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Abstract: Vitamin D is a secosteroid with a pleiotropic role in multiple physiological processes.
Besides the well-known activity on bone homeostasis, recent studies suggested a peculiar role of
vitamin D in different non-skeletal pathways, including a key role in the modulation of immune
responses. Recent evidences demonstrated that vitamin D acts on innate and adaptative immunity
and seems to exert an immunomodulating action on autoimmune diseases and cancers. Several
studies demonstrated a relationship between vitamin D deficiency, autoimmune thyroid disorders,
and thyroid cancer. This review aims to summarize the evidences on the immunomodulatory effect
of vitamin D on thyroid diseases.
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1. Introduction

Vitamin D is a secosteroidal hormone precursor. This term encompasses several compounds, but
the most represented isoforms are Ergocalciferol (or vitamin D2), available in plants, and Cholecalciferol
(or vitamin D3), synthesized at the skin level from 7-dehydrocholesterol after exposure to ultraviolet B
(UVB) radiation [1,2]. Vitamin D binding protein transports vitamin D isoforms to the liver, where they
are converted by 25-hydroxylase enzyme to 25-hydroxyvitamin D2 (25(OH)D2) and D3 (25(OH)D3),
which are the main circulating isoforms of vitamin D and reflect vitamin D status [1,3]. Considering
that D3 is the most represented isoform in humans [4], from now on we will conventionally use the
terminology associated with this isoform.

At physiological concentrations, 25(OH)D3 is inactive, needing to be converted into the active
forms 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) by 1α-hydroxylase enzyme (encoded by CYP27B1) in
the kidneys. 1α-hydroxylase activity is regulated by parathyroid hormone (PTH) levels, while high
1,25(OH)2D3 levels and fibroblast growth factor 23 (FGF23) exert a negative feedback. 1α-hydroxylase
is also expressed in extra-renal sites, like bone, skin, colon, brain, and immune cells, where its
regulation is independent of PTH. Inactivation of both 25(OH)D3 and 1,25(OH)2D3 is performed by
24-hydroxylase [1,2,5].
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1,25(OH)2D3 binds to the Vitamin D receptor (VDR), a member of the nuclear hormone receptors
family, acting on the vitamin D response element (VDRE) to control the expression of multiple genes,
including those involved in the regulation of cellular cycle and angiogenesis [6]. Moreover, the
existence of a membrane-bound VDR has been hypothesized mediating non-genomic, rapid effects of
1,25(OH)2D3 [7].

1,25(OH)2D3 has been recognized as a key hormone in the regulation of the musculoskeletal
homeostasis. However, extra-skeletal effects of 1,25(OH)2D3 have been attracting interest in the last
years, after discovering the presence of VDR in many tissue types [8,9]. Thus, different roles have been
attributed to vitamin D: it contributes to the development, protection, transmission, and plasticity
of the nervous system, downregulates the renin-angiotensin-aldosterone system, exerts a protective
role on the vascular endothelium, and improves insulin sensitivity [10–13]. For these physiological
evidences, vitamin D status has been proposed as a biomarker of general health and hypovitaminosis D
has been correlated to the presence of metabolic syndrome, cardiovascular diseases, cancers, infections,
neuromuscular disorders, and all-cause mortality [14–16].

Among the pleotropic effects of vitamin D, in the last few decades an increasing number of evidences
suggested an intriguing link between vitamin D homeostasis and immune responses [17–19]. As such,
many researchers speculated that autoimmune disorders, including type I diabetes, autoimmune
thyroiditis, inflammatory bowel disease, rheumatoid arthritis, systemic lupus erythematosus, and
multiple sclerosis, could be related to vitamin D imbalance [20,21]. In this context, vitamin D could
exert an important role in innate and adaptive immunity modulation (Figure 1).
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Factor; Treg, T regulatory.

Innate immunity is an immunological subsystem that includes the cells and mechanisms implicated
in the first line of defense from infections. The vitamin D binding to VDR expressed by the hematopoietic
system leads to the myeloid differentiation towards monocytes and granulocytes, the immune cells
involved in the innate immunity. The exposure of monocytes to different pathogens increases the
expression of VDR, which is involved in antimicrobial response [22]. Focusing on innate immunity,
1,25(OH)2D3 enhances antimicrobial activity of monocytes and macrophages by promoting the
production of defensin β 2 and cathelicidin antimicrobial peptide (CAMP) [23,24]. Furthermore,
1,25(OH)2D3 contributes to the clearance of pathogens by inducing chemotaxis and phagocytosis of
innate immune cell components [25,26]. Recent evidences suggest that vitamin D seems to be implicated
in the prevention of infections by reducing the propagation of pathogens, via neutrophil extracellular
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traps (NETs) formation [27]. Although vitamin D enhances the antimicrobial activity of innate immunity,
it seems to exert an important role in favoring immune tolerance through the downregulation of antigen
presentation by monocytes [28,29]. In addition, 1,25(OH)2D3 inhibits dendritic cells chemotaxis and
antigen presentation, through a downregulation of MHC II expression [30,31].

Therefore, many studies highlighted an intriguing role for vitamin D in enhancing innate immunity
through different pathways.

Adaptive immunity is highly specific for each pathogenic antigen and is mediated by lymphocytes
B and T. With regards to the immunomodulatory effects of vitamin D on this subsystem, vitamin D
downregulates the monocytes expression of proinflammatory cytokines, including Tumor Necrosis
Factor α (TNF α) and Interleukin 6 (IL-6), which are involved in the inflammatory pathway that leads
to B and T lymphocytes activation and proliferation [32]. B cells express VDR both in quiescence and
after activation [33]. In this context, 1,25(OH)2D3 promotes the apoptosis B cells, hence preventing
their proliferation and differentiation into plasma cells [34].

T lymphocytes represent another immune target of vitamin D action: 1,25(OH)2D3 is able to
suppress T cells cytotoxic activity by inhibiting the expression of Fas-ligand and exert different
immunomodulatory effects on T helper (Th) cells [35]. CD4+ T cells differentiate into several distinct
subsets [36]. The Th1 subset secretes proinflammatory cytokines, including IFN-γ and IL-2, and
exerts a key role in the clearance process of intracellular pathogens, whereas Th2 cells are involved
prevalently in immune responses to parasites. Th17 cells secrete proinflammatory cytokines, such as
IL-17 and IL-22, implicated in the immune responses to bacterial and fungal infections as well as in the
pathogenesis of autoimmune diseases [37,38].

In animal models, 1,25(OH)2D3 regulates CD4+ Th differentiation, inhibiting the activity of
Th17 and Th1 cells [39], which are involved in different chronic inflammatory conditions through
cytokines release. On the contrary, 1,25(OH)2D3 polarizes CD4+ cells towards a Th2 phenotype with a
consequent upregulation of cytokines including IL-4 and IL-5 [40,41]. Finally, 1,25(OH)2D3 has been
shown to induce the cellular differentiation and increase the activity of T regulatory (Treg), a key
subset of CD4+ cells implicated in the maintenance of immune tolerance. These mechanisms lead to
an increase of anti-inflammatory actions mediated by transforming growth factor β1 (TGF-β1) and
IL-10 and [42–44].

In summary, vitamin D has the ability to modulate adaptive immunity, acting on different
components of this immunological subsystem.

The global biological actions of 1,25(OH)2D3 reveal, therefore, an ability to interact functionally
with the immune system by promoting immune tolerance and a shift from the pro-inflammatory
setting to a more tolerogenic immune setting, which may link to protective effects in autoimmune
diseases and inflammatory processes [1,2]. Clinical surveys have recently associated hypovitaminosis
D with autoimmune thyroid disorders (AITD), including Hashimoto’s thyroiditis (HT), Graves’ disease
(GD) and post-partum thyroiditis (PPT), as well as thyroid cancer tumorigenesis [45,46].

This review aims to summarize the evidences on the immunomodulatory effect of vitamin D on
thyroid diseases.

2. Autoimmune Thyroid Disorders (AITDs)

AITD is the most frequent autoimmune disease with an estimated prevalence of 5% and a
progressive increase in incidence, especially in the female population. Adult women have a higher risk
of developing thyroid autoimmunity than men and present more frequently abnormal thyroid function
in this context (7%–9% in females vs. 1%–2% in males) [47]. AITDs are T-cell mediated autoimmune
disorders, resulting from an organ-specific deregulation of the immune system. The mechanisms
involved in this autoimmune response have not been fully elucidated yet, though an interaction between
genetic predisposition and environmental factors has been demonstrated to trigger the autoimmune
process [46]. In subjects with genetic predisposition, an alteration of the physiological balance between
Th1 and Th2 response may occur in case of exposure to environmental factors [48]. Moreover, a shift in
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the balance between Th17 and Treg cells has been recently observed in thyroid autoimmunity [49].
Environmental factors that have been recognized in association with AITD pathogenesis include iodine,
radiation, smoking habit, viral infections, drugs, and stress [50].

The most common AITDs are HT and GD, which are commonly characterized by lymphocytic
(T-cell CD4+ and CD8+) infiltration of the thyroid tissue and production of thyroid-specific
antibodies [48,51] (Figure 2). Patients with AITD harbor an increase of activated T-cell expressing
human leukocyte antigen (HLA)-DR and a decrease of CD8+ immune cells, whereas circulating B cell
levels are normal [51].
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Figure 2. Scheme of the immunomodulating role of vitamin D on AITD. Arrows illustrate increase
(↑), decrease (↓) or regulation/modulation (↗) of specific actions, processes, cells, or molecules.
Abbreviations: autoAb, autoantibodies; GD, Graves’ disease; HT, Hashimoto’s thyroiditis; IFN,
Interferon; IL, Interleukin; PPT, Post-partum thyroiditis; Th, T helper; TNF, Tumor Necrosis Factor;
TPOAb, anti-thyroid peroxidase antibodies; TgAb, anti-thyroglobulin antibodies; TRAb, TSH receptor
autoantibodies. Histological images are available at Histology Gallery, Yale Medical Cell Biology.

The HLA-DR antigen, expressed primarily by monocytes and B cells, has also been detected on
the surface of activated T cells. These DR antigens, which are cell-surface glycoproteins encoded by
genes of the HLA-DR region of the MHC, are absent in resting T lymphocytes and could represent
a potential marker of the immune system activation [52]. Some studies also documented that the
percentage of circulating T cells expressing HLA-DR represent a biomarker capable of accurately
reflecting autoimmune diseases activity [53].

As previously described, vitamin D exerts a modulating role on AITD through its specific
enhancing effects on the innate immune system and inhibitory actions on the adaptive immune
response [2].

Preclinical and clinical studies found an association between AITD and vitamin D deficiency [45,54].
Original evidence of a peculiar role of vitamin D in thyroid disease dates back to the late 80s to early
90s. McDonnell described an interesting homology between the VDR and the thyroid hormone
receptor [55], and five years later, Berg et al. demonstrated the VDR expression on follicular thyroid
cells [56]. Moreover, VDR and the thyroid hormone receptor share partners for heterodimerization [57].
In the same period, Fournier et al. investigated the effect of a combined treatment with cyclosporine A
and 1,25(OH)2D3 using an experimental model of AITD in mice [58], suggesting a synergistic effect
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of these molecules in preventing the onset of thyroid autoimmunity and its associated histological
alterations [58]. Years later, Borgogni and colleagues evaluated the effects of a non-hypercalcemic
vitamin D receptor agonist, elocalcitol, on the secretion of the inflammatory chemokine CXCL10
induced by proinflammatory cytokines, as compared to methimazole. The authors demonstrated that,
in human thyrocytes, elocalcitol impaired both IFN-γ and TNFα-induced CXCL10 protein intracellular
pathways, whereas methimazole only aced on IFN-γ pathway. Moreover, elocalcitol reduced Th1 and
Th17 cytokine secretion in CD4+ T cells and promoted a shift toward a Th2 response [59].

In murine models with induced autoimmune hyperthyroidism prompted by thyrotropin
receptor immunization, hypovitaminosis D was found to induce a persistent disease, suggesting an
immunomodulatory effect of vitamin D status on autoimmune hyperthyroidism [60]. In parallel, Liu
and co-workers tested the effect of 1,25(OH)2D3 on Th1/Th2 cells and inflammation in female Wistar
rats with experimental autoimmune thyroiditis [61]. Their results showed significantly decreased
levels of thyroid autoantibodies and INF-γ in mice treated with 1,25(OH)2D3, which was associated
with the maintenance of structural thyroid integrity.

From a clinical viewpoint, a meta-analysis including 20 case-control studies showed that patients
with AITD harbor significantly lower serum vitamin D levels compared to healthy controls (OR 2.99,
95%CI 1.88–4.74) [62]. However, the mechanisms underlying the effects of vitamin D on AITD are still
unknown but likely related to its anti-inflammatory and immunomodulatory properties.

2.1. Hashimoto’s Thyroiditis

HT represents a T-cell-mediated autoimmune disease characterized by goiter, presence of
circulating anti-thyroid peroxidase (TPOAb) and/or anti-thyroglobulin (TgAb) antibodies, and
intrathyroidal infiltration of B and T cells with a CD4+ Th1 predominance [46,63]. This alteration leads
to varying degrees of thyroid hypofunction.

Observational and interventional studies observed that low vitamin D levels and the risk of
HT onset seem to be closely associated. Indeed, patients with HT harbored a high proportion
of hypovitaminosis D (over 60%). Moreover, HT is more closely related to vitamin D deficiency
(<20 ng/mL) than insufficiency (21–29 ng/mL) [64–67].

The first observational study on the association between vitamin D and HT was published
in 2009 [68]. Based on the evidence that vitamin D deficiency is linked to a susceptibility to type
1 diabetes [69] and multiple sclerosis [70], Goswami et al. conducted a community-based survey
on 642 adults to investigate the relationship between serum vitamin D concentrations and thyroid
autoimmunity. Their results highlighted a significant inverse association between 25(OH)D3 and
TPOAb levels [68]. Three years later, Camurdan et al. observed that hypovitaminosis D rate was
higher in children with HT compared to control group (73.1% vs. 17.6%) and confirmed the inverse
association between 25(OH)D3 levels and TPOAb titer in their pediatric population [71]. This inverse
correlation was substantiated in the following studies: [66,72–75]. Furthermore, different clinical
studies showed that the prevalence of HT in patients with hypovitaminosis D was significantly higher
than that documented in subjects with sufficient vitamin D levels, particularly among children, elderly
subjects, and pre-menopausal women [64,71,76–81]. As regards thyroid function in the context of
HT, Mackawy and co-workers demonstrated a strong negative association between serum vitamin D
concentrations and TSH levels, leading to speculate that vitamin D deficiency in HT patients could be
associated with a progression towards hypothyroidism (TSH > 5.0 m UI/L) [65].

In more recent years, these evidences prompted several research groups to evaluate the effect
of vitamin D supplementation on thyroid autoimmunity. Simsek et al. prospectively evaluated 82
patients with HT, which were randomized in two groups: the first group (46 patients) was treated
with cholecalciferol 1000 IU/day for one month and the second group without vitamin D replacement.
Their results showed that TPOAb and TgAb levels were significantly decreased by the vitamin D
replacement therapy in the first group [82]. These findings were confirmed by other prospective studies
and randomized controlled trials, which added evidence that cholecalciferol supplementary treatment
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was related to a decrease in TPOAb and TgAb levels both in patients with vitamin D sufficiency and
deficiency [83–85]. Moreover, an increase of 5 ng/mL in vitamin D levels was correlated to a significant
decrease of 20% in the risk of HT [86].

In 2017, Mirhosseini et al. enrolled 11,017 subjects to evaluate the influence of vitamin D
supplementary treatment on thyroid function and thyroid auto-antibodies levels. Their results showed
that serum 25(OH)D3 levels ≥ 50 ng/mL were associated with a 30% decreased risk of hypothyroidism
onset and a 32% decreased risk of increased thyroid auto-antibodies levels, leading the authors to
speculate that vitamin D supplementation could exert a positive effect on thyroid function as well as
provide protection from new onset of thyroid disease during a 12 months follow up [87]. In addition,
in a recent 3 month randomized controlled trial (RCT) on adult females with HT, Chahardoli et
al. confirmed a significant decrease of TSH levels after weekly supplementation with 50,000 IU of
cholecalciferol [88].

Few studies, however, failed to document associations between vitamin D deficiency and a
higher prevalence of HT [89,90], questioning on the preventive role of vitamin D in AITD. Further
investigations are needed to evaluate the preventive and therapeutic effects of vitamin D in HT.

Growing evidence also documented that some VDR polymorphisms could be related to an
increased incidence of HT [91]. The most frequent polymorphisms include FokI, BsmI, ApaI and
TaqI. FokI polymorphism is located in exon 2 of the VDR gene and causes an alteration in the start
codon leading to a truncated VDR protein [92]. The BsmI and ApaI polymorphisms, located in intron
8 of the VDR gene, lead to an altered mRNA stability, a disruption of splicing sites or a change in
intronic sequences, affecting gene expression [92,93]. The TaqI polymorphism is located in exon 9 and
is able to alter the mRNA stability [92,93]. FokI and ApaI polymorphisms influences serum vitamin D
concentration, and BsmI polymorphism interferes with the IFN-γ production by monocytes, whereas
TaqI influences the VDR expression [92,93].

In a meta-analysis on 8 studies showed that the VDR BsmI and TaqI polymorphisms were
associated with HT risk [94]. Later, Inoue and co-workers demonstrated that the CC genotype for
the FokI polymorphism was frequent in patients with HT [93]. Finally, a meta-analysis including
11 studies on Asian and Caucasian populations observed that the FokI polymorphism of VDR was
related with a higher risk of HT only in Asian subjects [95]. All these results are in line with findings
on children with type 1 diabetes [96].

2.2. Graves’ Disease

GD is the most common cause of hyperthyroidism in developed countries, affecting mostly
women, with an annual incidence of 14 cases in 100,000 persons [97]. GD is characterized by the
presence of TSH receptor autoantibodies (TRAb) which lead to hyperthyroidism, diffuse toxic goiter,
and ophthalmopathy [98]. In GD, infiltration of lymphocytes is milder than in HT and involves mainly
CD4+ Th2 cells [46]. Although several studies reported an increased prevalence of hypovitaminosis D
in patients with GD, the relationship between these two conditions is not clear [99].

The first observational study evaluated vitamin D status in women with and without GD remission.
The results showed that vitamin D concentrations were significantly lower in patients without remission
of GD compared to subjects with remission and that the prevalence of hypovitaminosis D was twice as
high as in healthy controls [100]. The same workgroup, in a prospective study, observed a significant
association between low vitamin D concentrations and an increased volume of thyroid gland in
women with newly onset GD [101]. In 2016, Kim et al., in a cross-sectional study including 776 AITD
patients, showed that the prevalence of vitamin D insufficiency was higher in GD patients compared
to healthy subjects [79]. These results were further confirmed by two cross-sectional studies, although
no association was observed between vitamin D and TRAb levels [102,103]. Conversely, in a cohort of
70 GD subjects, Zhang et al. found an inverse association between serum vitamin D concentrations
and TRAb levels [104].
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More extensively, Xu and co-workers evaluated the relationship between serum vitamin D levels
and GD through a meta-analysis including 26 case-control or cohort studies. Their results confirmed
that subjects with GD were more frequently to be deficient in vitamin D than the control group
(OR = 2.24, 95% CI 1.31–3.81, p < 0.001) [105].

As regards the role of vitamin D supplementary treatment during GD, current evidence is limited
to only one interventional study where the effect of daily vitamin D treatment was assessed on GD
recurrence. Among 210 GD patients with hypovitaminosis D, 60 received cholecalciferol (1000–2000 IU
per day) whereas 150 did not. Recurrence rate was comparable between groups (38% vs. 49%) but
occurred earlier in the control group (7 vs. 5 months) [106].

Several studies investigated the relationship between polymorphisms of VDR gene and GD onset
risk, but results remain arguable. The first meta-analysis to evaluate this association was conducted
by Zhou et al. in 2009 and included seven studies on Caucasian and Asian populations. The results
showed that the presence of ApaI, BsmI, and FokI VDR polymorphisms was associated with a higher
risk of GD onset in Asian population, whereas no associations were found in Caucasian cohorts [107].
More recently, a meta-analysis including eight studies found a relationship between BsmI and TaqI
polymorphisms and the risk of GD onset, while no correlation was seen for ApaI and FokI [94]. Finally,
Inoue et al. observed a higher prevalence of TT genotype for TaqI in subjects with GD compared to
patients with HT and a higher prevalence of the C allele for ApaI in comparison with controls [93].

2.3. Post-Partum Thyroiditis

Post-partum thyroiditis (PPT) refers to the development of de novo AITD within the first year
post-partum and represents one of the most common autoimmune disorders in pregnancy, with an
estimated prevalence between 1% and 17% [108]. Clinical symptoms include a thyrotoxic phase during
the first 3 months of onset usually followed by a phase of hypothyroidism at 3–6 months, which is
reversible in 75% of patients [109,110].

Different clinical studies investigated the relationship between PPT and serum vitamin D
concentrations. Krysiak et al. compared 25(OH)D3 and PTH levels between 4 groups of non-lactating
women who gave birth 12 months before the beginning of the study: euthyroid women with PPT,
women with hypothyroidism and PPT, women with non-autoimmune hypothyroidism, and healthy
euthyroid women without AITD. Serum vitamin D concentrations were lower whereas PTH levels were
higher in patients with PPT compared to subjects without AITD. Moreover, in the second part of the
study, women with hypothyroidism and PPT as well as women with non-autoimmune hypothyroidism
were treated for 6 months with L-thyroxine. The results showed that L-thyroxine therapy increased
serum vitamin D levels and reduced PTH levels only in the first group, highlighting an intriguing
relationship between vitamin D status, PPT and L-thyroxine therapy [111].

In 2016, the same group investigated whether vitamin D treatment could modify the course of
thyroid autoimmunity in 38 non-lactating levo-thyroxine-treated women with PPT compared to 21
matched healthy postpartum women. Women with deficiency of vitamin D were treated with oral
cholecalciferol at 4000 IU daily, whereas women with insufficiency of vitamin D and women with
normal 25(OH)D3 concentrations were either treated with cholecalciferol at 2,000 IU daily or left
untreated. At baseline, serum vitamin D concentrations were lower in patients with PPT compared
to healthy women and were inversely associated with thyroid antibody levels. Following vitamin D
treatment, TPOAb titer decreased, and this effect was more evident in women with hypovitaminosis D
compared to those with normal vitamin D [112]. However, this study raised some criticism regarding
the presence of potential confounders that could interfere with autoantibody titer and the vitamin D
status, including the use of estrogen contraceptives, iodine status, and selenium levels [113]. Further
studies are needed to define the role of vitamin D in PPT.
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3. Thyroid Cancer

Thyroid cancer is the most frequent endocrine tumor with 567,000 new cases reported annually.
Its incidence is significantly higher in women than in men (10.2 per 100,000 vs. 3.1 per 100,000) [114].
Thyroid cancers are usually follicular in their origin, including differentiated thyroid cancers (DTC),
poorly differentiated thyroid cancers (PDTC), and anaplastic (ATC) thyroid cancers [115].

Previous irradiation to the neck, the presence of benign thyroid nodules, and a family history
of thyroid neoplasia represent recognized risk factors for thyroid cancer. Recently, a higher cancer
risk for hypothyroidism and hyperthyroidism has been established [116–120]. An important role
in thyroid tumorigenesis was also attributed to environmental factors, which can influence thyroid
cancer histopathological phenotype [121,122]. In this context, obesity represents a recently recognized
environmental and genetic risk factor involved in thyroid carcinogenesis. Several evidences suggest a
potential role for adipose tissue in regulating tumor microenvironmental pathophysiology, supported
by a documented association between obesity-dependent inflammation and cancer [123]. In fact,
hypoxia, chronic inflammation, and oxidative stress, could favor the development of a subgroup of
DTCs characterized by resistance to both 131I treatment and chemotherapy [124]. In the context of
inflammation, some evidences indicate that HT is associated with a higher risk of PTC onset [125,126],
resulting from an increased cytokines production which characterizes the autoimmune process [127].

The role of inflammation in DTCs has been focused on in several studies published in the last
10 years, demonstrating an intriguing relationship between chronic inflammation and increased
risk of DTC and suggesting the role of inflammatory setting in cell transformation and tumor
progression [128–132]. In this scenario, vitamin D seems to play a peculiar role in thyroid tumorigenesis
for its immunomodulatory and antineoplastic properties. In fact, vitamin D can modulate many
signaling pathways in apoptotic process, cellular proliferation and differentiation, angiogenesis,
invasion, and inflammatory response [46,133] (Figure 3). In vitro and in vivo studies observed that
vitamin D has pro-apoptotic, pro-differentiative, anti-proliferative and anti-inflammatory properties in
the context of the tumor microenvironment [46].
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More in detail, vitamin D regulates mediators of apoptotic process through activation of
pro-apoptotic proteins (BAX, BAK and BAD) and inhibition of anti-apoptotic elements, such as
BCL-2 and BCL-XL [134,135]. Moreover, 1,25(OH)2D3 increases cyclin-dependent kinase inhibitors
(CDKI) expression and influences microRNA expression, which have a negative impact on cell
proliferation [136,137]. In addition, 1,25(OH)2D3 modulates intracellular kinase pathways and
inhibits the elevated telomerase activity of cancer cells by decreasing telomerase reverse transcriptase
(TERT) [136,138].

Recently, several studies focused on the immunomodulatory role of vitamin D in tumor-associated
inflammation. Vitamin D exerts beneficial anti-inflammatory properties in different cancer types
through the inhibition of prostaglandin synthesis and signaling, the suppression of p38 stress
kinase signaling with a consequent inhibition of pro-inflammatory cytokines production and NF-kB
signaling [136,138]. As previously described, 1,25(OH)2D3 inhibits the proliferation and differentiation
of Th1 and Th17 as well as the expression of IL-2, interferon-γ, IL-17, and IL-21, and promotes the
expression of IL-3, IL-4, IL-5, and IL-10 [39–41,139]. On this basis, Passler and co-workers suggested
that the inflammatory microenvironment in DTC could be reduced by 1,25(OH)2D3 [140].

While in clinical studies, hypovitaminosis D was associated with several types of cancers [141–144],
controversial data are available about low vitamin D levels and thyroid cancer [137,145,146].

Basic studies seem to validate a role for vitamin D in thyroid tumor onset and progression.
Anti-neoplastic actions are mediated by the binding of vitamin D to its receptor [145] and by interacting
with other transcriptional factors or cell signaling pathways [147–149]. Available data on this topic
suggest that local vitamin D could act in early cancer stage reducing proliferation and aggressiveness
of thyroid tumors through different pathways. Khadzkou et al. observed an increased VDR and
1-alpha-hydroxylase expression in PTC specimens compared to the adjacent non-neoplastic thyroid
tissue, particularly in areas with lymphocyte infiltration [145]. Likewise, an enhanced expression of the
VDR and the two enzymes involved in vitamin D activation and degradation (CYP24A1 and CYP27B1,
respectively) in surgical samples of follicular adenomas and DTC has been demonstrated, although a
decreased expression of these genes was found in lymph nodal and distant metastases [150]. Moreover,
expression of VDR was found to be reduced in lymph nodes metastases of PTC compared to normal
thyroid tissue and primary PTC, suggesting that VDR expression and CYP27B1 could be predictors
of a favorable prognosis [145]. In lymph node metastatic PTC, the expression of VDR and CYP24A1
was decreased compared to non-metastasized PTC, and the expression of VDR was frequently lost
in ATC [146]. These observations were confirmed by Yavropoulou et al., who demonstrated an
enhanced expression of both VDR and CYP24A1 in PTC samples than the adjacent non-neoplastic
tissue [150]. Moreover, mRNA analysis allowed to demonstrate an increased expression of VDR in
PTC, which is often linked to an increased expression of the type II trans membrane serine protease-4
and extracellular matrix protein-1, which are known to be important predictors of malignant thyroid
nodules [151]. More recently, Zhang and co-workers observed a higher expression of VDR in PTC
compared to adjacent non-tumoral tissue in group of 78 patients who underwent surgery. In the
same cohort, pre-surgical serum concentration of 1,25(OH)2D3 was found to be lower in patients with
PTC compared to patients with benign thyroid nodules [152]. Moreover, through a cyclic adenosine
monophosphate-mediated process, 1,25(OH)2D3 inhibited the proliferation and induced the apoptosis
of PTC cells [152]. On this path, numerous in vitro studies observed that the administration of
1,25(OH)2D3 is able to decrease proliferative activity of differentiated and undifferentiated thyroid
cancer cells through different signaling pathways [153–156]. Liu and coworkers demonstrated that
in vitro 1,25(OH)2D3 administration is able to increase the expression of p27 and to decrease cell
proliferation in cultured thyroid cancer cell lines [157]. Subsequently, the same authors evaluated
the in vivo effects of 1,25(OH)2D3 supplementation on thyroid cancer growth and progression in a
xenograft model [158], demonstrating the restoration of p27 in thyroid cancer cells, an effect correlated
to an improved cell differentiation and a preventive role on metastatic growth. Finally, animal
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studies showed that 1,25(OH)2D3 supplementary treatment was associated to a reduction of tumor
volume [147].

These experimental results demonstrate that vitamin D status could exert an important impact
on thyroid cancer progression and that 1,25(OH)2D3 could have a beneficial effect in thyroid
cancer treatment.

Despite the evidence for anti-neoplastic effects of 1,25(OH)2D3 observed in vitro studies and
animal models, clinical studies showed controversial results. Several studies found that lower
25(OH)D3 levels were significantly correlated to a higher risk of thyroid cancer onset [159–164] whereas
others reported opposite results [165–168].

Most studies observed significantly lower serum 25(OH)D3 concentrations in patients with
DTC than individuals with benign thyroid diseases or healthy controls [159,160,162–164]. A recent
meta-analysis including 14 case-control studies showed that pre-surgical serum 25(OH)D3 levels were
lower in patients with thyroid cancer than controls, but this difference disappeared after surgery [133].
Similar results were reported by Hu et al. in meta-analysis that included 10 case-control studies,
demonstrating a higher risk of thyroid cancer in individuals with hypovitaminosis D [169]. A negative
prognostic role of vitamin D has also been supposed, since low 25OH-D3 levels were found to be
associated with advanced disease and aggressive clinical-pathologic features [164,170,171].

Another point of discussion is the finding of a reduced conversion of 25(OH)D3 to 1,25(OH)2D3
in DTC patients, that leads to speculate a potential role of CYP24A1 gene polymorphism in thyroid
carcinogenesis [161]. In fact, in recent years, Zhang et al. demonstrated lower 1,25(OH)2D3 levels in
PTC compared to nodular goiter [152].

Finally, a few clinical studies evaluated the role of vitamin D supplementation in preventing
thyroid cancer onset. In 2013, a systematic review on 11 studies was conducted to evaluate the
relationship between dietary supplements of vitamins and minerals, including vitamin D, and the risk
of thyroid cancer [172]. The results suggested that the current evidences supporting a protective role
of vitamin D on thyroid cancer onset are inconclusive. One year later, the prospective US National
Institutes of Health American Association of Retired Persons (NIH-AARP) Diet and Health Study did
not show any clear evidence of positive or negative correlation between dietary intake of vitamin D
and thyroid cancer risk [173]. No human studies on 25(OH)D3 and 1,25(OH)2D3 supplementations
have been conducted yet.

Lastly, there is an underlying possibility that discrepancies existing among different studies on
vitamin D role in thyroid function, autoimmunity, and cancer could depend on inter-laboratory and
inter-assay variability in the methods used to measure 25(OH)D3, as well as seasonal variations of
serum 25(OH)D3 concentrations and differences in the 25(OH)D3 reference levels used to define
hypovitaminosis D. Moreover, the controversial results could be attributed to the cross-sectional design
of studies with a low sample size and a heterogeneous population [46].

4. Conclusions

In conclusion, several studies observed a relationship between hypovitaminosis D and thyroid
diseases. Supplementary treatment with cholecalciferol seems to have beneficial effects on AITD,
whereas there are no clear evidences on a correlation between vitamin D supplementation and thyroid
cancer risk. However, large multicenter studies are needed to investigate the impact of vitamin D
supplementary treatment on meaningful long-term clinical end points in AITD and thyroid cancer.
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Abbreviations

Abbreviation Definition
1,25(OH)2D3 1,25-dihydroxyvitamin D
25(OH)D3 25-hydroxyvitamin D
AITD Autoimmune thyroid disorders
ATC Anaplastic thyroid carcinoma
AutoAb Autoantibodies
CAMP Cathelicidin antimicrobial peptide
CDKI Cyclin dependent kinase inhibitors
DTC Differentiated thyroid cancers
FasL Fas-ligand
FGF23 Fibroblast growth factor 23
GD Graves’ disease
HLA Human leukocyte antigen
HT Hashimoto’s thyroiditis
IFN Interferon
IL Interleukin
MHC Major histocompatibility complex
NETs Neutrophil extracellular traps
PDTC Poorly differentiated
PG Prostaglandin
PPT Post-partum thyroiditis
PTC Papillary thyroid cancer
PTH Parathyroid hormone
RCT Randomized controlled trial
TERT Telomerase reverse transcriptase
Th T helper
TGF Transforming growth factor
UVB Ultraviolet B
TgAb Anti-thyroglobulin antibodies
TNF Tumor Necrosis Factor
TPOAb Anti-thyroid peroxidase antibodies
TRAb TSH receptor autoantibodies
Treg T regulatory
VDR Vitamin D receptor
VDRE Vitamin D response element
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