g. bis-GMA, TEGDMA, and UDMA) [35], acidic monomers [42], percentage of calcium

and phosphate fillers [43], size and chemical structure of the fillers [16], the type and acidity of

the environment where the material is kept [14], the volume ratio between the specimen and

immersion medium, and the method of data collection [28].

One of the limitations of the present study was the duration of immersion of the specimens

in acidic pH solutions, which was expected to accelerate ion release compared to the neutral

pH condition. The oral cavity is exposed to acidic challenge for several hours each day. Despite

the long duration of contact between the samples and the acidic environment in the present

study, significant release was observed during 28 days. One of the strengths of the present

study compared to previous ones was that the solution was replaced after each sampling, and

the specimens were immersed in fresh solution. In most previous studies, solution samples

were collected and then fresh new solution was added to the remaining solution, and the data

were converted to cumulative values. However, no such cumulative effect on ion release occurs

in real-life conditions in the oral cavity, because intra-oral conditions change constantly due to
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diet, mouthwash use, and the buffering effect of saliva. A further consideration is our choice of

deionized distilled water for the experiments done at pH 7.0, as in previous studies [13, 44],

because it provided a baseline of ion release potential in unstimulated and neutral conditions,

rather than a model of normal oral fluid conditions. In addition, because the presence of cal-

cium and phosphate in solutions is a potential confounding factor in the test results, we used

deionized water to produce a neutral pH environment, as in previous studies [13, 44, 45].

Because in vitro studies do not reflect actual clinical conditions, additional clinical studies are

needed to investigate initial calcium and phosphate ion release at baseline and after interven-

tions that can affect recharge and re-release.

5. Conclusion

The initial release of calcium and phosphate ions from the ACP-containing fissure sealant

studied here was greater in media with lower pH values. Ion release decreased with time. Over-

all calcium ion release in the initial phase was lower than phosphate ion release. After recharg-

ing, calcium ion re-release was greater than phosphate ion re-release. More recharge cycles

were needed to improve phosphate ion re-release compared to calcium ions. As the number of

recharge cycles increased, ion re-release also improved.
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