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Single-particle cryogenic electron microscopy (cryo-EM) has revolutionized the field of the
structural biology, providing an access to the atomic resolution structures of large
biomolecular complexes in their near-native environment. Today’s cryo-EM maps can
frequently reach the atomic-level resolution, while often containing a range of resolutions,
with conformationally variable regions obtained at 6 Å or worse. Low resolution density
maps obtained for protein flexible domains, as well as the ensemble of coexisting
conformational states arising from cryo-EM, poses new challenges and opportunities
for Molecular Dynamics (MD) simulations. With the ability to describe the biomolecular
dynamics at the atomic level, MD can extend the capabilities of cryo-EM, capturing the
conformational variability and predicting biologically relevant short-lived conformational
states. Here, we report about the state-of-the-art MD procedures that are currently used to
refine, reconstruct and interpret cryo-EM maps. We show the capability of MD to predict
short-lived conformational states, finding remarkable confirmation by cryo-EM structures
subsequently solved. This has been the case of the CRISPR-Cas9 genome editing
machinery, whose catalytically active structure has been predicted through both long-
time scale MD and enhanced sampling techniques 2 years earlier than cryo-EM. In
summary, this contribution remarks the ability of MD to complement cryo-EM,
describing conformational landscapes and relating structural transitions to function,
ultimately discerning relevant short-lived conformational states and providing
mechanistic knowledge of biological function.
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STATE-OF-THE-ART CRYO-EM MODELLING THROUGH
MOLECULAR DYNAMICS

Single-particle cryogenic electron microscopy (cryo-EM) has revolutionized the field of structural
biology, providing an access to the atomic resolution structures of large biomolecular complexes in
their near-native environment (Nogales, 2015). The number of macromolecular structures
determined by cryo-EM is rapidly increasing, indeed, it is predicted that by 2024 the number of
yearly released structures will be higher for cryo-EM than for X-ray crystallography (Callaway, 2020).
The cryo-EM technique comprises of three consecutive steps. At first, the sample is frozen over
millisecond time scales, what results in both the formation of amorphous ice and in capturing the
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biomacromolecule in its near-native conformation through
quick undercooling of the sample. The term “near-native”
refers to the fact that during cryofixation, limited
conformational transitions can result in some non-native
conformations within the structural ensemble. Given the
timescale of cryofixation (i.e., milliseconds), these
transitions should be limited. Next, a number of two-
dimensional (2D) electron microscopy (EM) images of the
biomacromolecule are collected and, finally, these 2D images
are combined into a three-dimensional electrostatic potential
map of the biomacromolecule(Guo and Jiang, 2014;
Kontziampasis et al., 2019; Cianfrocco and Kellogg, 2020).
Today’s cryo-EM maps can frequently reach the atomic-level
resolution, while often containing a range of resolutions, with
conformationally variable regions obtained at 6 Å or worse.
The latter can also arise from several other factors, such as
radiation damage and image alignment errors. Moreover,
considering also that the atomic form factors of cryo-EM
maps represent the atomic electrostatic potential, negatively
charged moieties might be depleted or not visible, as they
scatter electrons more efficiently (Marques et al., 2019). Recent
advances in post-processing cryo-EM images also allowed to
identify multiple conformational states of the biological
complexes (Jin et al., 2019) or even to describe the
conformational variability of their single subunits (Bai
et al., 2015). These advancements and opportunities
introduced by single-particle cryo-EM are paving the way
for an explosion of computational methods aimed at
processing, refining and interpreting cryo-EM data (Dodd
et al., 2020; Fraser et al., 2020; Kim et al., 2020; Palermo
et al., 2020).

Molecular dynamics (MD) simulations are known to be
powerful in describing in detail the intrinsic dynamics of
biomolecules and the energetics that underlie conformational

transitions (Karplus and McCammon, 2002). This is why MD
simulations are an excellent tool to examine hypotheses posed by
the experimental findings of cryo-EM studies. It is also apparent
that both techniques can mutually benefit from cooperation,
where MD can unveil the atomic details of conformational
changes and refine the structure for low resolution regions of
cryo-EM maps (Kirmizialtin et al., 2015), while cryo-EM can not
only provide the structure of biomolecules (Nogales, 2015), but
also describe its near-native conformational ensemble in solution
(Jin et al., 2019).

The initial approaches combining MD and cryo-EM methods
used MD as a fitting scheme to predict the structure of a
biomolecule, using the low-resolution EM map to constrain
the protein conformation. For this purposes, two commonly
used packages are the MD Flexible Fitting (MDFF) (Trabuco
et al., 2008) and the Situs (Kovacs et al., 2018) codes, where the
first one guides MD simulation toward the cryo-EM density
biasing the MD potential energy form to reduce the gradient
of the experimental electronic density, while the second one
minimizes the discrepancy between the map derived from the
MD model and the original cryo-EM map. Hybrid approaches
harnessing docking algorithms have also been developed, such as
including a rigid fitting stage followed by a refinement based on
MD (Topf et al., 2008), or introducing a coarse-grained force field
to allow flexibility during the docking search (de Vries and
Zacharias ATTRACT-, 2012). MD-based methods were shown
to successfully refine the structure of both isolated proteins (e.g.,
lactoferrin) and large protein assemblies (up to ribosomes)
(Trabuco et al., 2008). Unfortunately, one of the prominent
challenges for these methods is structure overfitting to the
cryo-EM map, where the derived potential can lead to
unphysical conformations of the biomolecule (Trabuco et al.,
2009). However, such inconveniences can be overcame by
combining a series of restraints derived from the experimental
density with enhanced sampling MD techniques, as shown for
membrane transporter Escherichia coli efflux-multidrug
resistance E (EmrE) (Ovchinnikov et al., 2018). In that study,
map-restrained Self-guided Langevin dynamics (Wu et al., 2013)
was used with a series of heating and cooling cycles of the EmrE
protein during MD run. Such approach allowed to relax both the
conformation of the protein backbone and side chains and
eventually led to a substantial improvement of the MD
structure with respect to cryo-EM map. Enhanced sampling
simulations in the structure refinement are also used in more
advanced MDFF schemes, namely Cascade MDFF and
Resolution Exchange MDFF (Singharoy et al., 2016). The
former approach is based on simulated annealing (Brünger,
1988), where the structure is fitted sequentially to maps with
higher resolution. In the latter, the Hamiltonian replica-
exchange simulations (Sugita et al., 2000) are used, where in
each replica the potential affecting the system is derived from
the flexible fitting to the projections of the cryo-EM maps that
change from low to high resolution. In this way the system is
allowed to relax conformationally in low resolution replicas,
while the conformations that are both relaxed in the force field
and fit well to the cryo-EM maps are preferred to exchange into
the high-resolution replicas. Multiple replicas were also used in

GRAPHICAL ABSTRACT | Molecular Dynamics (MD) is shown to
predict the cryo-EM structure of the active CRISPR-Cas9 system with an
RMSD between the cryo-EM structure and the MD ensemble of <2.5 Å.
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a metainference method, where the restraining force arising
from the difference between MD structures and the cryo-EM
map is generated in an ensemble-averaged manner(Bonomi
et al., 2018; Eshun-Wilson et al., 2019). Such an approach
has already been shown to be fruitful in the case of NMR
restraints, where the average chemical shifts or coupling
constants were not necessarily representative of an
heterogenous conformational ensemble present in solution
(Camilloni et al., 2012). In the context of cryo-EM, this
allows exploring the relevant heterogenous regions of the free
energy landscape, while still remaining in agreement with the
cryo-EM findings. The most recent approach, implemented in
Gromacs 2020 (Igaev et al., 2019), uses a gradient of similarity
between a density obtained from MD structure and the
experimental density to compute the forces. This approach
allows to use a variety of similarity measurements (inner
product, relative entropy or cross-correlation the of the

densities), enabling to adjust the density-based restraining
method. Hence, one can restrain the system without
enforcing the trajectory (which could lead to unphysical
conformations), which helps reducing the impact of
experimental artifacts (Marques et al., 2019) on the
conformational dynamics of the simulated biomolecule. The
method has been successfully used to unveil the origins of the
SARS-CoV-2 spike protein flexibility, allowing to identify the
three flexible hinges within the protein (Turoňová et al., 2020).
Overall, these examples show how MD simulations guided by
cryo-EM data allow for both the structure refinement the
interpretation the experimental maps.

Post-processing of MD trajectories to compare the obtained
structures with original cryo-EM maps can also be obtained
through a variety of visualisation tools, such as e.g., Chimera
(Pettersen et al., 2004) that allows for the fitting of experimental
and MD derived density maps, also providing a measure for the

FIGURE 1 | (A)Conformational activation of the HNH domain and structural adaptation of the REC domain during ∼16 μs of continuous MD simulations performed
on the Anton-2 supercomputer (Palermo et al., 2018). (B–D) Time evolution of the distances: (B) between H840 and the cleavage site, indicating the docking of HNH at
the DNA target strand; (C) between E60 and D273 and (D) between S960 and S701, indicating the opening of the REC2 and REC3 domains. Horizontal bars are used to
indicate the value of the three distances in the X-ray structure of the pre-activated state (PDBid: 5F9R at 3.40 Å resolution (Jiang et al., 2016), starting configuration
for MD) and in the structure obtained via cryo-EM (PDBid: 6O0Y at 3.37 Å resolution) (Zhu et al., 2019). Transparent bars indicate the distance range assumed obtained
through single molecule Förster Resonance Energy Transfer experiments. Reprinted with permission from Palermo et al. (2018). Copyright 2018 Cambridge University
Press. https://doi.org/10.1017/S0033583518000070.
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fitting quality between densities. The recently released GROmaps
tool (Briones et al., 2019) allows to compute the time-averaged
MD density map and does expand a set of tools to compare the
computed map with the original cryo-EM results. This method in
principle can be combined with augmented Markov models
(Olsson et al., 2017), where the cryo-EM map could be used
as an experimental observable to reweight the simulation
ensembles. Such approach increases the credibility of the
comparison between cryo-EM maps and MD outcomes
without biasing the simulation runs.

CAPTURING TRANSITIONS AND
SHORT-LIVED CONFORMATIONAL
STATES
MD can also aid cryo-EM experiments by predicting the structure
of short-lived conformational states that are both essential for the
biomolecular complexes activity and are hard to capture with cryo-
EM because of their transient nature. A prominent example is the
prediction of the active conformation of the CRISPR-Cas9
(clustered regularly interspaced short palindromic repeat and
associated Cas9 proteins) system, which recently emerged as a
forefront tool for genome editing (Doudna and Charpentier, 2014).
At the molecular level, CRISPR-Cas9 is a large ribonucleoprotein
complex, which uses RNA-guided Cas9 endonuclease to recognize
and cleave matching sequences of DNA. Biophysical studies have
indicated that the catalytic HNH domain is characterized by a
“striking plasticity,” (Jiang et al., 2016; Palermo et al., 2016), which
governs the enzymatic function. This high flexibility, however,
initially hampered a definitive characterization of the catalytically
competent state through cryo-EM and X-ray crystallography. Early
attempts to define the structure of the catalytically active CRISPR-
Cas9 employed extensive MD simulations (Palermo et al., 2017;
Zuo and Liu, 2017; Palermo et al., 2018). The first effort to
determine the structural transitions leading to the active state
have been performed using the Gaussian accelerated MD
(GaMD) method (Wang et al., 2021) that enables unconstrained
enhanced sampling capturing displacements over micro- (μs) to
millisecond (ms) timescales, which is of difficult reach through
conventional MD. This approach described the activated state
(Palermo et al., 2017). Building on this initial study, the Anton-
2 supercomputer has been employed to perform unbiased runs of
the complex and to determine the continuous dynamics of HNH
over multiple μs (Palermo et al., 2018). This characterized the
dynamical docking of HNH at the cleavage site, predicting an
active conformation that confirmed the initial model obtained
through GaMD (Figure 1).

This theoretical structure enabled to initiate in-depth studies
of the catalysis (Palermo, 2019; Casalino et al., 2020), the allostery
(Palermo et al., 2017; East et al., 2020; Nierzwicki et al., 2020) and
the system’s specificity (Mitchell et al., 2020; Ricci et al., 2019),
when no structural information on the active state was available.
This helped obtaining information to improve the enzyme
catalytic efficiency and to reduce off-target effects, which is a
key goal for biomedical applications (Fu et al., 2013). The
experimental determination of the catalytically competent state

through cryo-EM occurred 2 years after the theoretical model
(Zhu et al., 2019), reporting a remarkable agreement with the
predicted model (the average RMSD between the cryo-EM
structure and the MD ensemble of 2.47 ± 0.14 Å, computed
considering the HNH domain and the six nucleotides at the
cleavage site). Molecular simulations using Anton-2 further
indicated that the recognition regions (REC) of the Cas9
protein would undergo a remarkable opening to allow the
process of HNH activation (Figure 1), noting also concerted
dynamics of the REC-HNHdomains (Palermo et al., 2018). These
coordinated domain motions were also observed through cryo-
EM, revealing their functional role for DNA cleavage (Zhu et al.,
2019). Furthermore, a recent single-molecule study probing the
conformational dynamics of Cas9 in the post-catalytic state
highlighted rapid conformational fluctuations of HNH (Wang
et al., 2021), as observed through MD. These results highlight the
consistency of the simulations with experimental observations
and suggest that state-of-the-art MD can capture short-lived
conformational states of biomolecules, which are of difficult
reach through structural biophysics techniques.

SUMMARY AND PERSPECTIVES

Here, we highlighted how MD simulations combined with cryo-
EM data can provide a deep understanding of key
conformational steps that govern the function of
biomacromolecules. MD can be used not only to refine cryo-
EM structures, especially the low-resolution regions, but also to
facilitate interpretation of the experimental findings. Novel MD
analysis tools allow also to compute the time-averaged cryo-EM
maps from MD trajectories, enabling a reasonable comparison
between conformational ensembles determined experimentally
and computationally. This overcomes the limitations of
comparing single structures, lacking of dynamical
information. Finally, MD simulations alone were also shown
to be a powerful predicting tool, that allows to characterize the
short-lived conformational states of biomolecules hard to
capture through cryo-EM.

Ultimately, the rapid development of methods that combine
cryo-EM data withMDwill further increase the reliability of MD-
guided predictions. One can expect that the rigorous comparison
between cryo-EM and MD conformational ensembles can be an
additional source of the data that can be used to improve the
currently available simulation methods. Molecular simulations
can also be guided to a conformational ensemble defined as a
cryo-EM map rather than a specific structure. This can improve
the description of the free energy landscape associated with
conformational changes of proteins and nucleic acids, as the
cryo-EM map can be used as a reference for the conformational
ensemble. Such approach, based on Multi-Map variable method,
was very recently released for NAMD (Vant et al., 2020). The
initial results for both the steered-MD simulations and free
energy methods are encouraging, with the free energy profiles
for the conformational transitions comparable to those
determined using high-resolution structures as a reference.
Overall, non-stop development of cryo-EM–based MD
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methods opens novel opportunities for the precise description of
biomolecular dynamics.
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