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Abstract
The field of regenerative medicine is moving toward clinical practice in veterinary science. In this context, placenta-derived stem
cells isolated from domestic animals have covered a dual role, acting both as therapies for patients and as a valuable cell source for
translational models. The biological properties of placenta-derived cells, comparable among mammals, make them attractive
candidates for therapeutic approaches. In particular, stemness features, low immunogenicity, immunomodulatory activity, mul-
tilineage plasticity, and their successful capacity for long-term engraftment in different host tissues after autotransplantation, allo-
transplantation, or xenotransplantation have been demonstrated. Their beneficial regenerative effects in domestic animals have
been proven using preclinical studies as well as clinical trials starting to define the mechanisms involved. This is, in particular, for
amniotic-derived cells that have been thoroughly studied to date. The regenerative role arises from a mutual tissue-specific cell
differentiation and from the paracrine secretion of bioactive molecules that ultimately drive crucial repair processes in host tissues
(e.g., anti-inflammatory, antifibrotic, angiogenic, and neurogenic factors). The knowledge acquired so far on the mechanisms of
placenta-derived stem cells in animal models represent the proof of concept of their successful use in some therapeutic treatments
such as for musculoskeletal disorders. In the next future, legislation in veterinary regenerative medicine will be a key element in
order to certify those placenta-derived cell-based protocols that have already demonstrated their safety and efficacy using rigorous
approaches and to improve the degree of standardization of cell-based treatments among veterinary clinicians.
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Introduction

Stem cell–based regenerative medicine represents one of the

most relevant challenges in the biomedical sciences. The

scientific expectation toward regenerative medicine is

related to its potential in producing a paradigm shift in med-

icine. With few exceptions (i.e., antimicrobials and hormone

replacement therapy), traditional medicine has been con-

cerned with treatment of symptoms of disease but rarely the

correction or reversal of the pathology itself.

However, whenever possible, medical therapy should also

contain a component of disease correction. Correction of a

disease process can be accomplished through several mechan-

isms. The therapy applied can itself replace or reverse the

disease-causing process. The cell-based approach, if effective,

would directly replace the degenerated tissues of the patient by

providing an immediate and direct functional effect. One of the

mechanisms of action prompted by cell transplantation is to

stimulate disease correction by facilitating the body’s innate

regenerative pathways. Another way to enhance repair of dam-

age is via inhibition of events that actually prevent natural
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regeneration from occurring. Cell-induced regeneration may,

indeed, proceed through many processes even if 2 major

mechanisms are recognized: the in situ transdifferentiation

toward the lineage of host damaged tissues and/or the improve-

ment of paracrine factors that modulate the proliferation/

differentiation of resident progenitor cells. In both cases, the

repair of the damaged tissues and the restoration of organ func-

tions can be achieved. Since increasing evidence supports the

hypothesis that stem cell therapy has the capacity to provide the

complex processes involved in tissue regeneration it is now

moving from translation to clinical practice1–3. However,

there are still knowledge gaps and safety concerns regarding

stem cell–based therapies. Improving the research value of

large animal models may represent one key challenge to

favor the progress of regenerative medicine and to facilitate

eventual use of them in medical clinical translational

research.

Veterinary Stem Cell–Based Therapy:
Domestic Animals between Translational
Models and Patients

Veterinary medicine has an important role in the translational

process offering the missing link between basic science and

human clinical applications. Many diseases encountered in

humans also pose a problem in veterinary patients with similar

pathology and etiopathogenesis. These diseases certainly raise

the interest in regenerative medical treatments on the veterin-

ary side but, at the same time, offer a perfect model for human

patients, much better than laboratory animals that do not accu-

rately reproduce in full the complexity of disease conditions.

Tight cooperation between basic science and human and

veterinary medicine would therefore not only be beneficial for

veterinary patients but would drive the field of regenerative

medicine forward for the benefit of human patients. This

concept is clearly supported from past preclinical studies

performed on canine models that have been instrumental in

advancing hematopoietic stem cell protocols for human oncol-

ogy. Translational preclinical studies have allowed the devel-

opment of bone marrow (BM)-based therapy4–6 and

optimization of this technique over 4 decades7,8. Success in

numerous animal models of disease and emerging achieve-

ments in human clinical trials allow scientists to realize that

stem cell–based regenerative medicine will soon be possible. A

remaining challenge is collaboration among different experts

such as veterinarians, biologists, geneticists, physicians, and

other scientific health and environmental professionals operat-

ing using a “One Health” approach9.

Animal Models for Stem Cell–Based
Regenerative Medicine: Mice versus
Domestic Animals

It is generally accepted that use of companion (dog, cat, and

horse) and farm animals (sheep, goat, bovine, and pig) has an

enhanced ability over laboratory mammals for predicting

clinical efficacy of new medical devices, pharmacological

therapies, and cell organ–based surgery10. It should be noted

that the nomenclature regarding animals is quite confusing.

In this review, companion and farm animals will be referred

to as domestic animal models whether they are used as clin-

ical patients or in preclinical/translational settings.

Although the use of rodents, especially genetically

altered mice, maintains a central role in the study of stem

cell biology, no rodent models have better advantages com-

pared to domestic animals with regard to system physiology

and anatomy, which are more similar to humans. Indeed,

domestic animals and humans share a similar basal cellular

metabolism rate of cells, a longer life span, comparable

organs in size, and physiology11–15. Moreover, unlike

laboratory rodents, the health conditions of domestic ani-

mals are determined by lifestyle influences. They are

outbred and thereby continually exposed to environmental

factors that underlie several diseases (cancer, diabetes, etc.)

or traumatic defects. Similar to humans, many dogs and

horses are expected to undertake an athletic (e.g., sport

horses and agility dogs) or a working career (service dogs).

This increases the incidence of chronic musculoskeletal dis-

orders that continue to be a therapeutic, diagnostic, and clin-

ical challenge in medicine. Another relevant aspect that

increases the scientific interest in nonrodent animal models

is that they suffer from a variety of spontaneously occurring

diseases that reproduce the human phenotype and etiology.

In particular, some domestic animals are currently used to

study human genetic diseases. Indeed, they may be sponta-

neously affected by genetic disorders induced by a single

gene defect or due to the complex interaction between gene

expression and environmental conditions16–18. Alterna-

tively, genetically induced conditions are also inducible in

nonrodent animals to reproduce debilitating degenerative

disorders (e.g., Alzheimer and Huntington diseases, cystic

fibrosis, and muscular dystrophy) by targeting specific

genomic sites19. Thus, the use of domestic animals has a

tremendous potential for validating and advancing the cru-

cial field of regenerative medicine.

Even if domestic animals offer numerous advantages,

major limitations remain. For example, specie-specific

reagents are less available, such as antibodies, growth factors,

and fully annotated expression microarrays. There is a lack of

centralized resources where cells are characterized and stored,

reagents made available, and databases maintained for the

wider biomedical community. If these drawbacks still repre-

sent a barrier for researchers, several strategies can be imple-

mented to overcome these limitations.

Important research institutions like the National Institutes

of Health (NIH) are trying to overcome these limitations by

developing a publicly available website and annual meetings

that provide investigators and program officers with an

online resource to disseminate information such as what

species are available from which particular centers, ser-

vice/expertise available at each site, and so on in order to
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facilitate collaboration. Indeed, having better integrative and

informatics tools will likely have a greater and more inno-

vative impact on biomedical research.

All of these efforts can be strengthened by the awareness

that research using domestic animals will complement the

use of mice, leading to more comprehensive studies that can

then be applied to humans.

Stem Cell–Based Therapy Application
in Veterinary Medicine

The impact of stem cell-based regenerative medicine in

veterinary clinics offers interesting insights. Several private

companies, spin-offs, and university departments (Vet-stem;

VetBiologics; UCDAVIS; Riddle and Rood; RENOVOCyte;

Biologics Medivet; Celavet; Therapies, ART Advanced

Regenerative; Laboratories, Fat-Stem, etc.) are engaged in

a widespread stem cell service at providing cells isolated

from patient’s tissue samples with or without an amplifica-

tion step, or, alternatively, to sell kits that allow for in-house

cell isolation from tissues. Such a service, originated in

North America, has now extended to Asia (Histostem Co.,

Ltd., South Korea) and Europe (Belgium Fat-Stem Labora-

tories) and supports cell-based treatments for thousands of

animals20,21. However, this empirical use of cell products

applied in a variety of pathological conditions mainly in

horses, dogs, and cats has not really enhanced knowledge

on the properties and mechanisms of these innovative ther-

apeutic procedures for the care of animals. The major clin-

ical outcomes generated by this widespread practice are

mainly represented by anecdotal and case reports. Although

the animal cell products have been commercially available

since 2003, few studies have documented the scientific

improvement promoted by the injection of autologous cells

collected by adipose tissue (AT). As an example, 2 double-

blinded controlled and multicenter studies performed on

2122 and 39 dogs23 affected by coxofemoral osteoarthritis

(OA) and 2 clinical trials involving 14 recruited dogs with

humeroradial joint OA24 and 10 dogs with severe hip OA25

have been published.

A widespread use of stem cells in veterinary clinics is the

consequence of a complete absence of legislation. For this

reason, cell therapy may be adopted using an empirical

approach without holding a solid scientific basis. Veterinar-

ians can either prepare the necessary cell-based therapy

products themselves or, alternatively, obtain the stocks

from suppliers located in their respective country or from

abroad. Although, at least in Europe, stem cell–based phar-

maceuticals for veterinary use have been widely ignored by

legislators, no special regulations have been issued com-

pared to stem cell–based pharmaceuticals for human use.

The existing legislation is incomplete and leaves too many

loopholes for unproven stem cell–based pharmaceuticals for

veterinary use. It is likely that in the future, regulations on

veterinary use of cell therapy will be modeled after the estab-

lished legislation for cell therapy for humans. However, in

the meantime, the popular appeal of stem cell–based thera-

pies, and their widespread commercialization, has led to

their application for many conditions in veterinary patients

for which there are little to no evidence-based preclinical

animal studies or even supporting in vitro data. Therefore,

enthusiasm for stem cell therapies as a powerful treatment

strategy for the repair and regeneration of tissue injury and

disease must be tempered until experimental evidence is

sufficient to supersede anecdotal reports. In the absence of

any regulations, however, no such cell-based therapy proto-

col has been certified so far and we are missing out on the

opportunity to expand the evidence-based preclinical and

clinical trials on veterinary patients, which may accelerate

the advancement of regenerative medicine applications for

several mammalian species26.

The current European Union (EU) and national legislations

on veterinary medicine needs to be reformed in order to bring

about legislative improvements, which can facilitate the

development of cell-based pharmaceuticals for human use.

The legal requirements of manufacturing, marketing, and

application of cell-based veterinary pharmaceuticals are not

as well developed as the requirements for chemical pharma-

ceuticals. Stem cell–based veterinary pharmaceuticals are

medicinal products in the sense of the pharmaceutical laws

of the EU. For that reason, such medicinal products princi-

pally require official approval for their manufacture and an

official marketing authorization for their placement on the

market before being used by the veterinarian. The manufac-

ture, marketing, and use of cell-based veterinary pharmaceu-

ticals without manufacturing approval and marketing

authorization, is permitted only in certain exceptional cases

determined by EU and individual Member State law. Viola-

tions of this requirement may have consequences for the

respective veterinarian under criminal law and under the code

of professional conduct in the respective Member States26.

Therefore, legislation is desirable in order to be able to

certify the safety and efficacy of cell-based treatments, to

standardize protocols, and to make comparable clinical out-

comes between centers. Obviously, legislation such as that

applied to stem cell–based pharmaceuticals in medicine

may completely hinder veterinary research. Animal health,

indeed, does not receive public funding and does not affect

the economy the way human medicine does. However, the

lack of any legislation limits the ability to control the clin-

ical effects of innovative therapeutic approaches and

it neutralizes the positive effects that could arise from

dynamic market competitiveness.

Stem/Progenitor Cell Sources for
Veterinary Regenerative Medicine

Several preclinical and clinical studies have been performed

on domestic animals, offering important insights on cell-

based tissue regenerative mechanisms. Most of the informa-

tion has been derived from canine and equine models which

have been chosen based on their impact on veterinary
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medicine (animal patients) and from ovine or porcine mod-

els mainly adopted as translational models. As detailed in

Table 1, the stem/progenitor cells isolated so far in canine

model are of various origins, but the most characterized are

mesenchymal stem cells (MSCs) isolated from BM, AT,

and umbilical cord (UBC). Additionally, other stem cell

sources have been thoroughly investigated recently such

as amniotic cells and to a lesser extent, embryonic and

induced pluripotent stem (iPS) cells (Table 1). Scientists

have focused mainly on treatment of canine musculoskele-

tal, cardiac, and nervous system disorders. Moreover, the

dog has represented for decades the ideal translational

model for optimization of cell transplantation in hematolo-

gic cancers, whereas, more sporadically, it has been adopted

for the treatment of ophthalmologic and urologic disorders

(Table 1).

The horse is another domestic animal in which stem cell

therapy has been extensively studied and applied either to

treat experimental or spontaneous diseases (Table 2).

MSCs derived from BM and AT are the chief cell types

used in equine research and clinic trials, however many other

stem/progenitor cells sources have been taken into account

and relevant results have been obtained to date (Table 2).

Stem cell–based protocols have been mostly developed so

far to deal with pathologies related to sports medicine such

as tendon, ligament, and cartilage/joint disorders or, to a

lesser extent, bone defects. It is not surprising that muscu-

loskeletal disorders represent the main clinical target in

horses, a species largely involved in athletic competition.

Sheep represent another domestic animal model for

designing translational experiments aimed at verifying the

effectiveness of stem cell–based therapy for musculoskeletal

disorders. Sheep, indeed, are considered a valuable medium-

sized translational mammal. In this model, evidence of

regenerative potential of amniotic cells, MSCs isolated from

BM and from UBC, as well as the embryonic stem cells have

been documented (Table 3). Importantly, the ovine model

offers the opportunity for investigating prenatal surgical

stem-based treatments. Many rigorous preclinical studies

of in utero stem cell transplantation have confirmed that

the clinical use of stem cells can be adopted to ameliorate

prenatal congenital diseases, thereby offering new innova-

tive therapeutic approaches (Table 3).

In addition, animal iPS cells represent powerful biolo-

gical models for assessing human iPS therapeutic applica-

tions. There was an innovative breakthrough in the field of

stem cell research with the isolation of iPS cells from

humans and mice. Several studies on various animal cellu-

lar systems (Tables 1–3) suggest that the basic pluripotency

network appears to be conserved among different species,

allowing derivation of iPS cells from a variety of domestic

animal species.

Placenta-Derived Stem Cell Application in
Domestic Animal Models

In addressing the complex scenario described above,

increasing attention has been focused on the placenta as a

possible source of progenitor/stem cells. The embryonic

origin of placenta-derived cells (PCs) explains the evidence

of their retained high plasticity, with the possibility of pro-

viding progenitor/stem cells that are capable of differentiat-

ing into multiple cell types239. Meanwhile, the fact that the

placenta is fundamental for maintaining physiologically

feto-maternal tolerance during pregnancy suggests that

cells present in placental tissue may simultaneously have

low immunogenicity and immunomodulatory activities.

The confirmation for this is the absence of MHC class I

molecules and the low expression of MHC class II, allow-

ing these cells to be effectively employed in immunocom-

petent transplanted organisms224,240. Furthermore, these

Table 1. Cell-Based Regenerative Medicine in Dog.

Stem/progenitor cells source 
Experimental and spontaneous 
diseases treated with cell-based 

protocols 

Hematopietic Stem Cells

- Bone marrow19,118,119

- Peripheral blood cells120,121

Hematologic cancer disorders 120,149

Mesenchymal Stem Cells

- Bone marrow68,80,122-125

- Adipose tissue68,80,123,126-132

- Umbilical cord68,78-80,133-139

- Skeletal muscle139

-

Muscleskeleton

- Bone67,68,150-161

- Intrarticular22-25,162,163

- Muscle164,165

Amniotic derived Cells134,135,140-143 Neurogenic78-80,166-171

Embryonic Stem Cells144 Cardiac172-179

induced Pluripotent Stem Cells145-148 Ophmatology106,107

Urologic180

Table 2. Cell-Based Regenerative Medicine in Horse.

Stem/progenitor cells source Experimental and spontaneous diseases 
treated with cell-based protocols

Mesenchymal stem cells

- Bone marrow94,181-191

- Peripheral blood cells181,187,192

- Adipose tissue93,181-185,189,191,193-196

- Synovial membrane197-199

- Peridontal ligament200-202

- Umbelical cord75,185,203-218

- Tendon derived stem cells219-221

Muscleskeleton

- Tendon55,58,59,92,96,101,103,104,190,193,212,22

4,236-260

- Bone261,262

- Osteoarticular75,182,191,263-278

- Muscle257

Amniotic derived Cells55,101,110,203,204,222-

227

Wound110,279

Embryonic Stem Cells228-232 Ophmatology108,109

induced Pluripotent Stem 
Cells148,231,233-235
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cells have also been shown to secrete soluble factors

involved in pathophysiological processes that may aid tissue

repair, such as cytokines which have immunomodulatory and

anti-inflammatory effects215,241 as well as angiogenic factors

associated with wound healing216,242, growth factors related

to cell proliferation and differentiation243, and antiapoptotic

and antioxidative factors244. These key aspects make cells

from placenta ideal candidates for developing cell therapy

protocols that encourage PC allo-transplantation or xenotrans-

plantation in different domestic animal models. Indeed, auto-

logous transplantation is more feasible with other stem cell

sources (i.e., BM-MSCs, AT-MSCs, etc.); hence, the patient

can benefit from his or her own stem cells. With PCs, allo-

transplantation and xenogeneic transplantation are more rea-

listic than autologous, but it has been well documented that

PCs from different animal models possess high genetic

stability and marked immunomodulatory properties.

Furthermore, given that the placenta is generally discarded

after birth or can be frequently collected at the slaughter-

house for several domestic animals, the derived tissues

are largely available, thus the recovery of cells does not

involve any invasive procedures and their use does not pose

any ethical concerns239,245–249.

According to cell origin, PCs can be distinguished in:

� amniotic-derived cells from which can be identi-

fied amniotic epithelial cells (AECs), amniotic

MSCs (AMSCs), and amniotic fluid MSCs

(AFMSCs);

� UBC-derived stem cells from which can be isolated

umbilical cord blood (UCB), umbilical cord blood

MSCs (UCBMSCs), and umbilical cord matrix MSCs

(UCMMSCs).

Despite the extensive literature available, domestic ani-

mal PCs are not easily comparable, especially considering

the current lack of common protocols and the different

gestational stages that can highly affect the native biologi-

cal properties. Indeed, gestational age is a key factor capa-

ble of influencing morphological and functional properties

of PCs. For instance, Barboni et al.225 demonstrated that

gestation considerably affected the expression of surface

markers, as well as the expression and localization of plur-

ipotency markers of ovine AECs. Moreover, their differen-

tiation ability changed with the gestational age, affecting

cell plasticity and the degree of global DNA methylation,

which increased in term gestation amnia, thus probably

affecting the outcome of cell transplantation therapies.

Therefore, innovative approaches on stem cell aging in

preclinical models are essential before their application for

clinical translation250.

In addition, methodological aspects make animal cell

research results frequently noncomparable239. The major cri-

ticisms are the absence of commercially species-specific

reagents and of a complete protein/genome database that is

required for methodological conception and comprehensive

procedures for monitoring and sharing results. Moreover, all

culture protocols result in mixed cell preparations and

obtaining specialized cells in sufficient quantities and purity

is still a challenge especially for PC-MSCs. For all these

reasons and limitations, continuous and careful updates on

research and breakthroughs using domestic animal PCs may

help bring about reproducible results and allow for compar-

ison among groups, to focus on the conserved biological

properties among species, and to better understand the

mechanisms underlying the regenerative efficacy.

Starting from this premise, this review aims to provide

an overview of the contribution of PC-based therapies by

considering the scientific evidence arising either from pre-

clinical or clinical trials performed on domestic animals.

Preclinical Studies to Test the Regenerative
Properties of PCs in Domestic Animal
Models

The properties displayed by PCs have led scientists to seek

to take advantage of these types of stem cells by studying

their therapeutic potential in domestic animal models of

different diseases. In this regard, successful results on

domestic animal preclinical models have been reported for

the treatment of neurogenic disorders, myocardial infarc-

tion (MI), wound healing, prenatal diseases, and tendon

bone and cartilage defects.

Several domestic animal models have been used to design

preclinical experiments. Relevant for PCs is the ovine model

where allo- and xenotransplantation settings have been per-

formed. Ovine species play a major role in musculoskeletal

regenerative and prenatal preclinical trials, because of its

high translational value due to the similarities with humans

in terms of weight, mechanical exertion, and reproductive

gestational outcomes11–14.

Table 3. Cell-Based Regenerative Medicine in Ovine Translational
Animal Model.

Stem/progenitor cells source
Experimental and spontaneous 
diseases treated with cell-based 

protocols

Mesenchymal stem cells

- Bone marrow280-282

- Adipose tissue280

- Peridontal ligament281

- Umbelical cord283,284

- Skeletal muscle220

Muscleskeleton

- Tendon30,32,54,60,292

- Bone69,70,74,280-281

- Osteoarticular76

Amniotic derived cells29,41,56,58,70,87-

89,91,285-289

Wound86

Embryonic Stem Cells290 Prenatal87-89,91

induced Pluripotent Stem Cells148,291
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Musculoskeletal Preclinical Studies

Tendon Injuries

Tendon injuries are a common cause of disease in both human

and veterinary medicine. Currently, in our society, more than

30 millions of musculoskeletal lesions occur and most of them

involve tendons and ligaments. In the United States and in

Europe, the economic impact of tendon and ligament morbi-

dity is around €140 billion each year251. With the increase in

life expectancy, tendon-related disorders will increase world-

wide with a huge economic impact on the sanitary system252.

The incidence is up to 25% considering the aging of the pop-

ulation, the increasing prevalence of metabolic disor-

ders253,254, and the increase in life expectancy255.

Tendinopathies also have clinical relevance in veterinary med-

icine: 46% of racehorses suffer from tendon pathologies and

their reduced sporting performance generate a negative eco-

nomic impact estimated worldwide to be €400 billion256,257.

Tendon injuries are among currently incurable diseases and the

poor pronoses are often exacerbated by a high incidence of

recurrences258.

Tendons can be exposed to trauma during sports activities,

but they can also be affected by overuse or aging. The most

commonly injured are Achilles and patellar tendons in

humans or superficial digital flexor tendons (SDFTs) in horses

with pathologies ranging from degenerative tendinopathies,

partial tears, up to complete ruptures259–261. These injuries are

difficult to manage because adult tendons do not regenerate

spontaneously but result in a fibrotic scar with poor tissue

quality and mechanical properties, frequently resulting in

long-term pain, discomfort, and disability258. Given the fre-

quency and the increasing cost of treating injuries, as well as

the relatively poor results obtained through surgical interven-

tion, new and innovative strategies have become more appeal-

ing. In this context, in recent years, PCs have attracted

increasing attention as a possible source of stem cells that

may be useful for clinical application in tendon regenerative

medicine141–143,216,217,226,239,249,262. In particular, our

research group has increased the role of amniotic-derived

cells142,143,215–218,226,262 by carrying out preclinical studies

adopting either allotransplantation or xenotransplantation

approaches218 on a validated ovine experimentally injured

calcaneal tendon model (Fig. 1). These studies have demon-

strated that ovine AECs have the ability to support tendon

regeneration and an early recovery of the biomechanical prop-

erties of the tissue216. Through these studies, the mechanisms

underlying tendon regeneration have begun to be elucidated.

Transplanted AECs support tendon regeneration partly

through a paracrine stimulation of the damaged host tissue.

AECs modulate the production of critical growth factors (i.e.,

vascular endothelial growth factor [VEGF] and transforming

growth factor beta1 [TGFb1])216 and of the immunomodula-

tory cytokines215,218 involved in healing processes. Amniotic-

derived cells enhance, innate regenerative mechanisms, which

was confirmed by greater recruitment of tenocytes involved in

the organization of the extracellular matrix and a more active

remodeling of supporting tissues such as blood and nervous

system. Interesting, data obtained under allotransplantation

and xenotransplantation settings are converging in order

to confirm a direct role of AECs in the process of tendon

regeneration exerted through their in situ transdifferentiation

(Fig. 2). Indeed, the molecular chimerism obtained in xeno-

transplantation settings confirmed that the cells, which sur-

vived within the host tissue for 28 d, modulated their gene

profile by upregulating 48 human species-specific genes. The

functional analysis of these genes revealed that they are

involved in epithelial-mesenchymal transition (KDM6B,

NR2F2), inflammatory response (CCRL2) and extracellular

matrix synthesis (COL1A1218 as indicated in Fig. 2). The

relevance of these genomic results has been reinforced by

evidence that AECs differentiated toward tenocyte-like cell-

synthesized collagen type I (COLI), thus contributing to tissue

regeneration through a direct release of major tendon extra-

cellular matrix proteins142,216 (see Preclinical studies and

Clinical Trials boxes in Fig. 2). Moreover, allotransplanted

AECs not only modulated the phases of tissue regeneration

but also guided a specific process of healing. In particular, cell

injection was associated with a specific centripetal process of

tissue regeneration that started close to the healthy portion of

the tissue and progressively affected the core of the wound

site. This dynamic process of tendon healing was accompa-

nied by the migration of transplanted AECs that were always

recorded in proximity to the front of extracellular matrix

deposition. These cells enhanced collagen synthesis and par-

ticipated in the process of cell and matrix alignment. Among

AEC regenerating mechanisms, immunomodulatory effects

seem to exert a central role: AEC tendon transplantation

induced a reduction in leukocyte infiltration and modulation

of the recruitment of macrophages (Mf) M1, pro-

inflammatory, and M2, pro-regenerative, phenotype in favor

of the latter ones215 (see Preclinical Studies box in Fig. 2).

The immunogenic role switched on in AEC-transplanted

tendons may have a role in accelerating early healing and

in preventing fibrosis215 (Fig. 1). Altogether, these findings

support the idea that AECs are one of the most promising

stem cell sources for achieving tendon regeneration. They

are indeed able to direct tendon healing by stimulating a

prompt recovery of tissue function without any preliminary

transfection.263–265 Another clinical advantage offered by

AECs is that they promoted tendon regeneration without

any undesirable in situ cell differentiation (osteogenic

or chondrogenic) as observed after MSC transplanta-

tion263,266. For both of these reasons, AECs may represent

a source of progenitor/stem cells that can be quickly

obtained for clinical practice. Tendon regeneration was also

confirmed using green fluorescent protein (GFP)-

nucleofected AFMSCs by Colosimo et al.217 Notably, not

only were limb tendons regenerated with AFMSCs but also

diaphragmatic tendons. Indeed, Kunisaki et al.267 demon-

strated neonatal diaphragmatic tendon repair with the use

of an AFMSC-based engineered tendon that led to improved

structural outcomes when compared with equivalent fetal
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myoblast–based and acellular grafts. Similar results were

obtained by Turner et al.268 who demonstrated tendon dia-

phragmatic repair with a clinically viable autologous tendon

engineered with AMSCs with efficacy analyses performed

up to ovine adulthood.

Bone Defects

Stem cell–based therapy for bone regeneration is an emer-

ging treatment. PCs have the potential to be utilized to

mainly treat craniofacial bone defects or major bone injuries.

In particular, preclinical studies carried out on canine and

Figure 1. Potential mechanisms involved in tendon regeneration promoted by amniotic epithelial cell (AEC) transplantation. The figures and
scheme described the potential mechanisms through which AEC-based therapies contribute to tendon regeneration as outlined in preclinical/
translational studies and clinical trials performed on domestic animal models (i.e., sheep and horses). The scheme summarized that AEC
transplantation induces an early functional recovery of the biomechanical properties of the damaged tendon by synchronizing angiogenesis,
inflammation, and extracellular matrix deposition/remodeling. The early stage of tendon repair is also supported by the increased attraction and
activation of resident progenitor cells as well as by the in situ transdifferentiation of transplanted AECs. The images on the left (A, B, and C) show
the ovine experimental model of calcaneal tendon defect (equivalent to the Achilles tendon in human). (A) The defect was generated through the
mechanical removal of a fixed volume of tissue. (B) Ultrasound image example of tendon immediately after the tissue removal (yellow arrows).
(C) Ultrasound image example of the defect regeneration 14 d after AEC transplantation (red arrows). Inside of the defect, the deposition of new
tendon fibers was evident through the improvement of the echogenicity score. The image on the right (D) displays the persistence of AECs
injected into a spontaneous horse superficial digital flexor (SDFT) tendinopathy at day 60. The viability of AECs in host tissue has been
demonstrated by loading the cells with a vital membrane dye (PKH26; Sigma-Aldrich, St. Louis, MO, USA). Cell labeling persisted after
transplantation and it is identifiable as a red fluorescence localized on cell membrane around the blue nuclei (40,6-diamidino-2-phenylindole
[DAPI] counterstaining fluorescent dye [Sigma-Aldrich, St. Louis, MO, USA]). The host damaged tissue is visualized by the faint green fluores-
cence that indicated the low density of collagen type I (COLI, Chemicon Int., Billrerica, MA, USA) in the extracellular matrix. Scale bar¼ 50 mm.
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Figure 2. Regenerative mechanisms involved in tendon healing after amniotic epithelial cell (AEC) transplantation. The 3 boxes summarized
the major scientific data clarifying the mechanism promoted by AECs for tendon regeneration in preclinical (ovine amniotic epithelial stem
cells [oAECs] into ovine damaged tendon: left top box), clinical settings (oAECs into equine spontaneous tendinopathies: right top box), and
translational (human amniotic epithelial stem cells [hAECs] into ovine tendon: bottom box). In all of the experimental settings, both
paracrine and in situ differentiation data have been documented. (Left top box) The preclinical studies had documented the immunomo-
dulatory influence of AECs through the higher expression of anti-inflammatory cytokines recorded in host tissue 28 d after transplantation
(see histograms). The AEC in situ transdifferentiation (right image) was confirmed by immunohistochemistry. In particular, the image shows
some PKH26-positive oAECs recorded in the experimental injured calcaneal tendons. Some of the AECs showed a fusiform shape and
started to synthetize collagen type I (COLI). The latter event was demonstrated by the colocalization of the green (anti-COLI; Chemicon
Int., Billrerica, MA, USA) and red (PKH 26; Sigma-Aldrich, St. Louis, MO, USA) fluorescence. The inserted box shows a group of freshly
isolated AECs before transplantation that are negative for COLI. The cells were identified by the DAPI(Sigma-Aldrich, St. Louis, MO, USA)
counterstained nuclei (blue fluorescence in small insert). In both the images, the scale bars is 50 mm. (Right top box) The clinical trials were
performed using ovine AECs to cure superficial digital flexor tendons (SDFT) spontaneous tendinopathies diagnosed in sportive horses. The
effect of oAEC treatments had been mainly documented on the basis of the positive clinical outcomes and of the athletic performances
follow-up carried out for 18 mo after cell transplantation. However, after 60 d, 1 patient died for causes unrelated to the treatment and
allowed us to collect more detailed information. Left images (A, B, C, and D) are examples of PKH26-labeled AEC (red fluorescence)
paracrine effects obtained with immunohistochemical analyses. (A) The proliferative marker Ki-67 (Dako Cytomation, Denmark) was
observed either in oAECs (PKH26-positive cells: cells indicated with arrows) or in several neighboring endogenous proliferating cells.
(B) Flattened ovine AECs (PKH26-positive cells) parallel to the longitudinal axis of the horse tendon fibers were observed. Some of them
colocalized within the cytoplasm species-specific ovine COLI (oCOLI; Chemicon Int., Billrerica, MA, USA) antibody (cells indicated with
arrows). (C) PKH26-positive oAECs were also identified among the equine COLI (eCOLI; Abcam, Cambridge, UK) fibers (green fluorescence).
(D) CD45; AbD Serotec, Oxford, UK marker (green fluorescence) was used to record the leukocyte infiltration and to identified ovine
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ovine models have demonstrated that 3-dimensional scaf-

folds engineered with PCs are able to repair different types

of bone defects. Indeed, Jang et al.54 have demonstrated

that the orthotopic implantation of canine UCBMSCs

mixed with beta-tricalcium phosphate (b-TCP) was able

to enhance osteogenesis in a dog diaphyseal radius defect

model. Additionally, UCBMSCs were applied to a dog with

nonunion fracture. Histomorphometric analysis revealed a

significant increase in new bone formation at 12 wk after

implantation, indicating that a mixture of UCBMSCs and

b-TCP is a promising osteogenic material for repairing

bone defects. Moreover, Kang et al.32 carried out another

in vivo orthotopic implantation assay on radial diaphysis of

Beagle dogs by demonstrating that MSCs derived from AT,

BM, UCB, and UCM have similar osteogenic capacities

even higher than cell-free implants. However, clinical

application is more feasible for the MSC source that can

be most easily and noninvasively collected such as UCB

and UCM.

Similar successful results on bone regeneration were

obtained by implanting ovine AECs into a sheep tibia defect

and into a maxillary sinus lift model220,221. The labeled

AECs survived in the experimental tibia lesions for 45 d and

supported consistent bone neoformation and reduced the

infiltration of inflammatory cells, thus showing the potential

applications in osteogenic regenerative medicine for this

type of PCs. Notable mechanistic advantages have been

gained in oral bone regeneration settings. All of these pre-

clinical studies were carried out in a sheep model by

mimicking the sinus augmentation lift human maxillofacial

procedure. The surgical experimental protocol for extraoral

maxillary sinus augmentation has been previously validated

and tested for its translational value269 by comparing size,

structural, and functional parameters with humans270,271.

Furthermore, ovine AECs were able to enhance bone regen-

eration after maxillary sinus augmentation when implanted

for 45 and 90 d with synthetic bone substitutes221. AEC allo-

transplantation provided prompt scaffold integration in host

tissue. Moreover, sinus explants displayed a reduced fibrotic

reaction, a limited inflammatory response, and an acceler-

ated process of angiogenesis when sinus lift was made with

engineered AEC scaffolds. The prompt recovery of home-

ostasis in cell-treated sinuses may contribute to the increased

bone deposition and the widespread presence of bone

nucleation foci. Additionally, using the maxillary sinus lift

model, ovine AECs exerted a relevant paracrine role to mod-

ulate VEGF expression and pro- and anti-inflammatory cyto-

kine expression, thus successfully guiding tissue regeneration.

AECs directly participated in bone deposition, as suggested

by the presence of ovine AECs entrapped within the newly

deposited osteoid matrix and by their ability to switch-on the

expression of bone-related genes when transplanted into host

tissues. Analogously, AFMSCs have demonstrated a similar

efficacy role in supporting bone regeneration in maxillary

sinuses. Berardinelli et al.222 engineered a commercial

magnesium-enriched hydroxyapatite/collagen scaffold for

orthopedic purposes and demonstrated that ovine AFMSCs

may improve bone regeneration by persisting for 90 d

postimplantation.

Joint/Cartilage Injuries

Sporadic research linked to the use of PCs for experimental

joint defects are available to date. Of interest, the preclinical

study aimed to verify in horses the safety of allogeneic UCB

intra-articular transplantation121. It has been demonstrated

that there were minimal local responses, such as joint swel-

ling or lameness after UCM and UCBMSCs intrasynovial

injection, in healthy horses thus offering the first biological

paradigm for the allogeneic use of these cells. Recently,

amniotic membrane (AM) samples have also been tested

in vivo for their regenerative role in full-thickness femoral

cartilage defects223.

Soft Tissue Preclinical Studies

Neurogenic Disorders

Spinal cord injury (SCI) produces progressive cell death,

axonal degeneration, and functional loss in multiple motor,

sensory, and autonomic system neurons272. All preclinical

research on PC-based SCI regenerative medicine has been

carried out in dogs using UCBMSCs. The first study per-

formed allogenic UCBMSC transplantation for SCI induced

by balloon compression at the first lumbar vertebra. In this

research, Lim et al.45 found that transplantation of the

UCBMSCs resulted in recovery of nerve function with a

significant improvement in the tissue conduction velocity

based on the somatosensory evoked potentials. In addition,

Figure 2. (continued) phagocytated PKH26-positive AECs (merged green and red fluorescence and indicated by the arrows). Scale bar¼ 25
mm. Right box (transdifferentiation). The oCOLI expression performed with species-specific primers was used to verify the differentiation of
oAECs after xenotrasplantation into the equine SDFT. Reverse transcription-polymerase chain reaction (RT-PCR) analysis, performed 60 d
posttransplantation, confirmed the presence of oCOLI gene expression in the equine host tissue thus documenting the in situ specialization of
the ovine transplanted AECs. (Bottom box) A translational setting was designed by transplanting human AECs into an ovine calcaneal tendon
defect for 28 d. Taking advantage of genomic chimerism (human vs. ovine), an active in situ specialization and a paracrine role of hAECs were
substantiated by the microarray analysis. Ingenuity Pathway Analysis (IPA)-inferred top network for modulated gene data set analysis was
generated for upregulated (red network) and downregulated (green network) transcript data set to disclose functional networks based on
their connectivity and enrichment statistics. Color legend spans from dark to light, which reflect more or less downexpression, respectively.
Genes labeled in white are not modulated. The network is constructed following the subcellular localization of the genes. (Left image) The
majority of the upregulated transcripts support human AEC specialization after transplantation. (Right image) By contrast, a more generic
biological role may be associated with the function of downregulated genes.
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Park et al.46 compared the effects of UCBMSCs at different

transplantation time points after SCI induction. These

authors identified the best interval between SCI and cell

injection, demonstrating that transplantation of UCBMSCs

1 wk after injury induction was more effective in improving

clinical signs and neuronal regeneration by reducing fibrosis.

The analyzed tissues showed an increased expression of

neuronal markers. More recently, Ryu et al.33 performed a

comparative study by using MSCs derived from AT, BM,

Wharton’s jelly, and UCB. All sources of MSCs survived for

8 wk and reduced interleukin 6 (IL-6) and cyclooxygenase-2

(COX-2) levels, which may have promoted neuronal regen-

eration in the spinal cord. Although there was no significant

difference in functional recovery among the different MSC

groups, interestingly, UCBMSCs induced higher nerve

regeneration, neuroprotection, and anti-inflammatory

activity.

Myocardial Infarction (MI)

MI causes tissue death, and the important goal in this field of

regenerative medicine is to replace lost tissue273. Only 2

preclinical studies on MI using domestic animal models have

been conducted, both in porcine models. One study carried

out by Sartore et al.274 demonstrated the ability of autotrans-

planted AFMSCs to improve cardiac functional recovery

after acute ischemic myocardium experimental defects in a

porcine model. The regenerative role was exerted 30 d after

transplantation through the transdifferentiation of the cells

toward the vascular tissue lineage whereas, by contrast, evi-

dence of in situ cardiomyocyte differentiation has been

observed. The surviving AFMSCs downregulated mesench-

ymal cell markers with the exception of smooth muscle and

endothelial antigens but did not express any major cardiac

markers such as troponin.

Recently, Kimura et al.275 demonstrated the therapeutic

potential of porcine GFP-transfected AMSCs on a chronic

myocardial ischemia model. The AMSCs survived after allo-

geneic transplantation performed in an immune-competent

animal, by gaining the in situ cardiac phenotype through

either transdifferentiation or cell fusion, differently from

AFMSCs.

Wound Healing

Cutaneous wound healing requires a well-orchestrated inte-

gration of the complex biological and molecular events of

cell migration and proliferation and extracellular matrix

deposition, angiogenesis and remodeling. However, this

orderly progression of the healing process is impaired in

many chronic diseases276. Preclinical studies carried out to

test PC regenerative properties for wound healing have

been conducted in goat and sheep models. Azari et al.277

investigated the effects of allotransplanted UCMMSCs on

the cutaneous wound healing process. A histopathological

study revealed a complete re-epithelialization after 7 d,

whereas in control samples, the wounds still showed an

incomplete process. An interesting experiment was carried

out by Klein et al.236 who investigated wound healing in

fetal lambs. Fetal wound healing involves minimal inflam-

mation and limited scarring. During this study, fetuses

received an intra-amniotic infusion of labeled autologous

AMSCs, clarifying their direct role in accelerating wound

closure and enhancing the extracellular matrix profile

rather than the release of soluble factors. The mechanisms

highlighted still need to be fully elucidated and hold valu-

able clues for wound healing and the development of MSC-

based regenerative strategies, both perinatally and later

in life.

Prenatal Preclinical Studies

Many rigorous preclinical studies have focused their atten-

tion on the in utero PC transplantation to ameliorate pre-

natal congenital disease. All of these studies have been

carried out using a sheep model. Shaw et al.227 were the

first to demonstrate the safety of in utero AFMSC autolo-

gous transplantation. In this study, GFP-transduced

AFMSCs were injected into the peritoneal cavity of each

fetal sheep donor. GFP-positive cells were detected in fetal

tissues including liver, heart, placenta, membrane, UCB,

adrenal gland, and muscle, demonstrating that autologous

AFMSCs have widespread organ homing and can offer an

alternative treatment for prenatal congenital diseases.

These authors were also able to establish the hematopoietic

potential of GFP� sheep AFMSCs selected for CD34 (GFP-

CD34þ AFMSCs). After autologous in utero transplanta-

tion these cells colonized hematopoietic organs and periph-

eral blood, confirming their potential for the development

of cell-based protocols to treat congenital hematopoietic

diseases228.

Prenatal studies have also been conducted to treat airway

pathologies. Particularly, Gray et al.229 have shown that

AMSC-engineered airways may become an option for peri-

natal airway repair. Fetal lambs with tracheal defects were

implanted with expanded/labeled autologous AMSCs engi-

neered in the de-cellularized leporine tracheal segment.

Lambs that survived to term could breathe at birth. Engi-

neered constructs exhibited full epithelialization, display-

ing a pseudostratified columnar epithelium, a significantly

greater degree of increase in elastin levels after implanta-

tion than acellular grafts.

Severe congenital tracheal anomalies, namely, long seg-

ment stenosis, atresia, and agenesis, represent another typol-

ogy of unsolved prenatal diseases267,278. Engineered

cartilaginous grafts with GFP-AFMSCs have been used for

fetal tracheal repair by evaluating their effect to term.

Respiratory functional tests combined with morphological

evidence of the presence of fluorescent protein–positive

cells lined with pseudostratified columnar epithelium and

remodeled into a predominantly fibrous cartilage pattern

were the most relevant results obtained. By contrast,
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implants alone did not show any significant changes in gly-

cosaminoglycans, collagen, or elastin content at harvest.

Thus, these findings demonstrated that AFMSCs can be a

practical cell source for engineered tracheal reconstruction.

The in utero PCs transplantation technique was also used

for the treatment of prenatal congenital cardiac malforma-

tions. Weber et al.230 carried out prenatal heart valve inter-

ventions aimed at the early and systematic correction of

congenital cardiac malformations. In this experiment, fetal

implantation was carried out in utero into the pulmonary

position of prenatally engineered biodegradable poly-

glycolic acid- poly-4-hydroxybutyrate (PGA-P4HB) com-

posite heart valves with autologous ovine AFMSCs.

Tissue-engineered heart valves showed in vivo functional-

ity with intact valvular integrity and absence of thrombus

formation, thus providing evidence that this approach may

serve as an experimental basis for future human prenatal car-

diac interventions and a promising treatment option in mater-

nal–fetal care.

Clinical Application of PCs in Veterinary
Regenerative Medicine

Domestic animal PC clinical application is limited to date

and has been used mainly to treat tendinopathies in horses

and ocular surface reconstruction both in horses and in

dogs.

Musculoskeletal Applications

Tendinopathy

Tendinopathies of the SDFT is a significant cause of lame-

ness and often a career-ending event in Thoroughbred horses

because of its high incidence, prolonged recovery period,

and high rate of recurrence97,110,144,145,262,279. Afflicted

horses are prone to distal limb injury due to hyperextension

of the metacarpal joint during racing or riding; thus, the

SDFT represents the highest frequency of injury in race-

horses280. After injury, the equine SDFT heals via a process

of fibrosis, but the scar tissue that forms is functionally

deficient compared to that for the normal tendon and it is

the predisposing factor of the high incidence of recur-

rences281–283. However, recently in equine medicine, PCs

have been used to treat tendon injuries. The most widely

used cells for this purpose are UCB and amniotic-derived

cells. The first clinical trial was performed with horse

AMSCs to investigate their therapeutic potential and cell

tolerance in vivo, when allogeneically injected into sponta-

neous tendon injuries. The study resulted in a quick reduc-

tion in tendon size and ultrasonographic (US) cross-sectional

area measurements146. The same group also conducted a

series of clinical studies that confirmed the efficacy of the

amniotic-derived stem cells in curing SDFT tendinopathies

demonstrating their better clinical outcome over

BMMSCs284. In the same year, Lange-Consiglio et al.141

demonstrated that the conditioned medium obtained from

horse AMSCs can also be useful for cell therapy applications

in tendon diseases, hypothesizing that these cells may pro-

mote tendon repair mainly via paracrine-acting molecules

targeting inflammatory processes rather playing a direct

regenerative role. This study identified AMSC-conditioned

media as a novel therapeutic biological cell-free product for

treating horse tendon and ligament diseases.

Another source of amniotic-derived cells has been used

with success in the treatment of equine spontaneous tendi-

nopathies. Muttini et al.142 have demonstrated that ovine

AEC xenotransplantation was able to improve the clinical

outcome in 15 horses with acute SDFT lesions. In particular,

US controls showed infilling of the defect and early good

alignment of the fibers, and 12 of the 15 horses resumed their

previous activity during the 18 mo after treatment. The clin-

ical data were also substantiated by histological analyses

carried out on a treated SDFT of a horse who died for unre-

lated causes. The results demonstrated that ovine AECs con-

tribute to tendon healing. The recovered transplanted cells

were indeed able to deposit ovine COLI in the repaired area,

as revealed by using ovine-specific primers and antibodies

that did not cross-react with equine COLI. These cells also

confirmed their low immunogenicity, as they were able to

survive in the healing site for 60 d.

The effective role of ovine AEC treatment has been

confirmed in an experimental trial carried out on 2 horses

with acute and 1 horse with chronic spontaneous SDFT

tendinopathies. Muttini et al.143 used xenotransplantation

with ovine AECs demonstrating that, after 180 d, they were

able to induce an almost complete restoration of normal

tendon architecture with an optimal alignment of tendon

fibers. AECs represent to date the only cell source used for

the treatment of tendinopathies where experimental, precli-

nical, translational, and clinical studies have been com-

bined to demonstrate the efficacy and safety of these

stem cell–based protocols.

Studies using UBC-derived stem cells have also demon-

strated their efficacy in healing SDFT tendinopathies147.

Additionally, equine UCBMSCs148 have also demonstrated

a therapeutic effect in clinical cases of desmitis of the sus-

pensory ligament and of the inferior check ligament and

tendinitis of the deep digital flexor tendon.

Soft Tissue Applications

Ophthalmology

The positive results in human and veterinary medicine have

led to the use of the AM as a clinic dressing protocol to

promote, healing of epithelial tissues248,285. AM transplanta-

tion indeed has an effective clinical role in veterinary

ophthalmology for its avascular and strong structure and for

the large presence of growth factors (mainly antiangiogenic

and anti-inflammatory) that are able to prevent or decrease

fibrosis during healing.
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Indications for its use are steadily growing from previ-

ously human experience and include grafting/patching to

replace diseased, missing, or excised tissue. Alternatively,

AM has been used as a substrate for the expansion of epithe-

lial cells for transplantation for organs or tissues such as the

cornea. In this context, AM transplantation has been demon-

strated to preserve the integrity of the globe, optimize the

visual outcome, and minimize scarring in severely diseased

corneas.

Based on these findings, xenogeneic use of AM was adopted

in companion animals as replacement for full-thickness cor-

neal defects (18-treated dogs)94 and to treat keratomalacia (1

dog)94, fibrous histiocytoma (1 dog)94, or symblepharon (1

cat)95. In all of these clinical cases, the patients experienced

reduced ocular pain by recovery of vision and tissue architec-

ture although some degree of graft rejection was observed94.

In the same year, AM was also allotransplanted in horses

affected by corneal ulceration and severe keratomalacia205.

The treatment preserved vision and maintained the structural

integrity of the globe by maximizing cosmesis in the eyes.

The validity of AM transplantation for ocular surface recon-

struction in horses was then definitively confirmed by Plum-

mer et al.206 who conducted a retrospective study on 58

equine clinical cases.

Wound Healing

In domestic animal patients, the use of AM to promote

wound healing has been less investigated than in humans

to date with the exception of 1 paper by Iacono et al.193

which compared AFMSCs and platelet rich plasma (PRP)

gel treatments in severe decubitus ulcers by demonstrating

that the combination of AFMSCs plus PRP promoted a faster

healing in aseptic neonatal foal.

Conclusions

Although PCs do not represent the most widespread used

progenitors/stem cells in veterinary science and medicine,

they probably are the most promising and scientifically solid

cell source studied so far239,249.

Rigorous investigations have begun to clarify the biolo-

gical properties of PCs in domestic animals by confirming a

high degree of conservation among species and reinforcing

the idea of that experimental data between species remain

robust and can be compared.

One valuable biological characteristic of PCs are their

paracrine effects. Several studies using human and animal

amniotic-derived cells demonstrated that either the native

or induced secretomes contain an array of modulatory

molecules and proteins capable of recapitulating most of

the regenerative processes involved in the recovery of tis-

sue homeostasis after cell transplantation286. A large num-

ber of human and animal studies confirm a conserved

paracrine effect of amniotic-derived cells in the modulation

of inflammatory and antifibrotic mechanisms. More

recently, new perspectives on application of cells for in

antiaging and antitumor therapies owe to the secretory

activities of AECs287.

Domestic animal PCs, in addition, have offered advanced

insights in relevant challenges related to the ex vivo negative

effects. Indeed, although most PCs can be maintained ex vivo

and expanded, the yield and recovery of them can be quite

variable and their biological characteristics appear to be

dependent on the genotype, gestational age of the

donor, and the collection/amplification methods225,288–290.

These data introduce some important caveats related to cell

culture that may limit the comparison of results among

research groups and, as a consequence, the translation of

animal and human studies into clinical trials. Data recently

obtained on domestic animal AECs offers practical solutions

to preserve the native phenotype during in vitro cell ampli-

fication, and culture methods have been proposed that may

improve the biological regenerative properties of expanded

AECs thus increasing the comparability of cell transplanta-

tion protocols291.

The standardization of PC protocols represents, in addi-

tion, a prerequisite for developing comparable preclinical

treatments. Of utmost importance is that the effectiveness

of a treatment designed to replace or regenerate tissues

depends on a correct balance between the inherent response

of the recipient and the quality of the treatment itself.

The elucidation of the properties of PCs combined with

the robust evidence of their safety and regenerative efficacy

represents the proof of concept of their therapeutic use239,292.

Based on the evidence discussed, PC-based therapy is

now used in veterinary medicine for muskuloskeletal disor-

ders, mainly in athletic horses141,146,239.

The clinical translation of the PC-based treatments has

been validated by a large amount of data collected in pre-

clinical settings, which demonstrated that PC transplantation

in different animal models promoted common mechanisms

leading to regeneration. The strategies adopted by PCs to

combat pathological phenotypes include the exogenous cell

graft persistence, the direct replacement of the dysfunctional

cells through the in situ tissue-specific lineage transdiffer-

entiation (e.g., tendon- and bone-derived lineage cells), as

well as the improvement of endogenous regenerative milieu

realized through the release of pro-angiogenic, pro-

neurogenic, anti-inflammatory, and antifibrotic fac-

tors142,216–218,221,274. However, what is not clear is how long

exogenous cells remain viable and active, whether they

change significantly with time and/or stimulation in vivo,

and how dynamic changes may influence biomolecule pro-

duction and immunogenicity. The potential extent and

impact of PC viability and functionality and the delineation

of local and systemic immune responses continue to be vital

areas of study.

The biological the biological mechanisms and application

of domestic animal PCs to date appears to be more consistent

than other sources of progenitor/stem cells that are more

commonly used in veterinary medicine such as MSCs
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derived from adult tissues. On the basis of the data gathered

from preclinical studies and clinical trials, PC-based treat-

ment may have a wide range of applications for treating

diseases that affect domestic animals either during adulthood

or prenatally.

In light of the robustness of the basic experimental and

clinical data obtained using PCs, it is not surprising if the use

of these cells moves toward translation to clinical practice in

human patients.

Future Perspectives

The demonstration of both safety and efficacy is paramount

for translation to clinical applications. However, legislation

may mandate delays in translating a method or treatment for

veterinary regenerative medicine. Regulating drugs or bio-

logics for veterinary medicine in a manner similar to that in

human medicine may not be ideal and in the next future, a

legislation in this operative context is desirable in order to be

able to certify the safety and efficacy of different cell-based

protocols and to standardize these treatments among

clinicians.

It has been thoroughly researched and well-supported in

preclinical and clinical multicenter studies that PCs possess

superior regenerative potential compared to conventional cell-

based treatments for horse tendinopathies. In addition, given

the high economic value of horses, protocols for cell banking

may be highly beneficial for this valuable source of stem cells.

This is a practice that vets should consider when preparing for

the birth of a foal. PC banking allow for a fast and readily-

available supply of stem cells for when an injury occurs,

which will give the horse the best chance of a successful

recovery. Horses that would have PCs already available

would therefore be at a considerable advantage following an

SDFT injury. Furthermore, PC cryopreservation is crucial

since this would allow for the generation of a quality-

controlled stock of cells, transport of cells among investiga-

tors, and avoidance of the need for expensive and time-

consuming continuous culture.

Furthermore, the consistent availability of data on domes-

tic animal PCs could lead to the use of this cell source and

others to treat unexplored animal diseases, which cannot

currently be addressed by drug therapy. Detailed character-

ization of PCs may be also useful insolving emerging and

challenging technological issues related to, for example,

accuracy and efficacy of cell injection site and doses, cell

migration track, and off-target and monitoring long-term cell

engraftment. The resolution of these applicative aspects is

crucial for standardization of cell-based protocols and for

increasing the predictive validity of regenerative medicine

applied to human and animal diseases.
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T, Heikkilä P, Tulamo RM. Management of equine tendon and

ligament injuries with expanded autologous adipose-derived

mesenchymal stem cells: a clinical study. In World Conference

on Regenerative Medicine. Regen Med Suppl; 2009, Vol. 4,

No. 6 (suppl 2).

161. Smith RK, Webbon PM. Harnessing the stem cell for the

treatment of tendon injuries: heralding a new dawn? Br J

Sports Med. 2005;39(9):582–584.

162. Crovace A, Lacitignola L, De SR, Rossi G, Francioso E. Cell

therapy for tendon repair in horses: an experimental study.

Vet Res Commun. 2007;31(1):281–283.

163. Smith R, Young N, Dudhia J, Kasashima Y, Clegg PD, Good-

ship A. Effectiveness of bone-marrow-derived mesenchymal

progenitor cells for naturally occurring tendinopathy in the

horse. In World Conference on Regenerative Medicine.

Regen Med Suppl; 2009, Vol. 4, No. 6 (suppl 2).

164. Brehm W.Equine mesenchymal stem cells for the treatment

of tendinous lesions in the horse—cellular, clinical and his-

tologic features. International Bone-Tissue-Engineering Con-

gress, Hannover, Germany, 7–9 November 2008, Engineering

Part A. July 2009, 15(5):O-1-O-29.Mary Ann Liebert, Inc.

publishers.

165. Mountford DR, Smith RK, Patterson-Kane JC. Mesenchymal

stem cell treatment of suspensory ligament branch desmitis;

post mortem findings in a 10 year old Russian Warmblood

gelding—a case report. Pferdeheilkunde. 2006;5 (September/

October);22:559–563.

166. Carvalho ADM, Badial PR, Alvarez LE, Yamada L, Borges

AS, Deffune E, Hussni CA, Garcia Alves AL. Equine tendo-

nitis therapy using mesenchymal stem cells and platelet con-

centrates: a randomized controlled trial. Stem Cell Res Ther.

2013;4(4)85.

167. Vandenberghe A, Broeckx SY, Beerts C, Seys B, Zimmerman

M, Verweire I, Suls M, Spaas JH. Tenogenically induced

allogeneicmesenchymal stem cells for the treatment of prox-

imal suspensory ligament desmitis in horse. Front Vet Sci.

2015;2:49.

168. Dahlgren LA. Fat-derived mesenchymal stem cells for equine

tendon repair. In World Conference on Regenerative Medi-

cine. Regen Med Suppl; 2009, Vol. 4, No. 6 (suppl 2).

169. Caniglia CJ, Schramme MC, Smith RK. The effect of intrale-

sional injection of bone marrow derived mesenchymal stem

cells and bone marrow supernatant on collagen fibril size in a

surgical model of equine superficial digital flexor tendonitis.

Equine Vet J. 2012;44(5):587–593.

170. Marfe G, Rotta G, De Martino L, Tafani M, Fiorito F, Di

Stefano C, Polettini M, Ranalli M, Russo MA, Gambacurta

A. A new clinical approach: use of blood-derived stem cells

(BDSCs) for superficial digital flexor tendon injuries in

horses. Life Sci. 2012;90(21-22):825–830.

171. Chaudhury S. Mesenchymal stem cell applications to tendon

healing. Muscles Ligaments Tendons J. 2012;2(3):222–229.

172. Renzi S, Ricco S, Dotti S, Sesso L, Grolli S, Cornali M, Carlin

S, Patruno M, Cinotti S, Ferrari M. Autologous bone marrow

mesenchymal stromal cells for regeneration of injured equine

Barboni et al 111



ligaments and tendons: a clinical report. Res Vet Sci. 2013;

95(1):272–277.

173. Smith RK. Stem cell technology in equine tendon and liga-

ment injuries. Vet Rec. 2006;158(4):140.

174. Sole A, Spriet M, Padgett KA, Vaughan B, Galuppo LD,

Borjesson DL, Wisner ER, Vidal MA. Distribution and

persistence of technetium-99 hexamethyl propylene amine

oxime-labelled bone marrow-derived mesenchymal stem

cells in experimentally induced tendon lesions after intraten-

dinous injection and regional perfusion of the equine distal

limb. Equine Vet J. 2013;45(6):726–731.

175. McDuffee L. Osteoprogenitors in bone repair. In World

Conference on Regenerative Medicine. Regen Med Suppl;

2009, Vol. 4, No. 6 (suppl 2).

176. Milner PI, Clegg PD, Stewart MC. Stem cell-based therapies for

bone repair. Vet Clin North Am Equine Pract. 2011;27(2):

299–314.

177. Wilke MM, Nydam DV, Nixon AJ. Enhanced early chondro-

genesis in articular defects following arthroscopic mesench-

ymal stem cell implantation in an equine model. J Orthop Res.

2007;25(7):913–925.

178. Ahern BJ, Parvizi J, Boston R, Schaer TP. Preclinical animal

models in single site cartilage defect testing: a systematic

review. Osteoarthritis Cartilage. 2009;17(6):705–713.

179. Koch TG, Betts DH. Stem cell therapy for joint problems

using the horse as a clinically relevant animal model. Expert

Opin Biol Ther. 2007;7(11):1621–1626.

180. Brommer H, van Weeren PR, Brama PA. New approach for

quantitative assessment of articular cartilage degeneration in

horses with osteoarthritis. Am J Vet Res. 2003;64(1):83–87.

181. Goodrich LR, Nixon AJ. Medical treatment of osteoarthritis

in the horse—a review. Vet J. 2006;171(1):51–69.

182. Litzke LE, Wagner E, Baumgaertner W, Hetzel U, Josimovic-

Alasevic O, Libera J. Repair of extensive articular cartilage

defects in horses by autologous chondrocyte transplantation.

Ann Biomed Eng. 2004;32(1):57–69.

183. Frisbie DD. Future directions in treatment of joint disease in

horses. Vet Clin North Am Equine Pract. 2005;21(3):713–724.

184. Broeckx S, Zimmerman M, Crocetti S, Suls M, Mariën T,
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V, Tetè S, Marchisio M, Pierdomenico L, Berardinelli P, et al.

Stemness characteristics and osteogenic potential of sheep

amniotic epithelial cells. Cell Biol Int. 2012;36(1):7–19.

221. Barboni B, Mangano C, Valbonetti L, Marruchella G, Berar-

dinelli P, Martelli A, Muttini A, Mauro A, Bedini R, Turriani

M, et al. Synthetic bone substitute engineered with amniotic

epithelial cells enhances bone regeneration after maxillary

sinus augmentation. PLoS One. 2013;8(5):e63256.

222. Berardinelli P, Valbonetti L, Muttini A, Martelli A, Peli R,

Zizzari V, Nardinocchi D, Vulpiani MP, Tetè S, Barboni B,
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isio M, et al. Calcium sensing receptor expression in ovine

amniotic fluid mesenchymal stem cells and the potential role

of R-568 during osteogenic differentiation. PLoS One. 2013;

8(9):e73816.

234. Weber B, Kehl D, Bleul U, Behr L, Sammut S, Frese L,

Ksiazek A, Achermann J, Stranzinger G, Robert J, et al. In

vitro fabrication of autologous living tissue engineered vas-

cular grafts based on prenatally harvested ovine amniotic

fluid-derived stem cells. J Tissue Eng Regen Med. 2016;

10(1):52–70.

235. Kunisaki SM, Fuchs JR, Steigman SA, Fauza DO. A com-

parative analysis of cartilage engineered from different peri-

natal mesenchymal progenitor cells. Tissue Eng. 2007;

13(11):2633–2644.

236. Klein JD, Turner CG, Steigman SA, Ahmed A, Zurakowski

D, Eriksson E, Fauza DO. Amniotic mesenchymal stem cells

enhance normal fetal wound healing. Stem Cells Dev. 2011;

20(6):969–976.

237. Notarianni E, Galli C, Laurie S, Moor RM, Evans MJ. Deri-

vation of pluripotent, embryonic cell lines from the pig and

sheep. J Reprod Fertil Suppl. 1991;43:255–260.

238. Liu J, Balehosur D, Murray B, Kelly JM, Sumer H, Verma PJ.

Generation and characterization of reprogrammed sheep

induced pluripotent stem cells. Theriogenology. 2012;77(2):

338–346.

239. Barboni B, Russo V, Berardinelli P, Muttini A, Mattioli M. 12

applications of placenta-derived cells in veterinary medicine.

In: Placenta The Tree of Life. Boca Raton, FL: CRC Press-

Taylor & Francis; 2016. p. 217.

240. Li X, Bai J, Ji X, Li R, Xuan Y, Wang Y. Comprehensive

characterization of four different populations of human

mesenchymal stem cells as regards their immune properties,

proliferation and differentiation. Int J Mol Med. 2014;34;

695–704.

241. Hao Y, Ma DH, Hwang DG, Kim WS, Zhang F. Identification

of antiangiogenic and antiinflammatory proteins in human

amniotic membrane. Cornea. 2000;19(3):348–52.

242. Steed DL, Trumpower C, Duffy D, Smith C, Marshall V,

Rupp R, Robson M. Amnion-derived cellular cytokine solu-

tion: a physiological combination of cytokines for wound

healing. Eplasty. April 7, 2008;8:e18.

243. Kakishita K, Elwan MA, Nakao N, Itakura T, Sakuragawa N.

Human amniotic epithelial cells produce dopamine and sur-

vive after implantation into the striatum of a rat model of

Parkinson’s disease: a potential source of donor for transplan-

tation therapy. Exp Neurol. 2000;165(1):27–34.

244. Liu Y, Mu R, Wang S, Long L, Liu X, Li R, Sun J, Guo J,

Zhang X, Guo J, et al. Therapeutic potential of human umbi-

lical cord mesenchymal stem cells in the treatment of rheu-

matoid arthritis. Arthritis Res Ther. 2010;12(6):R210.

245. Apps R, Murphy SP, Fernando R, Gardner L, Ahad T, Moffett

A. Human leucocyte antigen (HLA) expression of primary

trophoblast cells and placental cell lines, determined using

single antigen beads to characterize allotype specificities of

anti-HLA antibodies. Immunology. 2009;127(1):26–39.

246. Parolini O, Caruso M. Review: preclinical studies on

placenta-derived cells and amniotic membrane: an update.

Placenta. 2011;32(Suppl 2): S186–S195.

247. Bailo M, Soncini M, Vertua E, Signoroni PB, Sanzone S,

Lombardi G, Arienti D, Calamani F, Zatti D, Paul P, et al.

Engraftment potential of human amnion and chorion cells

derived from term placenta. Transplantation. 2004;78(10):

1439–1448.

248. Parolini O, Soncini M, Evangelista M, Schmidt D. Amniotic

membrane and amniotic fluid-derived cells: potential tools for

regenerative medicine? Regen Med. 2009;4(2):275–291.

249. Cremonesi F, Corradetti B, Lange Consiglio A. Fetal adnexa

derived stem cells from domestic animal: progress and per-

spectives. Theriogenology. 2011;75(8):1400–1415.

250. Raggi C, Berardi AC. Mesenchymal stem cell, aging and

regenerative medicine. Muscles Ligaments Tendons J.

2012;16;2(3):239–242.

251. Abbah S, Spanoudes K, O’Brien T, Pandit A, I Zeugolis D.

Assessment of stem cell carriers for tendon tissue engineering

in pre-clinical models. Stem Cell Res Ther. 2014;5(2):38.

252. Longo UG, Lamberti A, Maffulli N, Denaro V. Tendon aug-

mentation grafts: a systematic review. Br Med Bull. 2010;94:

165–188.

114 Cell Transplantation 27(1)



253. Oliva F, Piccirilli E, Berardi AC, Frizziero A, Tarantino U,

Maffulli N. Hormones and tendinopathies: the current

evidence. Br Med Bull. 2016;117(1):39–58.

254. Oliva F, Piccirilli E, Berardi AC, Tarantino U, Maffulli N.

Influence of thyroid hormones on tendon homeostasis. Adv

Exp Med Biol. 2016;920:133–138.

255. Zeugolis D, Chan J, Pandit A. Tendons: engineering of

functional tissues. In: Pallua N, Suscheck C, editors. Tis-

sue engineering. springer, Berlin: Heidelberg: 2011.p.

537–572.

256. Williams RB, Harkins LS, Hammond CJ, Wood JL. Racehorse

injuries, clinical problems and fatalities recorded on British

racecourses from flat racing and National Hunt racing during

1996, 1997 and 1998. Equine Vet J. 2001;33(5):478–486.

257. Alves AG, Stewart AA, Dudhia J, Kasashima Y, Goodship AE,

Smith RK. Cell-based therapies for tendon and ligament inju-

ries. Vet Clin North Am Equine Pract. 2011;27(2):315–333.

258. Sharma P, Maffulli N. Biology of tendon injury: healing,

modeling and remodeling. J Musculoskelet Neuronal Interact.

2006;6(2):181–190.

259. Sharma P, Maffulli N. Tendon injury and tendinopathy: heal-

ing and repair. J Bone Joint Surg Am. 2005;87(1):187–202.

260. Duerden JD, Keeling JJ. Disorders of the Achilles tendon.

Curr Orthop Pract. 2008;19:253–259.

261. Järvinen TA, Järvinen TL, Kääriäinen M, Kalimo H, Järvinen
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