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Abstract: Described in this paper are studies on the preparation of three classes of dimethylpyridinols
derived from pyridoxine fused with aminooxazole, aminoimidazole, and aminopyrrole. The key
feature of this synthetic strategy is the manipulation of hydroxymethyl moiety of C(5)-position of the
pyridoxine starting material along with the installation of an amino group at C(6)-position. Efficient
and practical synthesis for the oxazole- and imidazole-fused targets was accomplished, while the
instability of the pyrrole-fused one was observed.
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1. Introduction

Phenotypic screening campaigns have long been crucial to the identification of biolog-
ically active small molecules in conjunction with target-based approaches [1,2]. Because of
their biological relevancy and favorable physicochemical properties, novel scaffolds from
nature are frequently used to inspire the preparation of compound collections for pheno-
typic screening [3–6]. Pyridoxine (1) is a form of vitamin B6 that scavenges reactive oxygen
species and regulates diverse cellular metabolisms, including amino acid biosynthesis and
fatty acid biosynthesis (Figure 1) [7–11]. Inspired by pyridoxin (1), our group has pursued
derivative syntheses along with biological investigations to explore the pharmacological
potential of the 6-aminopyridin-3-ol scaffold (2). The class of aminopyridinols (3) was
found to have anti-angiogenic activity, which is linked to cancer and age-related diseases,
as well as anti-inflammatory activity against ulcerative colitis. [12,13]. Notably, remarkable
anticancer activity was observed in novel structures where the 6-aminopyridin-3-ol core
was hybridized with biologically active agents such as α-tocopherol and sunitinib. An
α-tocopherol-hybridized compound 10 suppressed lung tumor growth by dual inhibition
of NADPH oxidase 2 and receptor tyrosine kinases. A sunitinib-hybridized compound 11
was also discovered as an apoptosis-inducing anticancer agent by controlling the p53 level,
with a safer cytotoxicity profile than sunitinib [14]. Therefore, these results showcase that
the 6-amino-pyridin-3-ol scaffolds indeed have the potential to provide favorable biological
activities and demand further studies to expand the scope of the scaffolds.

Our previous synthetic strategies for lead compound discovery are summarized and
illustrated in Figure 1 [12,13,15–22]. Using an amine group of 2 at C(6)-position as a
synthetic handle, amidopyridinols 3 and ureido-/thioureido-/carbamato-pyridinols 4 have
been synthesized to generate a diverse set of compound collections [23–27]. In addition,
heteroatom-containing bicyclic pyridinols 6 were designed and constructed, providing
more constrained structures [14,28–33]. As an ongoing project to increase the compound
diversity of 6-amino-pyridin-3-ol collections, here we present synthetic studies towards
the preparation of three bicyclic pyridinol backbones 12~14 fused with five-membered
heteroaromatic ring systems (Scheme 1). Our strategy for the synthesis of pyrrolo- (12),
imidazolo- (13), and oxazolo-pyridinol (14) features divergent synthesis starting from
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pyridoxine, in line with the previous syntheses of pyridinol derivatives [31]. We also
envision the introduction of an additional amino functional group on a five-membered ring,
which would allow for appendage derivatization in the future. In this work, the hydroxy
group at C(5′)-position in pyridoxine (1) serves as a synthetic tool for the installation
of various functionalities, including nitrile, amide, phenolic OH, and anilinic NH2 in
synthetic intermediates.
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Scheme 1. Pyridoxine-derived five-membered heterocycle-fused pyridinols.

2. Results and Discussion

A general outline of the synthetic strategy for the preparation of dimethylpyridinols
fused with aminooxazole (12), aminoimidazole (13), and aminopyrrole (14) is shown in
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Scheme 2. This began with the preparation of known primary alcohol 15, which was used as
a common intermediate for the syntheses of three final products, according to the three-step
sequence starting from pyridoxine (1) established by us [10,31].
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Scheme 2. A strategy for the divergent synthesis of dimethylpyridinols fused with aminooxazole
(12), aminoimidazole (13), and aminopyrrole (14) starting from pyridoxine (1). Solid arrows: known
methods established by us. Dotted arrow: methods developed in this study. (a) Zn, AcOH, reflux,
12 h, 81%; (b) PhCH2Br, K2CO3, DMF, r.t., 12 h, 91%; (c) K2CO3, MeOH, r.t., 0.5 h, 98%; (d) NaOCl,
TEMPO, NaHCO3, CH2Cl2–H2O, r.t., 1 h, 88%; (e) (i) I2, NH4OH, THF–H2O, r.t., 1 h; (ii) H2O2,
NH4OH, THF–H2O, 91%; (f) NaOCl, NaOH, THF–H2O, r.t., 1 h, 93%; (g) NaNO2, H2SO4, THF–H2O,

0 ◦C, 1 h, r.t. 2 h, 86%; (h) PhNH2, NaNO2, 6 M HCl, 2.5 M NaOH, THF–H2O, 0 ◦C, 1 h then r.t.,
2 h, 95%; (i) Zn, AcOH, MeOH, reflux, 1 h, 80%; (j) SOCl2, DMF, ClCH2CH2Cl, reflux, 12 h, 94%;
(k) KCN, DMF, 40 ◦C, 2 d, 82%.

First, for the synthesis of the aminooxazole-containing analogue 12, the hydroxymethyl
moiety of 15 was converted to amine 17 in three steps [31]. The amino group of 17 was
replaced by hydroxy group to afford 18 as we previously reported [31]. Then, an amine
group was successfully introduced at the C(2)-position of 18 in the presence of free alcohol
at the C(3)-position, without additional protection/deprotection steps [31]. The result-
ing 2-amino-3-hydroxy pyridinol 19 was nicely constructed to test the formation of the
aminooxazole moiety. Gratefully, the formation of the aminooxazole ring was accomplished
by using cyanogen bromide in almost quantitative yield (compound 23) [34], which was
followed by debenzylation to afford the first target compound 12 (Scheme 3).
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Having observed the successful aminooxazole formation, we applied a similar ap-
proach to achieve analogue synthesis, which is the installation of corresponding functional
groups followed by cyclization as outlined in Scheme 2. Since aminopyridinol intermediates
(15~17) with diverse functionalities were generated during the preparation of aminooxa-
zolopyridinol 12, we envisaged that these intermediates could serve as great branching
points for the synthesis of aminoimidazole 13 and aminopyrrole 14.

The synthesis of aminoimidazolopyridinol 13 initiated with the preparation of the
diamine compound 20 (Scheme 4). We first attempted to introduce an amino group
at 2-position of the pyridine ring in the primary amide compound 16 via phthalimi-
dation and subsequent Hofmann rearrangement (the left side of Scheme 4). After m-
CPBA oxidation of 16 to pyridine N-oxide 24, the nucleophilic addition of phthalimide
to the O-p-toluenesulfonylated pyridinium intermediate followed by the elimination of
p-toluenesulfonic acid afforded 25. Removal of the N-phthalyl group in 25 was smoothly
proceeded by the treatment of hydrazine to give free amine 26 [31]. The trial for Hofmann
rearrangement of the primary amide compound 26 to obtain the diamine compound 20
was performed in a mixed solvent with alkaline water and tetrahydrofuran, employing
hypochlorite for activation of the primary amide. However, contrary to our expectations,
the desired diamine compound 20 was not produced under the reaction conditions. A
cyclic urea compound 27 was instead obtained in a moderate yield (40%).
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Scheme 4. Synthesis of 2-amino-5,7-dimethyl-1H-imidazo[4,5-b]pyridin-6-ol (13). Reagents and
Conditions: (a) m-CPBA, CH2Cl2, r.t., 1 h, 83%; (b) p-TsCl, phthalimide, i-Pr2NEt, r.t., 1 h, 75%;
(c) H2NNH2·H2O, THF−EtOH, r.t., 12 h, 84%; (d) NaOCl, NaOH, THF−H2O, r.t., 1 h, 90 ◦C, 2 h, 40%
(for 27); (e) NaOCl, NaOH, THF−H2O, r.t., 1 h, 70%; (f) m-CPBA, CH2Cl2, r.t., 1 h, 65%; (g) p-TsCl,
phthalimide, i-Pr2NEt, r.t., 1 h, 72%; (h) H2NNH2·H2O, THF−EtOH, r.t., 12 h, 73%; (i) BrCN, H2O,
reflux, 15 min, 85%; (j) BCl3, CH2Cl2, r.t., 12 h, 87%.

A possible route of the formation of imidazolidinone compound 27 is shown in
Scheme 5. Once reactive isocyanate intermediate 32 was formed via the rearrangement of
N-chloroamide intermediate 31, and the amine at 2-position might attack the isocyanate
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to form a five-membered cyclic urea 27. Since we experienced such a fact in this trial, we
expected that using water as a solvent would increase the probability of transformation of
isocyanate intermediate 32 to carbamic acid 33, which then spontaneously decomposed
to the desired diamine 20 with the liberation of carbon dioxide. However, based on the
results we observed, the intramolecular cyclization outcompeted the hydroxide (or water)
addition to the isocyanate 32. Several attempts to cleave the urea of compound 27 to obtain
the diamine 20 under acidic conditions with high temperatures only gave a debenzylated
compound quantitatively instead of the desired product.
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Scheme 5. Plausible mechanism for the formation of cyclic urea compound 27.

To avoid such a troublesome intramolecular cyclization issue, we decided to change
the synthetic sequence. The conversion of the primary amide group at C(3)-position to
a free amino group was performed prior to the installation of another free amino group
at C(2)-position as depicted on the right side of Scheme 4. Hofmann rearrangement of
16 followed by N-oxide formation (28) and phthalimide substitution proceeded smoothly
to afford 29, which was then treated with hydrazine to produce the diamine compound
20. The aminoimidazole backbone of compound 30 was successfully constructed by the
treatment of 20 with cyanogen bromide. Finally, the aminoimidazole-fused pyridinol 13
was obtained by debenzylation.

Next, we investigated the synthesis of aminopyrrole-containing analog 14 (Scheme 6).
The initial attempt includes the substitution of primary alcohol of the common interme-
diate 15 with nitrile functionality (21) [31] and phthalimidation of N-oxide compound 34.
Reactions proceeded smoothly, generating compound 35, and phthalimide cleavage using
hydrazine successfully furnished the requisite substrate 36 for aminopyrrole formation.
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Scheme 6. Synthesis of the substrate 36 for 2-amino-4,6-dimethyl-1H-pyrrolo[2,3-b]pyridin-5-ol (14).
Reagents and Conditions: (a) m-CPBA, CH2Cl2, r.t., 1 h, 92%; (b) p-TsCl, phthalimide, i-Pr2NEt, r.t., 1
h, 63%; (c) H2NNH2·H2O, THF, EtOH, r.t., 12 h, 67%.
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Having installed the 2-amino group together with the nitrile group in 36, trials were
made for the cyclization to form a 2-amino-7-azaindole framework. According to a database
search result using the SciFindern on the transformation of reactants 38 to products 39,
no example has been known in the case of an unsubstituted compound at C(#)-position
(Scheme 7). Even if the search range was expanded to cases where there was a substituent
other than hydrogen at the C(#)-position, only a couple of examples were found including
the synthesis of compound 41 [35,36]. Formation of 2-aminoindoles, such as compound 43,
from C(#)-unsubstituted-2-(2-aminopyridin-3-yl)acetonitrile compounds, such as 42, was
also found to be rare [37,38].
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The first trial was done under basic conditions using sodium methoxide, which has
been successfully applied in the preparation of 2-aminoindole ring formation (Scheme 8) [37].
Contrary to the literature in which the 2-aminoindole 43 was obtained in 70% yield from 42
(Scheme 7), the reaction of compound 36 under the same reaction conditions was messy,
and the desired product 37 was not obtained. It can be presumed that the difference in
nucleophilicity between the amine attached to benzene in compound 42 and the amine
attached to pyridine in compound 36 might be one of the main reasons for the success
or failure of the 2-aminopyrrole cyclization reaction under similar reaction conditions.
Interestingly, the formation of a very small amount of a by-product 44 was observed
instead. We speculate that this side reaction may have proceeded as follows (Scheme 9).
Formation of α-ketonitrile intermediate 47 might have been facilitated by the deprotonation
with methoxide at the site adjacent to the nitrile group in 36, which is also a benzylic
position. After the successive aerobic oxidation, the cyano group of 47 might be replaced
by methoxide anion affording compound 44.

To avoid such a deprotonation/oxidation problem, we exposed compound 36 to hot
acetic acid. However, the desired 2-amino-7-azaindole compound 37 was not obtained
under the acidic conditions either. Instead, its N-acetyl compound 44 was obtained, albeit
in small quantities, and the formation of a lactam 46 was also observed. Use of an additive
like zinc acetate to activate the cyclization improved the formation of compound 44 to some
extent. Unlike the other two targets, aminooxazolopyridinol and aminoimidazolopyridinol,
which were readily prepared, an aminopyrrolopyridine-containing compound like 37
might be presumed to have quite poor chemical stability. The free amino compound 37
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was not obtained under both basic and acidic reaction conditions, and even the isolated
pure N-acetylated compound 44 was observed to gradually decompose in solution over
time. Naturally, all efforts made for N-deacetylation were not fruitful.
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Based on our observations, a possible mechanism for the generation of 45 and 46
was proposed in Scheme 10. The reaction is initiated by intramolecular cyclization of
36 to form a 1,3-dihydro-2H-pyrrole-2-imine 37′, which undergoes tautomerization to
yield a 2-aminopyrrole 37. Under the reflux condition, the electron-rich amino group
in 37 further reacts with acetic acid to generate N-acetyl adduct 45. Another pathway
involves the nucleophilic addition of acetic acid to the electrophilic imine-carbon in 37′

and the subsequent elimination of ammonia to afford 48. Acidolysis of the resulting
acetate 48 followed by tautomerization provides a lactam 46. Since high temperature and
long reaction time are necessary to make the intramolecular cyclization of 36 happen, the
reversible reactions illustrated in Scheme 10 might occur and generate the mixture of 45 and
46. Unlike our system, compound 40 contains an additional ester group at the C(#)-position
(Scheme 7) [35]. This carbonyl functional group may accelerate cyclization/tautomerization
events and make the resulting amine of 41 less nucleophilic, preventing the formation of
an N-acetyl adduct of 41.
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3. Materials and Methods
3.1. General

Unless otherwise specified, all the materials obtained from Merck (Kenilworth, NJ,
USA), TCI (Tokyo, Japan), and Alfa Aesar (Ward Hill, MA, USA) were used without
further purification. Inert gas conditions were applied to the sensitive reactions towards
air and moisture. The progress of the reactions was traced by TLC analysis using silica
gel 60 F254 plates (Merck, Kenilworth, NJ, USA). Visualization of the TLC spots was done
using a UV lamp (254 nm, Spectroline Corp., Westbury, NY, USA) and staining solutions
(Anisaldehyde solution and KMnO4 solution) prepared by us using commercially available
reagents. Products were purified by flash column chromatography using silica gel 60
(70–230 mesh, Merck, Kenilworth, NJ, USA) or by using the Biotage ‘Isolera One’ (Biotage,
Uppsala, Sweden) system with indicated solvents. Melting points were determined using a
Büchi melting point B-540 apparatus (Büchi Labortechnik, Flawil, Switzerland) and were
unchanged. 1H and 13C NMR spectra were obtained using a Bruker-250 spectrometer
(1H and 13C frequencies were 250 and 63 MHz, respectively, Bruker Corp., Billerica, MA,
USA), and a Bruker Avance Neo 400 spectrometer (1H and 13C frequencies were 400 and
100 MHz, respectively, Bruker Corp., Billerica, MA, USA). 1H and 13C NMR spectra of
all synthesized molecules are available in the Supplementary Materials (Figures S1–S26).
Chemical shifts (δ) were expressed in ppm calibrated to residual solvent signals and the
coupling constant (J) in hertz. HR-ESIMS was performed using a Thermo Scientific Q
Exactive hybrid Quadrupole-Orbitrap mass spectrometer (Waltham, MA, USA) coupled to
a Thermo Scientific Vanquish UHPLC system (Waltham, MA, USA) at the Core Research
Support Center for Natural Products and Medical Materials (CRCNM).

3.2. 6-(Benzyloxy)-5,7-dimethyloxazolo[4,5-b]pyridin-2-amine (23)

To a solution of cyanogen bromide (30 mg, 0.12 mmol) in H2O (2 mL), we added
Compound 19 (13 mg, 0.13 mmol). The resulting mixture was refluxed for 15 min. On com-
pletion of reaction, the reaction mixture was cooled to room temperature and neutralized
using NaHCO3. The solids precipitated out were filtered and washed using CHCl3. The
organic phase was dried over MgSO4, filtered, and concentrated to give 23 (33 mg, 99%) as
a white solid. Rf 0.36 (CHCl3:MeOH = 15:1); m.p. 153 ◦C; 1H NMR (DMSO-d6) δ 7.69 (s,
2H), 7.51–7.32 (m, 6H), 4.81 (s, 2H), 2.37 (s, 3H), 2.27 (s, 3H); 13C NMR (DMSO-d6) δ 164.6,
152.7, 145.6, 145.0, 138.2, 137.1, 128.4 (2C), 128.2 (2C), 128.1, 120.5, 74.7, 19.2, 9.5; HRMS
(ESI) m/z [M+H]+ calculated for C15H16N3O2 270.1237, found 270.1235.

3.3. 2-Amino-5,7-dimethyloxazolo[4,5-b]pyridin-6-ol (12)

To a solution of compound 23 (28 mg, 0.10 mmol) in MeOH (3 mL), we added 10%
palladium on activated carbon (5 mg). The mixture was stirred under hydrogen atmosphere
at room temperature for 6 h. The mixture was filtered through celite pad and the filtrated
was concentrated to give 12 (18 mg, 99%) as a white solid. Rf 0.32 (CHCl3:MeOH = 7:1);
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m.p. 282 ◦C; 1H NMR (DMSO-d6) δ 8.25 (br s, 1H), 7.43 (s, 2H), 2.32 (s, 3H), 2.22 (s, 3H);
13C NMR (DMSO-d6) δ 163.4, 149.5, 143.6, 139.8, 138.4, 115.8, 19.6, 9.5; HRMS (ESI) m/z
[M+H]+ calculated for C8H10N3O2 180.0768, found 180.0767.

3.4. 6-Benzyloxy-5,7-dimethyl-1H-imidazo[4,5-b]pyridin-2(3H)-one (27)

To a solution of NaOH (100 mg, 0.37 mmol) in THF–H2O (1:1, 8 mL), we added 4%
aqueous NaOCl (2 mL) and 26 (45 mg, 1.10 mmol). The mixture was stirred at room
temperature for 1 h and then at 90 ◦C for 2 h. The mixture was cooled to room temperature
and diluted with CH2Cl2. The organic layer was neutralized with saturated aqueous NH4Cl
solution, and the aqueous layer was extracted with CH2Cl2. The combined organic solution
was washed with brine, dried over MgSO4, and concentrated to give 27 (39 mg, 40%) as a
white solid. Rf 0.40 (CHCl3:MeOH = 10:1); m.p. 295 ◦C; 1H NMR (DMSO-d6) δ 11.0 (br s,
1H), 7.50–7.36 (m, 4H), 4.77 (s, 2H), 2.33 (s, 3H), 2.20 (s, 3H); 13C NMR (DMSO-d6) δ 155.3,
146.5, 140.9, 139.8, 137.3, 128.4 (2C), 128.2 (2C), 128.1, 121.9, 120.3, 74.5, 18.8, 10.6; HRMS
(ESI) m/z [M+H]+ calculated for C15H16N3O2 270.1237, found 270.1243.

3.5. 5-Amino-3-(benzyloxy)-2,4-dimethylpyridine 1-oxide (28)

To a solution of compound 17 (100 mg, 0.44 mmol) in CH2Cl2 (3 mL), we added
m-CPBA (84 mg, 0.49 mmol). The mixture was stirred at room temperature for 1 h and
was diluted with CH2Cl2. The organic layer was successively washed with saturated
aqueous NaHCO3 solution and brine. The resulting organic solution was then dried
over MgSO4, filtered, and concentrated. The residue was purified by silica gel column
chromatography (CH2Cl2:MeOH = 15:1) to give 28 (66 mg, 62%) as a white solid. Rf 0.25
(CHCl3:MeOH = 15:1); m.p. 164 ◦C; MS m/z 245 [M+H]+; 1H NMR (CDCl3) δ 7.80 (s, 1H),
7.51–7.35 (m, 5H), 4.75 (s, 2H), 4.06 (br s, 2H), 2.36 (s, 3H), 2.02 (s, 3H); 13C NMR (CDCl3)
δ 153.2, 141.7, 136.1, 134.6, 128.8 (2C), 128.6, 128.2 (2C), 123.2, 117.9, 75.8, 11.3, 9.9; HRMS
(ESI) m/z [M+H]+ calculated for C14H17N2O2 245.1285, found 245.1282.

3.6. 2-(3-Amino-5-(benzyloxy)-4,6-dimethylpyridin-2-yl)isoindoline-1,3-dione (29)

To a solution of compound 28 (66 mg, 0.27 mmol) in anhydrous CH2Cl2 (15 mL), we
added phthalimide (40 mg, 0.27 mmol), N,N-diisopropylethylamine (0.15 mL, 0.81 mmol),
and p-tosyl chloride (77 mg, 0.41 mmol). The mixture was stirred under argon atmosphere
at room temperature for 1 h. The mixture was diluted with CH2Cl2, and the organic
phase was washed with H2O. The organic solution was dried over MgSO4, filtered, and
concentrated. The residual solid was filtered and washed with Et2O to give 29 (73 mg, 72%)
as a white solid. Rf 0.41 (CHCl3:MeOH = 20:1); m.p. 156 ◦C; 1H NMR (CDCl3) δ 7.93 (dd,
J = 5.2, 2.9 Hz, 2H), 7.85–7.69 (m, 2H), 7.56–7.33 (m, 5H), 4.84 (s, 2H), 3.60 (br s, 2H), 2.46 (s,
3H), 2.16 (s, 3H); 13C NMR (CDCl3) δ 167.4 (2C), 153.0, 142.3, 138.2, 136.9, 134.6 (2C), 132.3
(2C), 128.8 (2C), 128.4, 128.0 (2C), 127.5, 126.7, 124.0 (2C), 75.1, 19.0, 10.8; HRMS (ESI) m/z
[M+H]+ calculated for C22H20N3O3 374.1499, found 374.1494.

3.7. 5-(Benzyloxy)-4,6-dimethylpyridine-2,3-diamine (20)

To a solution of compound 29 (143 mg, 0.38 mmol) in THF–EtOH (1:1, 4 mL) we added
hydrazine (1.0 mL). The mixture was stirred at room temperature for 12 h, and the solvent
was evaporated. The residue was diluted with Et2O, and the insoluble solids were filtered
off. The filtrate was diluted with CH2Cl2 and washed with H2O. The organic solution was
dried over MgSO4, filtered, and concentrated to give 20 (68 mg, 73%) as a brown solid.
Rf 0.22 (CHCl3:MeOH = 20:1); m.p. 129 ◦C; 1H NMR (CDCl3) δ 7.50–7.30 (m, 5H), 4.72
(s, 2H), 4.08 (br s, 2H), 3.26 (br s, 2H), 2.33 (s, 3H), 2.09 (s, 3H). 13C NMR (CDCl3) δ 145.8,
144.0, 138.7, 137.4, 128.7 (2C), 128.2, 128.1 (2C), 126.3, 125.6, 75.4, 18.5, 10.4; HRMS (ESI)
m/z [M+H]+ calculated for C14H18N3O 244.1444, found 244.1442.
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3.8. 6-(Benzyloxy)-5,7-dimethyl-3H-imidazo[4,5-b]pyridin-2-amine (30)

To a solution of cyanogen bromide (57 mg, 0.53 mmol) in H2O (2 mL) we added
compound 20 (130 mg, 0.53 mmol) in H2O (4 mL). The reaction mixture was refluxed for
12 h. The mixture was cooled to room temperature, and the solids precipitated out were
filtered and recovered using CHCl3. The organic solution was dried over MgSO4 and
concentrated to give 30 (129 mg, 85%) as a beige solid. Rf 0.24 (CHCl3:MeOH = 9:1); 1H
NMR (DMSO-d6) δ 7.53–7.47 (m, 2H), 7.45–7.33 (m, 3H), 6.31 (s, 2H), 4.77 (s, 2H), 2.37
(s, 3H), 2.29 (s, 3H); 13C NMR (DMSO-d6) δ 156.1, 145.9, 140.0, 137.6, 128.4 (2C), 128.1
(2C), 127.9, 74.5, 19.1, 10.6; HRMS (ESI) m/z [M+H]+ calculated for C15H17N4O 269.1397,
found 269.1393.

3.9. 2-Amino-5,7-dimethyl-3H-imidazo[4,5-b]pyridin-6-ol hydrochloride (13)

To a suspension of compound 30 (20 mg, 0.075 mmol) in CH2Cl2 (3 mL), we added
1 M BCl3 in CH2Cl2 (0.75 mL) at 0 ◦C. After the mixture was stirred overnight, a mixed
solvent of CHCl3:MeOH (9:1) was added. The resulting solution was concentrated to give
13 (14 mg, 87%) as a white solid. Rf 0.20 (CHCl3:MeOH = 5:1); 1H NMR (CD3OD) δ 2.60
(s, 3H), 2.53 (s, 3H); 13C NMR (CD3OD) δ 155.3, 148.2, 136.4, 134.8, 128.9, 127.4, 15.6, 12.0;
HRMS (ESI) m/z [M+H−Cl]+ calculated for C8H11N4O 179.0927, found 179.0927.

3.10. 3-(Benzyloxy)-5-(cyanomethyl)-2,4-dimethylpyridine 1-oxide (34)

To a solution of compound 21 (100 mg, 0.40 mmol) in CH2Cl2 (5 mL), we added
m-CPBA (75 mg, 0.44 mmol), and the resulting mixture was stirred at room temperature for
1 h. The mixture was diluted with CH2Cl2 and washed with saturated aqueous NaHCO3
solution and brine. The organic layer was dried over MgSO4, filtered, and concentrated.
The residue was purified by silica gel column chromatography (CH2Cl2:MeOH = 25:1)
to give 34 (98 mg, 92%) as a white solid. Rf 0.28 (CHCl3:EtOAc = 20:1); m.p. 144 ◦C; 1H
NMR (CDCl3) δ 8.21 (s, 1H), 7.45–7.35 (m, 5H), 4.83 (s, 2H), 3.60 (s, 2H), 2.47 (s, 4H), 2.21 (s,
3H); 13C NMR (CDCl3) δ 153.8, 145.3, 135.5, 135.3, 129.9, 129.0, 128.9 (2C), 128.3 (2C), 125.2,
115.6, 76.2, 19.6, 12.1, 12.1; HRMS (ESI) m/z [M+H]+ calculated for C16H17N2O2 269.1285,
found 269.1282.

3.11. 2-(5-(Benzyloxy)-2-(1,3-dioxoisoindolin-2-yl)-4,6-dimethylpyridin-3-yl)acetonitrile (35)

To a solution of compound 34 (72 mg, 0.27 mmol) in anhydrous CH2Cl2 (5 mL), we
added phthalimide (42 mg, 0.29 mmol) and p-tosyl chloride (82 mg, 0.43 mmol). After the
reaction mixture became a clear solution, N,N-diisopropylethylamine (0.15 mL, 0.85 mmol)
was added and the resulting mixture was stirred under argon atmosphere at room temper-
ature for 1 h. The mixture was diluted with CH2Cl2 and washed with H2O. The organic
solution was dried over MgSO4, filtered, and concentrated. The residue was purified by
silica gel column chromatography (Hexanes:EtOAc = 5:1) to give 35 (67 mg, 63%) as a white
solid. Rf 0.25 (Hexanes:EtOAc = 1:1); m.p. 171 ◦C; 1H NMR (CDCl3) δ 7.96 (dd, J = 5.5,
3.0 Hz, 2H), 7.80 (dd, J = 5.5, 3.1 Hz, 2H), 7.51–7.37 (m, 5H), 4.88 (s, 2H), 3.61 (s, 2H), 2.55 (s,
3H), 2.41 (s, 3H); 13C NMR (CDCl3) δ 167.0 (2C), 153.6, 152.9, 142.0, 139.3, 136.2, 134.8 (2C),
132.0 (2C), 128.8 (2C), 128.6, 128.0 (2C), 124.2 (2C), 123.3, 115.8, 75.2, 19.7, 17.5, 13.2; HRMS
(ESI) m/z [M+H]+ calculated for C24H20N3O3 398.1499, found 398.1497.

3.12. 2-(2-Amino-5-(benzyloxy)-4,6-dimethylpyridin-3-yl)acetonitrile (36)

To a solution of compound 35 (265 mg, 0.67 mmol) in THF–EtOH (1:1, 2 mL), we added
60% hydrazine hydrate (2 mL). The reaction mixture was stirred at room temperature for
12 h and concentrated. The residue was diluted with Et2O, and the insoluble solids were
filtered off. The filtrate was diluted with CH2Cl2 and was washed with H2O. The organic
solution was dried over MgSO4, filtered, and concentrated to give 36 (119 mg, 67%) as a
white solid. Rf 0.25 (CHCl3:MeOH = 15:1); m.p. 189 ◦C; 1H NMR (CDCl3) δ 7.45–7.36 (m,
5H), 4.73 (s, 2H), 4.36 (br s, 2H), 3.52 (s, 2H), 2.39 (s, 3H), 2.24 (s, 3H); 13C NMR (CDCl3)
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δ 152.1, 150.4, 145.8, 140.9, 136.9, 128.8 (2C), 128.4, 128.1 (2C), 116.6, 107.0, 75.5, 19.3, 16.4,
12.9; HRMS (ESI) m/z [M+H]+ calculated for C16H18N3O 268.1444, found 268.1440.

3.13. Methyl 2-amino-5-(benzyloxy)-4,6-dimethylnicotinate (44)

To a solution of compound 36 (30 mg, 0.11 mmol) in MeOH (3 mL), we added 25%
NaOMe in MeOH (0.25 mL, 1.1 mmol). The mixture was stirred at 50 ◦C for 1 h under argon
atmosphere and cooled to room temperature. The mixture was poured into water and ex-
tracted with EtOAc. The organic solution was dried over MgSO4, filtered, and concentrated.
The residue was purified by silica gel column chromatography (Hexanes:EtOAc = 1:1) to
give 44 (3 mg, 10%) as a white solid. Rf 0.30 (CHCl3:MeOH = 15:1); 1H NMR (CDCl3) δ
7.49–7.32 (m, 5H), 5.85 (s, 2H), 4.71 (s, 2H), 3.89 (s, 3H), 2.42 (s, 3H), 2.37 (s, 3H); 13C NMR
(CDCl3) δ 168.8, 155.6, 155.5, 144.6, 143.8, 137.1, 128.8, 128.4, 128.1, 106.4, 75.3, 51.8, 20.0,
15.3; HRMS (ESI) m/z [M+H]+ calculated for C16H19N2O3 287.1390, found 287.1355.

3.14. N-(5-(benzyloxy)-4,6-dimethyl-1H-pyrrolo[2,3-b]pyridin-2-yl)acetamide (45)

To a solution of compound 36 (13 mg, 0.048 mmol) in glacial acetic acid, we added zinc
acetate (45 mg, 0.24 mmol). The mixture was refluxed under argon atmosphere for 12 h. The
mixture was concentrated, and the residue was diluted with H2O. The aqueous layer was
extracted with CH2Cl2, and the combined organic solution was dried over MgSO4, filtered,
and concentrated. The residue was purified by silica gel preparative thin layer chromatog-
raphy to give 45 (7 mg, 45%) as a brown solid. Rf 0.29 (Hexanes:EtOAc:MeOH = 10:10:1);
1H NMR (CDCl3) δ 10.55 (br s, 1H), 7.83 (br s, 1H), 7.55–7.47 (m, 2H), 7.46–7.33 (m, 3H),
5.75 (s, 1H), 4.83 (s, 2H), 2.58 (s, 3H), 2.41 (s, 3H), 2.23 (s, 3H); 13C NMR (CDCl3) δ 168.3,
147.1, 145.1, 141.0, 137.6, 134.7, 130.6, 128.7 (2C), 128.3, 128.1 (2C), 118.9, 82.6, 75.5, 24.1, 19.7,
12.8; HRMS (ESI) m/z [M+H]+ calculated for C18H20N3O2 310.1550, found 310.1545.

4. Conclusions

In this study, the aminooxazole-, aminoimidazole-, and aminopyrrole-containing
pyridinols were divergently synthesized starting from pyridoxine. The synthetic strategy
relied on the conversion of hydroxymethyl functionality in the common intermediate 15
into phenol, aniline, and cyanomethyl structures, respectively. The installation of nitrogen-
containing functional group at α-position in pyridine was achieved via either diazotization
or phthalimidation. These synthetic routes enable the rapid construction of the three
different aminobicyclic pyridinol derivatives in an efficient and divergent way. With
the two chemical handles including the 5′-hydroxy group and arylamino group, these
backbones may serve as a valuable starting point for the generation of diverse sets of
compound libraries through appendage diversification.
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