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ABSTRACT: Identifying low-energy conformers with quantum
mechanical accuracy for molecules with many degrees of freedom is
challenging. In this work, we use the molecular dihedral angles as
features and explore the possibility of performing molecular conformer
search in a latent space with a generative model named variational
auto-encoder (VAE). We bias the VAE towards low-energy molecular
configurations to generate more informative data. In this way, we can
effectively build a reliable energy model for the low-energy potential
energy surface. After the energy model has been built, we extract local-
minimum conformations and refine them with structure optimization.
We have tested and benchmarked our low-energy latent-space (LOLS)
structure search method on organic molecules with 5−9 searching dimensions. Our results agree with previous studies.

■ INTRODUCTION

Organic molecules are typically very flexible, and any molecule
with rotatable bonds can adopt multiple energetically accessible
conformations, each associated with different chemical and
electronic properties.1,2 Identifying the low-energy molecular
conformers and determining their energy ranking is therefore a
topic of great importance in computational chemistry,3

cheminformatics,4 computational drug design,5 and structure-
based virtual screening.6 However, the dimension of configura-
tional spaces and the complexity of energy landscapes increases
drastically with the size of the molecule. This makes molecular
conformer search one of the persistent challenges in molecular
modeling.1,7

A variety of methods and tools have been developed for
molecular conformer search. Systematic methods use a grid to
sample all possible torsion angles in a molecule. This approach is
deterministic but limited to small molecules due to its poor
scaling with increasing search dimensions. Conversely, methods
such as Monte Carlo annealing,8 minima hopping,9 basin
hopping10 and genetic algorithms11 sample configurational
space stochastically. Stochastic methods can be applied to larger
molecules with high-dimensional search spaces, but due to the
random nature of the process, extensive sampling is required to
achieve convergent results. To balance the accuracy and
computational cost, hierarchical methods which first scan a
large portion of configurational space, and then refine the
promising candidate with more costly and accurate computa-
tions have been developed.12,13 Since simulation methods at
different levels of accuracymay predict different potential energy
surfaces (PES), a large number of structures still needs to be
optimized at the higher level to avoid missing the true low-
energy conformers.12

In recent years, machine learning techniques such as artificial
neural networks,14,15 Gaussian process regression (GPR),16−19

and machine-learned force fields20 have been successfully
applied to accelerate structure-to-energy predictions and
geometry optimization for molecules. However, most of these
schemes require training on large data sets, usually costly to
compute with ab initio methods.
In our recent work, we presented a new approach based on

Bayesian Optimization and quantum chemistry methods for
molecular conformer identification and ranking.21 We first kept
all bond lengths and angles fixed, and selected the dihedral
angles as the features to form the search space. Then we
employed the BOSS code22,23 to actively learn the PES of the
molecule by Bayesian Optimization iterative data sampling.
After the PES converged, we analyzed the PES to extract the
local minima locations and related structures, and optimized the
structures with density funcational theory (DFT) and other
post-processings. We have tested our method on cysteine,
serine, tryptophan, and aspartic acid. The method shows both
high accuracy and efficiency, and can be easily automated for
extensive searches. The excellent efficiency is partly due to
learning the PES in the reduced conformational space of
dihedral angles and only refining the local minima structures
with DFT, and partly because Bayesian Optimization creates
small and compact data sets. However, our method is not
directly transferable to molecules with high-dimensional search
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spaces. The data required for building reliable PESs increases
rapidly with search dimensions. With increasing data set size, the
cost to compute the necessary data with quantum mechanical
methods and to build the surrogate model of the PES in BOSS
grows and eventually becomes prohibitively expensive.
To address this challenge, we will explore the possibility of

using a generative model to acquire samples in a latent space for

molecular conformer search. We decided on variational auto-
encoders (VAEs) as the generative model, because the neural
network structure of VAEs is typically simple; and VAEs are
equipped with a regularization term in the loss function to
prevent over-fitting. VAEs combine an encoding neural network
(encoder) with a decoding neural network (decoder). The
encoder compresses data from real space (here the space of

Figure 1. Schematic illustration of sampling methods. The blue and red dots represent acquired samples and candidates for the next sampling steps. In
(a) the candidates are randomly picked and have no relation with already acquired samples. The dash lines in (b) represent the contour lines of the
surrogate model which is fitted to the acquired samples and the local maxima or minima of the model will be the next acquisition candidates. The green
dots in (c) represent samples in latent space. The generator maps them to real space.

Figure 2. Ball-and-stick models of cysteine, tryptophyl-glycyl (WG), glycyl-phenylalanyl-alanyl (GFA), glycyl-glycyl-phenylalanyl (GGF) and
tryptophyl-glycyl-glycyl (WGG). Red atoms denote oxygen, white hydrogen, gray carbon, blue nitrogen, and yellow sulfur. The dashed circle mark the
dihedral angles that have a reduced search range of [0°, 180°]. The solid circles and squares mark peptide bonds and dihedral angles that are kept fixed
during sampling. All other dihedral angles belong to our space with their full range [0°, 360°].

Figure 3.The LOLSworkflow starts from initial data and finishes with the structures and energies of stable conformers. The eclipses represent data, the
rectangles machine learning models, and the rectangles with round corners represent DFT calculations.
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dihedral angles) into a latent space. This compression ideally
retains the essential data correlations in the reduced
representation. The decoder maps latent vectors back to the
original representation. Figure 1 illustrates how sampling in
latent space with a generative model (c) differs from
conventional random sampling in real space (a) and from our
previous approach of employing a surrogate model and an
acquisition strategy (b).
To sample more efficiently with our generative approach, we

are steering the VAE towards low-energy molecular config-
urations during the training. The latent space then predom-
inantly encodes information on the relevant, low-energy region
of the PES. As in previous work, we use dihedral angles to
represent the different molecular conformations. We also extract
local minima structures and apply structure optimization only
after a meaningful PES has been learned.
In brief, in this work we designed a low-energy latent-space

(LOLS) structure search method for molecular comformer
search and determined appropriate settings and suitable
hyperparameters for it. We tested LOLS on cysteine and four
peptides tryptophyl-glycyl (WG), glycyl-phenylalanyl-alanyl
(GFA), glycyl-glycyl-phenylalanyl (GGF) and tryptophyl-
glycyl-glycyl (WGG) (Figure 2). The main reasons for choosing
these molecules are: First, amino acids and peptides are
important biomolecules. Second, peptides are very flexible and
exhibit complex PESs, making them a challenging system for

conformer search. Third, previous studies provide reference
data.21,24,25 Another objective of our work is to gain insight into
the nature and properties of latent space. For this, we visualize
and analyze the latent spaces of cysteine and GFA. Our method
and our results will be presented in the following sections.

■ METHODS

Our LOLS method consists of three steps (Figure 3). In step 1,
we employ an active learning approach to generate data on-the-
fly. We combine two strategies to steer the generative model
towards generating more low-energy data, which helps us build a
compact and reliable model for the low-energy regions of the
PES. Strategy one is data processing. We scale the energy of
training data with a non-linear function and exclude high-energy
data. Strategy two attributes more weight to lower energy data in
the loss function of the generative model. Both strategies will be
discussed in the following sections. In step 2, we build a
Gaussian process (GP) regression model in real space. We
extract the local minima from the GP and use them to initialize
DFT geometry optimizations. In step 3, the candidate structures
are further optimized with DFT structure relaxation. Details of
our method will be explained in the following sections.

Data Generation Loop. The left part of Figure 3 shows the
data generative loop we designed for sampling informative data.
The “data pool” is initialized with an initial data set, in which
each data point represents the dihedral angles and DFT energy

Figure 4. (a) Architecture of our variational auto-encoder. The input X consists of molecular dihedral angles, and input E* is the scaled energy of the
corresponding structure. The output X are again dihedral angles, but no energy. Both encoder and decoder have two layers with the same layer size. The
mean (μ) and variance (σ2) are the outputs of the encoder and the normal distribution is taken for samples z. (b) Themean absolute difference (MAE)
between input and output dihedral angles for the VAE models with different numbers of trainable parameters. The text near the data points shows the
numbers of neurons of each fully connected layer in the en/decoder (layersize). During the test of layersize, λ is fixed to 0.01. (c) The relationshop
between the latent-space scale L and the hyperparameter λ. The test were performed with 32−32, 128−128 neural networks and β = 0, −1.
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of a conformation. Then we set up an active learning approach
and iteratively acquire samples from the latent space. For each
new sample, the structural features are decoded by the VAE into
real space, then the energy is calculated with DFT. As we add
new samples to the data pool, we keep retraining the VAE.
Each time we carry out three parallel runs to average out the

effects of randomization in the sampling method, and continue
the data generation loop up to a preset maximum number of
iterations. If the global minimum and at least 70% of the
reference targets are found, we stop the data generation,
otherwise we continue. The details are explained in the following
sections.
VAE and Latent Space. Figure 4a shows the architecture of

our VAE. The encoder layers reduce the dimension of the input
data and cast the input data into a distribution in latent space
with mean μj and variance σj

2 (j represents the axis number of
latent space). During the training stage, the vector z in latent
space is generated by μ σ=z ( , )j j j

2 ,26 where is the normal

distribution. The vector z can be mapped back to real space by
the decoder layers.

Data Preprocessing. The raw data includes the dihedral
angles of sampledmolecular structures and their DFT-calculated
energy E. We preprocess the data in two stages. In stage one, the
dihedral angles are normalized from [0,360] to [−1,1], and the
total DFT energy is scaled according to the following equation
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− ≤

+ − >
E
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0 0

0 0

l
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where E0 is a threshold energy that is used to shift the DFT
energies close to zero. E0 is system dependent but once chosen is
kept constant for the samemolecule (see Table 2).We adopt the
logarithmic function in eq 1 to scale down high energies (E >
E0), because we are primarily interested in the low energy region

and wish to avoid high energy regions that can obstruct model
fitting.
In stage two, data with a scaled energy larger than Emax* =

mean(E*) + α × std(E*) is excluded from the training set of the
VAE, since the corresponding structures frequently exhibit steric
clashes and are therefore not relevant. In this work, we set the
cutoff threshold α = 2, which resulted in a data exclusion of 3−
6% from the training set of the VAE. The excluded data is usually
5 to 25 eV above the global minimum, and was still kept in the
data pool and used to build the energy model in step 2.

Loss Function. The trainable parameters of the VAE are
optimized by minimizing the total loss function, which consists
of two contributions

δ δ λδ= +total rec reg (2)

The first part is the reconstruction loss (δrec), which forces the
encoder-decoder pair to minimize information loss (i.e.,
minimize the difference between input and output). The second
part is the regularization (δreg) that confines the latent space by
forcing the encoder output towards a standard normal
distribution. λ is a hyperparameter that controls the ratio
between the two loss terms.
To make the VAEmore sensitive to low-energy structures, we

weight the reconstruction loss term (δrec) with the correspond-
ing scaled energy exp(βE*),
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where β is a hyperparameter which will be explored and
discussed later. In this work, we varied β from 0 to−3. A negative
β assigns a smaller weight to higher energy structures in the
reconstruction loss. They therefore become less important in
VAE training. i refers to the ith training data and N is the size of
the training data. Diff(xi

in, xi
out) returns the difference between

input and output for the ith training data. Since our VAE does
not output the scaled energy, we define Diff only in terms of the
scaled dihedral angles

∑= − + −
=

x x
D

x xDiff( , )
1
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j

D
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in out

1
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(4)

HereD refers to the number of dihedral angles and j to the jth
input and output vectors.
The regularization term (δreg) can be expressed as the

Kulback-Leibler (KL) divergence (δkld) between the returned
distribution and a standard Gaussian.26 According to ref 26, the
KL divergence is calculated by the encoder output mean μij and
variance σij

2, where i is the ith training data, j the axis number of
latent space and d is the dimension of latent space

∑ ∑δ σ μ σ= − + − −
= =Nd

1 1
2

(1 log )
i

N

j

d

ij ij ijkld
1 1

2 2 2

(5)

The total loss function (δtotal) in our work is

δ δ λδ= +total rec kld (6)

Next, we will select a suitable value for λ and the right neural
network settings for the cysteine data set we generated in our
previous work.21 The data set consists of 800 cysteine structures
and their corresponding DFT energies from a BOSS run. We

Table 1. General Parameters of LOLS Used for all the
Molecules in this Work

name value

VAE latent dimension 2
cutoff threshold (α) 2
energy weight (β) 0,-1,-3
loss ratio (λ) 0.01
training epochs 100

sampling expansion rate 20%
batch size 50

GP model kernel STDP
fitting noise 0.001

Table 2. Molecule-Dependent Parameters of LOLS

name cysteine WG GFA GGF WGG

search dimensionality 5 7 9 9 9
initial data size 100 350 350 350 350
en/decoder layer size
(layersize)

80 128 128 128 128

maximum iteration
(M)

40 120 120 120 140

energy model interval
(k)

5 20 20 20 20

threshold energy (E0/
eV)

−19,635 −24,320 −27,467 −26,399 −29,977
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refer to this data set as CYS800. The dihedral angle and energy
distributions of this data set are shown in Figure S1.
Neural Network Configurations. We chose 2 as the latent

space dimension, for the simple reason that two dimensions are
convenient to visualize. Visualizing and analyzing the latent
space will help us gain insight into the nature of the latent space
and develop suitable sampling methods. It remains an open
question if increasing the dimension of latent space would help
sample more informative data and thus increase the efficiency of
the approach. We will return to this question in future work.
For both encoder and decoder, we used two fully connected

layers of the same size and ReLU as activation function. We
varied the number of neurons in each fully connected layer in the
encoder or decoder (layersize) from 8 to 128 and checked the
mean absolute error (MAE) between inputs and outputs. The
CYS800 data set was used in all the tests. Similar to eq 4, the
MAE is defined as

∑= | − + − |
=

x x
D

x xMAE( , )
1

(( 1) mod 2) 1i i
j

D

ij ij
in out

1

in out

(7)

In Figure 4b we show the MAE as a function of the number of
neural network parameters, which is determined by the layersize.
The MAE decreases with increasing layersize, but eventually
converges around 20°. We believe that with a higher
dimensional latent space (i.e., less information loss) we could
further reduce the MAE, but we deemed 20° sufficient for our
purposes. We therefore picked a layersize of 80 for cysteine and
extended it to 128 for other molecules in this work with higher
search dimensions.
The VAE was trained for 100,000 epochs to ensure the

convergence of the total loss function δtotal (Figure S2). The
value of the energy weight hyperparameter (β = 0 or β =− 1) has
no significant effect on the MAE for the CYS800 data set, as
shown in Figure 4b. However, βwill play an important role in the
active learning workflow (shown in Figure 3). We will discuss its
effect in the “Results and Discussion” section.
Loss Ratio λ and Latent Space. After the training is finished,

the encoder maps the training data into the latent space as the
latent-space data zij = μij. The encoder output variances σij

2 are
only used in the reparameterization during the training stage and
ignored after training. The hyperparameter λ controls the ratio
between the reconstruction loss and the KL-divergence, thus
determining the shape and distribution of the latent-space data.
We introduce the latent-space scale L to measure the size of the
latent space

∑ ∑ μ=
= =

L
N
1

i

N

j

d

ij
1 1

2

(8)

Figure 4c shows that L varies by one order of magnitude for λ
between 0 and 1. Between λ= 0.001 and 0.03, L stabilizes around
1.47 and changes little, indicating we should pick λ from this
region. In this range, L is also almost independent of the size of
the neural network.
Figure S3 shows the data distribution in latent space for

different λ values. The shape and size of latent spaces are highly
dependent on λ. When λ = 0.01, the latent-space data distributes
uniformly inside a circle (Figure 5), which may benefit sampling.
Therefore, we set λ = 0.01 for all networks in the following.
Sampling Method. After generating the latent space, we can

sample it. Every sample will be decoded into dihedral angles to

reconstruct the atomic structure in real space. Then the DFT
energy of this structure is calculated. The combination of scaled
dihedral angles and DFT energy (x, E*) is collected as new data.
We use a random sampling method to pick new structures

from latent space. We had considered building a surrogate
model of latent space with BOSS and sampling from its
acquisition function, but the complex structure of latent space
(which will be discussed in more detail in the “Results and
Discussion” section) does not lend itself to more advanced
sampling methods. More specifically, we use a rectangle random
sampling method (Figure 5), which contains the following steps.
First, we create a minimal rectangle that covers all of the latent-
space data. Then we increase the width and height of the
minimal rectangle with an expansion rate. The expansion rate is
a hyperparameter that can be varied. We use a rate of 20% in this
work, which balances sampling from known latent space areas
with the need to explore unknown areas away from available
latent-space data. Finally, we choose positions randomly in the
extended rectangle as samples.
In LOLS, the generation loop will keep running until the

number of iterations reaches the preset maximum. At each
iteration, the VAE is retrained and a data batch is acquired.
These newly acquired data points are added to the data pool for
training the new VAE in the next iteration. In this work, we fix
the batch size in each iteration to 50, which is small enough to
track changes in latent space and large enough to effect a change
in the VAE.

Energy Model. We fit a surrogate model in real space after
every k iterations of the generation loop. We call this the “energy
model” as it establishes a relation between the dihedral angles
and the energy. k is the energy model interval. Here we choose k
= 5 for cysteine and k = 20 for other molecules, which helped us
find the relevant conformers without performing too many
structure optimizations. The number of optimized structures is
about 10−15% of the number of samples (See Table 3). We
could use a smaller k to build more energy models and extract
more local minima, but this would also require performing more
DFT structure optimizations in step 3.
We use BOSS23 to fit a GP to the energy model. The kernel is

set to standard periodic (STDP) to account for the periodicity of
the dihedral angles, with inverse gamma priors employed to

Figure 5. The dashed and solid lines show the minimal rectangle and
the extended rectangle, and the red crosses show a new sampling batch
inside the extended rectangle. The latent space is the same as in Figure
S3.
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stabilise kernel hyperparameters. The noise is set to 0.001 eV,

comparable to the accuracy of DFT calculations. We set an

uninformative prior on the GPmean to avoid biasing the model.

After the energymodel in real space is built by BOSS, we take the

training data as the initial positions and apply the conjugate

gradient method to find local minima. Only different local

minima are kept and duplicates are purged. In accordance with

our previous work, we fully optimize all molecular degrees of

freedom with DFT for only these unique minima structures.
DFT Method. In this work, we employed the all-electron

code FHI-aims27−29 for all DFT calculations. We used “tight”

numerical settings, “tier 2” basis sets, the PBE exchange-

correlation functional30 and many-body dispersion (MBD) van

de Waals corrections.31 For a few structures, in which two or

more atoms come too close to each other, the FHI-aims single-

point calculations fail. We consider these structures invalid

(steric clashes). For different molecules, 3−6% of samples were

invalid and we omitted them.
For geometry optimization, a geometry was considered to be

converged when the maximum residual force was below 0.01

eV/Å. We stopped geometry optimization after a maximum of

200 steps to reduce the calculation costs. Any structure that is

not converged after 200 steps is excluded. For cysteine, all

structures are converged in less than 200 relaxation steps, but for

larger molecules, 5−20% of structures do not converge (see

Table 3).
Complete Workflow. Algorithm 1 shows the complete

workflow of LOLS. We have defined the parameters initdata,

layersize, E0, α, β, λ, k, and the noise in the previous sections. In

addition, M represents the maximum iterations.

Table 3. Final Results for all Five Moleculesa

material dim β target achieved new single relax converged achieved details

cysteine 5 0 11 11 16 6000 919 919 •••••••••••
cysteine 5 −1 11 11 18 6000 922 922 •••••••••••
cysteine 5 −3 11 11 20 6000 944 944 •••••••••••
WG 7 0 13 13 46 18,000 2314 2172 •••••••••••••
WG 7 −1 13 12 47 18,000 2292 2177 ••••••••••••◦
WG 7 −3 13 13 45 18,000 2214 2087 •••••••••••••
GFA 9 0 16 9 15 18,000 1443 1227 •◦•◦ ◦◦◦◦••••◦•••
GFA 9 −1 16 13 23 18,000 1872 1588 •••◦ •◦•••••◦••••
GFA 9 −3 16 13 27 18,000 1873 1597 ••••◦•••••◦◦••••
GGF 9 0 13 9 23 18,000 1870 1555 ••◦•••••◦••◦◦
GGF 9 −1 13 10 22 18,000 1645 1381 •••••••◦•◦•◦•
GGF 9 −3 13 9 22 18,000 1553 1379 ••◦••••◦◦••◦•
WGG 9 0 13 7 13 21,000 2536 2004 ◦◦•◦••••◦••◦◦
WGG 9 −1 13 7 10 21,000 3073 2508 •◦•◦ •◦••◦ •◦◦•
WGG 9 −3 13 9 9 21,000 2844 2270 •••◦•••◦◦• ◦••

aResults for three parallel run are merged. “Achieved” means the number of targets we found. “New” means the number of stable structures we
found but missed by the reference. (Only the ones with energy less than the maximum energy of targets are counted.) “Achieved details” enumerate
the targets sorted by energy, where • and ◦ represent found and missed targets. “Single” means the total number of single-point energy calculations
during the three parallel samplings. “Relax” shows the number of optimized structures. “Converged” gives the number of stable structures that are
converged within 200 geometry optimization steps.
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We applied our LOLS method to cysteine and the peptides
WG, GFA, GGF and WGG. Figure 2 shows how we chose the
dihedral angles as features. The dihedral angles of the peptide
bonds in WG, GFA, GGF and WGG are fixed at 180°for the
trans conformation because they usually have lower energy than
the cis isomers. For GFA and GGF, the dihedral angles of the
benzene rotation are only searched from 0 to 180° due to
symmetry. For GFA, the dihedral angle of the methyl rotation is
fixed at 180°. The final dimension of features for cysteine, WG,
GFA, GGF, and WGG are 5, 7, 9, 9 and 9.
The LOLS algorithm is general, but for new molecules, some

input parameters may need to be modified, and the VAE
retrained. In this work, the parameters in Table 1 are shared by
all molecules. We do not fine-tune them for individual molecules
because all the molecules in this work are small and organic. The
molecule-dependent parameters are shown in Table 2.
We could initialize LOLS with random data. However, since

BOSS performs active learning for optimal knowledge gain and
BOSS sampling is very fast for small amounts of data, we use
samples from one BOSS run as the initial data in this work. The
initial data size is also shown in Table 2.
During testing on cysteine, we noticed that some targets that

were correctly identified at a certain point would disappear, if we
continued iterating (see Figure S4), due to statistical
fluctuations of GP fitting. Because of this observation, we not
only take the result from the final energy model with maximum
data size but also from previous energy models.

■ RESULTS AND DISCUSSION
We applied LOLS to cysteine, WG, GFA, GGF and WGG. For
cysteine, we mainly compared the results to our previous
study,21 which used BOSS and quantum chemistry methods.
The conformer structures in ref 21 obtained with the same DFT
settings as this work were selected as targets for cysteine. For the
other molecules, we compared our results to the database
generated by Valders et al.25 The authors first ran molecular
dynamics/quenching (MD/Q) simulations with tight-binding

DFT to scan the free energy surfaces and then recalculated the
low-energy structures with high-level quantum chemistry
methods. We reoptimized their structures in the database with
our DFT functional and settings before using them as targets.
Themean difference in dihedral angles between our reoptimzied
and the geometries in ref 25 are generally less than 5°, except
WG 03 (22. 6°), GGF 05 (12. 3°), GGF 13 (11. 9°), andWG 11
(7. 0°). Two structures are considered similar when the mean
difference in the dihedral angles is less than 15°. In the series of
similar structures, only the structure with the lowest energy is
kept. If the maximal difference of dihedral angles between one
target and one of our results is less than 15°, we state that the
target has been reached. Otherwise, we consider that a new
structure has been found.

Cysteine. First we analyze the VAE training process and
acquired samples. The training loss, the latent-space scale, and
the average energy of samples were all within reasonable values
during the training, proving that the training went well for
cysteine (see Figure S5 and SI). Next we analyze the latent space
of cysteine. The trained VAE has two components: the encoder
and the decoder. The latent-space data generated by encoders
with different β are shown in Figure 6a−c. The latent-space data
is distributed uniformly as a circle in the latent spaces. For β = 0,
low- and high-energy data are mixed. For β < 0, low- and high-
energy regions start to form that become more pronounced for
more negative βs.
To understand the correspondence between the eleven target

cysteine conformers21 and the latent space, we discretized latent
space on a 400 × 400 grid, and mapped all points back to real
space with the decoder. We assigned each corresponding
structure to one of the eleven conformers, if the MAE is smaller
than 30°. If it is larger, the structure remains unassigned. The
result is a map of islands in latent space, shown in panels (d) to
(f). The total area of islands are 6.1, 3.7 and 7.3% of the latent
space for β = 0,− 1 and− 3. However, the mapping is not always
unique, and multiple islands may map to the same target, such as

Figure 6. The latent spaces of cysteine (left, (a−i)) and GFA (right, (j−r)) for different β are visualized in three ways. In (a−c) and (j−l) the latent
spaces are formed by the latent-space data generated by the encoders with different β. The color represents the scaled energy. In (d−i) and (m−r) the
points in latent space are decoded into real space, and the reconstructed structures are compared with a series of targets. If the mean difference of
dihedral angles (MAE) between the reconstructed structure and the nearest target is less than 30°, the points are colored. In (d−f) and (m−o) the
targets are from the references,21,25 and the same color represents the same target. In (g−i) and (p−r) the targets are all stable conformers we found
with energy less than 0.5 eV above the global minimum. In (g−i) and (p−r) the color represents the energy of the nearest conformer: the darker color,
the lower energy.
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Ia in Figure 6d. This suggests that structures that are similar in
real space are not necessarily close in latent space.
The eleven targets are distributed within [0, 0.25 eV] from the

global minimum.We repeatede the same procedure described in
the last paragraph, but now use all the conformers we identified
in the energy window [0, 0.5 eV] from the global minimum as
references. We colored the latent space by the energies of these
reference conformers and call the colored area low-energy areas.
For β = 0, − 1, and − 3, the low-energy areas cover 36.2, 26.6,
and 36.8% of the latent space in Figure 6g−i.
Finally, we analyze and evaluate the performance of LOLS for

cysteine conformer search. Figure 7a shows the numbers of
targets found in the nine parallel runs. The same color is used for
results with the same β value. The y value gives the accumulative
number of correctly identified targets before that iteration. The
best outcome is in one run with β =− 3 (top green curve), while
the worst result has β = 0 (bottom red curve). The other seven
runs perform accordingly. β =− 3 runs are among the best, β =−
1 average and ta = 0 the worst. We therefore recommend a β
value smaller than zero. The results using the same β for three
parallel runs are merged into one and shown in Figure 7b. The
figure shows that all the eleven targeted conformers (along with
some new ones) were found regardless of β. This is also shown
again in Table 3.
Glycyl-phenylalanyl-alanyl. Next we applied LOLS to

GFA. The training loss, the latent-space scale and the average
energy of the samples in Figure S6 indicate that the training went
well for GFA. In addition, we observed that more low-energy
data is generated for non-zero βs.More discussions can be found
in the SI. We plot the latent spaces of GFA for β = 0,−1 and− 3
using the same mapping methods as for cysteine. Figure 6j−l
show the latent-space data generated by the encoder. For β = −
3, the latent-space data is more compact and contains more low-
energy data than for β = 0 and β = − 1. Figure 6m−o show the
correspondence of the latent-space data to the target GFA
conformers25 in real space generated by the decoder. Unlike for
cysteine, the colored latent space of GFA is quite empty. The
total area of colored islands are 0.06, 0.28 and 0.28% for β = 0,−
1 and − 3. Figure 6p−r are colored in the same way as Figure
6g−i. The low-energy areas ([0, 0.5 eV]) cover 1.0, 7.6 and
11.7% of the latent space of GFA, for β = 0, −1, and − 3. The

coverages are much smaller than in cysteine. We believe that this
due to the higher dimensionality of GFA (9 compared to 6).
Higher-dimensional systems usually have more complex PESs,
and less area can be associated with low-energy conformers,
which may explain the emptiness of latent space.
For every β, the accumulative results of three parallel runs

were merged into one and shown in Figure 8. We used the

sixteen GFA structures reported in ref 25 as our targets. We
found nine, thirteen and thirteen out of the sixteen targets for β =
0, − 1 and −3. Among the three values of β, β = − 3 performs
best for GFA, β =− 1 has similar performance as β =− 3, but β =
0 missed six out of nine lowest energy targets. As mentioned in
ref 25, these targets can be divided into six structural types
according to the different hydrogen bonds. All six types are
found with β of 0, −1 and −3.
The differences between our results and the reference results25

are mainly due to the flexibility of the end groups of GFA. The
-CH2NH2 branch and the -C6H6 branch (benzene ring) of GFA
have several stable configurations which have energy differences

Figure 7. The results of cysteine. (a) The accumulative result for every single run. Three parallel runs are performed for each β. (b) Stable conformers
found in this work. Conformers are represented by lines and sorted by energy. The gray lines represent the found structures that are the targets from the
reference.21 The green line represents the new conformers that are not the 11 targets.

Figure 8. Stable conformers of GFA found in this work. The gray lines
mean the targets from the reference25 are found, while the red lines
mean we missed the targets. The green line represents the new
conformers that we found but missed by the reference.
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within 10 meV. The two groups are at the end of the peptide,
thus having little effect on the overall structures of GFA,
however resulting in the different conformers. For example,
GFA 06, GFA 11, and GFA 08 have very similar structures (see
Figure S7). The only difference between GFA 06 and GFA 11 is
the configuration of the benzene ring, which causes an 1.7 meV
energy difference. And the only difference between GFA 11 and
GFA 08 is the configuration of the -CH2NH2 branch, which
causes a difference of 1.9 meV. We found GFA 11 but missed
GFA 06 and 08 in the result with β =− 1, and wemissed GFA 11
but found GFA 06 and 08 with β = − 3. Importantly, the global
minimum (GFA 15) is always found by our method even with
different βs. The reference did not find any conformers in the
energy range from 0.05 to 0.12 eV above the global minimum.
However, we found six, ten, and eight new structures in this
energy region using β = 0,−1, and−3. Overall, we have achieved
comparable accuracy as the reference.
WG, WGG and GGF. We also tested WG, WGG and GGF,

whose search dimensions are seven, nine and nine, respectively,
and compared them with Ref 25. For each β of 0, −1, and − 3,
three parallel runs were carried out for WG and GGF, with
maximum iteration count M = 120. Unfortunately, we did not
find the global minimum of WGG at 120 iterations for any value
of β, so we ran an additional 20 iterations for WGG. The
accumulative results are shown in Figure S8. The results of all
the five molecules are also summarized in Table 3.
For WG, using β = 0 or −3, we found all the thirteen targets,

but β = − 1 missed the highest energy target. For GGF, the
performance for different β were close but β = − 1 found the
most targets. For WGG, β = 0 missed the global minimum,
which was found with β = − 1 or β = − 3. Combined with the
results for cystine and GFA, we can state that non-zero β is at
least beneficial for larger molecules such as GFA, GGF and
WGG. Except cysteine, all other molecules are peptides which
are very flexible molecules. It is therefore no surprise that our
structure lists are not exactly the same for different β or as the
ones in ref 25. We have missed some targets but also found some
new ones in the same energy region. Overall we achieved the
same level of performance as the reference.
Comparison to Real Space Search. In this section, we

compare our VAE approach and random sampling on the
dihedral spaces while keeping all other parts in the LOLS
workflow the same. We refer to random sampling as real space
search. In the real space search, we took samples randomly from
real space and fitted a GP surrogate model every k samples,
gathered the local minima as the relaxation starting points,
relaxed the geometries with DFT, removed duplicates and then
compared them with targets (Algorithm S1). In other words, the
real space search workflow replaces the VAE data generation
loop by taking random samples directly in real space but keeps
the other steps of LOLS. We tested the real space search
workflow on cysteine (5-D), WG (7-D), and GFA (9-D). For
each molecule, we carried out three parallel runs. The results of
the parallel runs weremerged and compared to LOLSwith β =−
3 in Figure 9. The details of the observed targets are shown in
Figure S9.
Figure 9 presents the number of targets found versus the

number of samples used to build the energy models. For
cysteine, the real space search found all the eleven targets with
2250 samples, while LOLS (β =− 3) required 3000 samples. For
WG, the real space search and LOLS both took 18,000 samples
to find all the thirteen targets. LOLS’s performance is similar to
the real space search for cysteine and WG. However, for GFA

LOLS starts to provide an advantage. The real space search
found eleven out of sixteen targets using 30,000 samples, while
LOLS (β = − 3) found twelve targets with 12,000 samples and
thirteen targets with 18,000 samples. LOLS clearly outperforms
the real space search.

Discussion. First, we discuss the properties of latent spaces
in this work. Our analysis of the 2-D latent spaces generated by
encoders revealed them to be neither smooth nor continuous
(see Figure 6a−c,j−l). High- and low-energy areas appear
intermixed in the latent space, and it proved difficult to fit GP
models to latent-space data and extract any information on low
energy regions. Moreover, casting previously known conformers
into latent space demonstrated that the same conformer
structure can be mapped into different locations in latent
space (see Figure 6d−i,m−r). This suggests that similar
structures in real space are not necessarily close in latent
space. For these reasons, we did not further pursue designing
acquisition functions or minima searches in latent space. Instead
we use the fast, explorative and space-filling random sampling

Figure 9. Results of the real space search workflow vs the LOLS (with β
= −3) for cysteine, WG, and GFA. The x axis is the number of samples
in each run. The results from the three parallel runs were merged. The
height of bars represents number of conformers. Red means missing
targets, gray means achieved targets and green means new conformers.
The black dash lines represent the number of targets.
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approaches to sample latent space. Increasing the dimension of
latent space may create a more smooth and continuous latent
space, which potentially allows us to develop more sophisticated
sampling methods. We will test high-dimensional latent spaces
in future work.
We analyze the low-energy area ([0, 0.5 eV]) of our latent

spaces. For cysteine, all workflows with the different β = 0,− 1,−
3 achieved good results, which may be due to the similar
coverage of low-energy area (∼30%). However, for GFA, only
1% of latent space corresponds to low-energy structures for β =
0, which is likely to be the reason for missing most of the targets
(See Figure 8). This percentage increases to 10% for β =− 1 and
−3, and we achieved much better results. This analysis suggests
that a non-zero β is an advantage for LOLS. More detailed
discussion of how the β affects the datapool can be found in SI
(Figures S10 and S11).
Next, we discuss the efficiency of LOLS. Building a high-

dimensional energymodel and thoroughly exploring it requires a
large amount of data. For example, if we take the grid sampling
method in nine-dimensional space and divide each dimension
into ten equal parts, we would need 109 samples. Although our
work does not aim to achieve the highest efficiency, we acquired
enough data to build a reliable energy model for nine-
dimensional peptides with 18,000−21,000 single-point energy
calculations. We compared LOLS to a real space sampling
algorithm, and conclude that LOLS found more conformers
with fewer samples than the real space search algorithm for 9-D
molecules. However, for small molecules such as cysteine (5-D)
and WG (7-D), our method is unlikely to outperform this real
space sampling. We conclude that LOLS is more suitable for
larger molecules with more degrees of freedom, because it is
challenging to sample a high-dimensional PES in real space.
A note of caution has to be added for multi-reference states,

which may be intrinsically present in the molecule or arise from
stretched bonds.32 Multi-reference states are notoriously
difficult to treat in DFT and may adversely affect DFT-based
structure search. LOLS provides an advantage in this regard,
because it avoids stretched-bond related multi-reference states.
LOLS starts from an equilibrium geometry free of stretched
bonds and sample only the space of dihedral angles. Full
geometry optimization for bond length and bond angles is then
performed only for the resulting local-minima configurations
and will thus not encounter stretched bonds, unless a conformer
exhibits such a geometric feature.
The LOLS algorithm is flexible and ideally can be applied to

any physical system with a similar search dimensionality as our
molecules. We have determined suitable parameter values for
peptides, but these settings may not be optimal for other, more
complex systems. In our experience, the most critical parameters
are the architecture of the neural networks (e.g., number of
layers and nodes) in the VAE, and the hyperparameters β and λ.
The architecture of the neural network and λ can be re-
optimized by training the VAE on a test set and monitoring the
reconstruction loss and the latent-space scale L. However,
adjusting β requires the execution of the whole workflow. Also,
we chose the rectangle random sampling method for simplicity.
Replacing it with some more sophisticated sampling methods
may further increase the efficiency. After acquiring a fixed
amount of samples, we use a GP model to build the energy
model and gather the local minima for post-relaxation. Here the
GP model could be replaced by any continuous model, for
example, a neural network.

As a new method, LOLS also has some limitations. First,
latent space is an abstract entity and it is not trivial to ascertain, if
it is sufficiently expressive or well sampled. For this reason, we
focused on systems with existing benchmarks to determine how
many independent LOLS runs and iteration steps are required.
For new systems without literature references, we recommend
performing several independent LOLS runs with a sufficiently
large iteration step until no new structures can be found in the
relevant energy window. Second, we only tested a two-
dimensional latent space in this work. We suspect that two-
dimensional latent spaces might become too sparse when the
number of dihedral search dimensions increases, which might
degrade the efficiency of LOLS. We will explore optimal latent
space dimensions in future work. Lastly, we emphasize that
LOLS was designed to sample the low-energy parts of the PES
and to find low-energy conformers. If one is interested in the
whole PES, e.g., for transition state and reaction path searches,
other PES sampling methods such as Global Reaction Route
Mapping (GRRM)33 might be more appropriate.

■ CONCLUSIONS
In this work, we have developed the active learning workflow
LOLS for molecular conformer search. LOLS is a stochastic
method that contains two machine learning models: the
generative model VAE for data sampling and the GP for energy
model fitting. We introduced the hyperparameter β to steer the
latent space towards low-energy molecular configurations for
generating more informative data. We have applied LOLS to
cysteine and the peptides WG, GFA, GGF, and WGG, and
achieved a similar level of accuracy as the references. For small
molecules such as cysteine, it is more efficient to sample data in
real space; however, LOLS is more suitable for larger molecules
such as peptides. LOLS is still at an early stage of development:
further optimization of the generative model and energy model
may increase the efficiency and facilitate applications to other
systems beyond molecules.
We have also gained insight into the nature and properties of

latent space both quantitatively and qualitatively. Quantitatively,
we found that the distribution of latent-space data can be
controlled by the hyperparameter λ that is used to balance the
reconstruction loss and regulation term in the loss function of
the VAE. By tuning λ, a more uniform latent space can be
formed, which is beneficial for sampling. In addition, we found
that the latent-space scale (L) is a good parameter to measure
the size of latent space. Qualitatively, we found for cysteine and
GFA that latent space is neither smooth nor continuous in the
low-energy regions. Moreover, the structures are close in real
space might not be close in latent space. Therefore we
recommend exploratory and space-filling sampling approaches
for latent space sampling.
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The Supporting Information is available free of charge at
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(Figure S1) The distributions of dihedral angles and
scaled energy of the CYS800 data set; (Figure S2) the
progression of training loss with training epochs; (Figure
S3) the latent-space data distributions of the CYS800 data
set with different λ; (Figure S4) the targets found at
different iterations; (Figures S5 and S6) the latent-space
scale and the energies of samples during the data
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generation step for cysteine and GFA; (Figure S7) three
very similar GFA conformers: GFA 08, GFA 11 and GFA
06.; (Figure S8) the accumulative results for WG, GGF
and WGG; (Figure S9) comparison of LOLS and real
space search workflow on GFA; (Figure S10) the
relationship between the reconstruction error and the
scaled energy in the last iteration of LOLS on cysteine;
(Figure S11) the energy distribution of the data in the last
LOLS iteration for cysteine, WG and GFA (PDF)
The structures and energies of the stable conformers can
be found in NOMAD Repository and Archive (DOI:
10.17172/NOMAD/2022.06.08-1).
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