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Summary

The nested case-control and case-cohort designs are two main approaches for carrying out a 

substudy within a prospective cohort. This article adapts multiple imputation (MI) methods for 

handling missing covariates in full-cohort studies for nested case-control and case-cohort studies. 

We consider data missing by design and data missing by chance. MI analyses that make use of 

full-cohort data and MI analyses based on substudy data only are described, alongside an 

intermediate approach in which the imputation uses full-cohort data but the analysis uses only the 

substudy. We describe adaptations to two imputation methods: the approximate method (MI-

approx) of White and Royston (2009) and the “substantive model compatible” (MI-SMC) method 

of Bartlett et al. (2015). We also apply the “MI matched set” approach of Seaman and Keogh 

(2015) to nested case-control studies, which does not require any full-cohort information. The 

methods are investigated using simulation studies and all perform well when their assumptions 

hold. Substantial gains in efficiency can be made by imputing data missing by design using the 

full-cohort approach or by imputing data missing by chance in analyses using the substudy only. 

The intermediate approach brings greater gains in efficiency relative to the substudy approach and 

is more robust to imputation model misspecification than the full-cohort approach. The methods 

are illustrated using the ARIC Study cohort. Supplementary Materials provide R and Stata code.
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1 Introduction

Nested case-control and case-cohort studies are the two main designs for a substudy within a 

cohort. Substudies are used to reduce cost by measuring expensive covariates only on the 

individuals with the outcome of interest (the “cases”) and a subset of the non-cases. In a 

nested case-control study each case is matched to a small number of non-cases sampled 

from the risk set at the case’s event time. In a case-cohort study a random sample of 

individuals from the full cohort is selected at the start of follow-up—the “subcohort”—and 

the case-cohort sample is the subcohort plus all the cases from the rest of the cohort. Borgan 

and Samuelsen (2014) give an overview of these designs. Nested case-control studies are 

widely used in epidemiology and use of case-cohort studies is increasing (Sharp et al., 

2014).

Missing data on covariates are common in observational studies and it is well known that 

performing an analysis on the subset of individuals with no missing data (a “complete-case 

analysis”) can result in loss of efficiency and, sometimes, bias in estimated associations. Our 

focus is on handling missing data in nested case-control and case-cohort studies. Two types 

of missing data are considered. First, a full cohort with a substudy within it can be 

considered as having data missing by design: the covariates measured only in the substudy 

are missing by design in the remainder of the cohort. Second, confounders to be adjusted for 

and which are measured in the full cohort are commonly subject to data missing by chance. 

We make the assumption that data are “missing at random” (MAR) (Seaman et al., 2013).

Multiple imputation (MI) (Rubin, 1987) is a widely used method for handling missing data. 

We describe how MI methods for full-cohort studies can be adapted to account for the 

sampling designs of nested case-control and case-cohort studies. We consider three 

imputation approaches suitable for use in different settings: the “full-cohort,” “intermediate” 

and “substudy” approaches. For each approach, we consider two MI methods that have been 

implemented in standard software: the approximate imputation model method of White and 

Royston (2009), and the “substantive model compatible” method of Bartlett et al. (2015). We 

also apply the method of Seaman and Keogh (2015) for matched case-control studies to 

nested case-control studies. Keogh and White (2013) and Borgan and Keogh (2015) used MI 

to handle data missing by design in nested case-control and case-cohort studies, but did not 

consider data missing by chance. A major contribution of this article is the extension of MI 

methods for use in the substudy only.

MI is one way to handle missing data in nested case-control and case-cohort studies. 

Alternatives are a full maximum likelihood approach (Scheike and Martinussen, 2004; 

Scheike and Juul, 2004; Borgan and Samuelsen, 2014), an inverse probability weighted 

(IPW) partial likelihood analysis (Samuelsen, 1997; Kulich and Lin, 2004; Breslow et al., 

2009; Støer and Samuelsen, 2013), and targeted maximum likelihood (Rose and van der 

Laan, 2011). All these alternatives use data from the full cohort from which the substudy is 

drawn. None has, to our knowledge, considered analysis of just the substudy data or dealt 

with data missing by chance (as well as by design).
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We begin by outlining two MI methods used for Cox regression in full-cohort studies 

(Section 2). In Section 3, we outline the traditional substudy analyses, discuss what 

information may be available to the analyst on the full cohort, and propose three approaches. 

In Sections 4 and 5, we describe adaptations and extensions of MI methods. The methods 

are assessed using simulation studies (Section 6) and illustrated using data from the 

Atherosclerosis Risk in Communities (ARIC) Study cohort (The ARIC Investigators, 1989) 

(Section 7), in which substudies have been frequently used to make use of stored biological 

samples not processed for the full cohort. In Section 8, we compare our methods with the 

alternative approaches mentioned above. We conclude with a discussion in Section 9. 

Supplementary Materials give information about software and example R and Stata code.

2 Multiple Imputation for Cox Regression in Full-Cohort Studies

2.1 Overview

Let T denote the earlier of the event and censoring time, and D be an indicator of whether a 

person had the event (D = 1) or was censored (D = 0). For simplicity, we describe the 

methods for a single partially observed covariate X, and a vector of fully observed covariates 

Z. See the Supplementary Section S1 for extensions to missingness in several covariates. 

The hazard function is assumed to be h t X, Z = h0 t e
βXX + βZ′ Z

. The general MI procedure 

for obtaining estimates of βX and βZ is (Carpenter and Kenward, 2013, p. 39):

A model p(X|T, D, Z; αX) is specified for p(X|T, D, Z), the distribution of X given T, D and 

Z. αX is a vector of regression coefficients and, in the case of a linear regression, the 

residual variance. Then, for m = 1,…, M,

(1) The model p(X|T, D, Z; αX) is fitted by maximum likelihood to the data on 

individuals with observed X, to obtain an approximate posterior distribution for 

αX under a non-informative prior. A value αX
m  is then drawn from this 

distribution. For example, if p(X|T, D, Z; αX) is a logistic regression model, the 

posterior for αX is approximately a normal distribution with mean and variance 

equal to, respectively, the point and variance estimates from the maximum 

likelihood fit. See White et al. (2011) for more details.

(2) For each individual i with missing Xi, a value Xi
m  is drawn from 

p(Xi T i, Di, Zi; αX
m ), giving a data set (an “imputed” data set) in which there are 

no missing values.

(3) The substantive model, here the Cox regression model, is fitted to this imputed 

data set to give estimates (βX
m , βZ

m ) of (βX, βZ) and Σ m  of Var(βX
m , βZ

m ) .

Estimates (βX
m , βZ

m  (m = 1, …, M) and Σ m) are combined using “Rubin’s rules” (Rubin, 

1987) to give an overall estimate of (βX, βZ) and corresponding variance-covariance matrix. 

Although in principle any model p(X|T, D, Z; αX) could be used, potentially serious bias in 

the estimates of (βX, βZ) and their variance-covariance matrix could arise if the imputation 

model is mis-specified. In particular, if the imputation model is not compatible with the Cox 
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(substantive) model that is used for the analysis (which is assumed to be correctly specified), 

this may imply the former is mis-specified (Bartlett et al., 2015). We now describe two 

methods that have been proposed for imputing from a model p(X|T, D, Z; αX) that is either 

exactly or approximately compatible with a Cox model.

2.2 Approximate Imputation Method (“MI-approx”)

White and Royston (2009) derived an approximate form for p(X|T, D, Z; αX) that resulted in 

an imputation model for X that includes Z, D and H T  (the Nelson–Aalen estimate of the 

marginal cumulative hazard) as predictors. For continuous X, the imputation model is 

X = α0 + α1′ Z + α2D + α3H T + ϵ, where ϵ is a normally distributed residual. For binary X, 

the imputation model is logit Pr X = 1 Z, D, T = α0 + α1′ Z + α2D + α3H T .

2.3 Substantive Model Compatible Imputation Method (“MI-SMC”)

MI-approx has been found to work well in a range of circumstances (White and Royston, 

2009; Carpenter and Kenward, 2013). However, it can perform badly when there are large 

effect sizes and/or when the event rate is high (White and Royston, 2009). Also, the 

approximation is derived assuming that X has only a main linear effect in the Cox model. 

Thus in cases where the substantive model contains higher-order effects or interactions, 

using MI-approx can lead to bias (Seaman et al., 2012). Bartlett et al. (2015) described the 

“substantive model compatible” (SMC) MI method for producing imputations from a model 

that is compatible with the user’s chosen substantive model. They use a rejection sampling 

algorithm, in which a potential value for X is sampled from a “proposal distribution” p(X|Z; 

γX) and then a “rejection rule” is used to determine whether this proposed value is accepted 

as a draw from p(X|T, D, Z). Details are given in Supplementary Section S2.

3 Missing Data in Nested Case-Control and Case-Cohort Studies

To illustrate the issues, we introduce new notation to be used throughout the rest of the 

article. The covariates of interest are (X1, X2, Z), where X1 are subject to data missing by 

design, X2 are subject to data missing by chance, and Z are observed in the full cohort with 

no missing values. X1 was intended to be measured only in the substudy, and is missing in 

the remainder of the full cohort. X2 was intended to be measured on all individuals in the 

full cohort but has some values missing by chance. X1 may also have some values missing 

by chance within the substudy; for simplicity of the explanations, we do not consider that 

situation here, though all of the methods accommodate missingness by chance in X1. The 

hazard function for the population of interest is assumed to be 

h t X1, X2, Z = h0 t exp βX1′ X1 + βX2′ X2 + βZ′ Z .

Let τ1, τ2,…, τJ denote the unique event times, assuming no ties for simplicity. The analysis 

of the full-cohort data would use the partial likelihood, 

Lfull−cohort = ∏ j = 1
J e

βX1′ X1i j
+ βX2′ X2i j

+ βZ′ Zi j

Σk ∈ R j
e
βX1′ X1k + βX2′ X2k + βZ′ Zk

, where ij is the index of the individual 
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who has the event at time τj (j = 1,…, J) and Rj denotes the set of individuals at risk at time 

τj. Nested case-control and case-cohort studies are analysed using the modified partial 

likelihood Lsubstudy = ∏ j = 1
J e

βX1′ X1i j
+ βX2′ X2i j

+ βZ′ Zi j

Σk ∈ R j

e
βX1′ X1k + βX2′ X2k + βZ′ Zk

, where R j denotes a subset of 

the full risk set Rj. In a nested case-control study R j consists of the case at time τj plus the 

set of c(τj) controls sampled from the risk set at that time (c(τj) is usually constant). In a 

case-cohort study, R j denotes the set of individuals in the sub-cohort who are at risk at time 

τj, plus the case occurring at time τj if that case is outside the subcohort. In a nested case-

control study estimation is by maximum partial likelihood. In a case-cohort study, Lsubstudy 

is a pseudo–partial likelihood and a sandwich estimator or appropriate alternative should be 

used for standard errors (Borgan and Samuelsen, 2014).

Analysts working with nested case-control and case-cohort studies may have access to 

different amounts of information about the full cohort. In a “maximum information setting” 

all the observed data on the full cohort are available, meaning that the analyst knows (T, D) 

for each individual in the full cohort and the values of X1, X2, and Z for all individuals in the 

full cohort on whom they are observed. In a “minimum information setting” the analyst has 

only the substudy data. A third possibility, referred to as the “time-only information setting”, 

is that the analyst has the information on (T, D) in the full cohort and only the observed data 

on (X1, X2, Z) in the substudy. In Sections 4 and 5, we describe MI methods for three 

different approaches—the “full-cohort approach”, the “intermediate approach”, and the 

“substudy approach”—and discuss their suitability for these settings.

4 Full-Cohort and Intermediate Approaches

The full-cohort approach is suitable for the maximum information setting: missing values in 

X1 and X2 are imputed using either the MI-approx or MI-SMC method from Section 2 and 

the Cox model is fitted to the full cohort. Keogh and White (2013) used MI-approx and a 

version of MI-SMC, showing that an MI analysis using full cohort data can lead to important 

gains in efficiency compared with the traditional substudy analysis. Further investigations 

using MI-approx were performed for nested case-control studies by Borgan and Keogh 

(2015). However, this earlier work focused on data missing by design.

There may be a reluctance to fit the substantive model to data in which a large proportion of 

X1 values have been imputed, for fear that the imputation model might be misspecified. An 

alternative is to perform both imputation and analysis on just the substudy data. This is the 

“substudy approach” described in Section 5. An intermediate approach is to perform 

imputation on the full cohort but then fit the substantive model to just the substudy data. 

This would be expected to be more efficient than the substudy approach and more robust to 

misspecification of the imputation model than the full-cohort approach. The full-cohort and 

intermediate approaches assume that data on (T, D, X1, X2, Z) in the full cohort are MAR. 

This is true if missingness by chance in X2 depends only on observed variables (T, D, Z), as 

missingness by design in X1 depends only on (T, D), which are observed in this setting.
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5 Substudy Approach

The methods we now describe impute only the missing data in the substudy and are suitable 

for use in the time-only information setting and, in some cases, in the minimum information 

setting. They can also be applied in the maximum information setting by discarding the data 

on either (X2, Z) or (T, D, X2, Z) for individuals not in the substudy. X1 and Z are fully 

observed in the substudy and there are data missing by chance in X2. The task is therefore to 

impute X2. Missing X2 values should be drawn from p(X2|T, D, X1, Z, S = 1), where S=1 

denotes that an individual belongs to the substudy. Since the probability of being sampled 

for the substudy depends only on (T, D), p(X2|T, D, X1, Z, S = 1) = p(X2|T, D, X1, Z). This 

justifies the following adapted versions of MI-approx and MI-SMC when the data on (T, D, 

X1, X2, Z) in the substudy are MAR, that is, when missingness by chance in X2 in the 

substudy depends only on observed variables ((T, D, X1, Z) in this setting).

5.1 MI-Approx

The MI-approx method of Section 2.2 can be immediately applied just to the substudy once 

an estimate of H(t), the cumulative hazard in the population, has been obtained. If data on 

(T, D) are available for the full cohort (maximum and time-only information settings), then 

the Nelson–Aalen estimate of H(t) can be obtained easily. If data on (T, D) are not available 

for the full cohort (minimum information setting), H(t) must be estimated using only the 

substudy data. In a nested case-control study there is no representative sample from the full 

cohort, and so it is not possible to estimate H(t) in the minimum information setting. In a 

case-cohort study an unbiased estimate could be obtained by applying the Nelson–Aalen 

estimator to the subcohort only. However, this is inefficient because it does not use cases 

outside the subcohort. A weighted estimator that uses information on events occurring 

outside the subcohort and the subcohort sampling fraction is HCC(t) =
nS(0)

n ∑τk ≤ t
d(τk)
nS(τk)

where d(τk) is the number of events at time τk (in our setting, d(τk) = 1), nS (τk) is the 

number at risk in the subcohort at time τk, and n is the total number in the cohort. This uses 

the assumption that the ratio of the number at risk in the full cohort to the number at risk in 

the subcohort is approximately constant over time (n/nS(0)). Notice that HCC(t) is 

proportional to ∑τk ≤ t
d(τk)
nS(τk) , which is approximately equal to HCC

∗ (t) = ∑τk ≤ t

d(τk)
ncc(τk) ,

where ncc(τk) = nS(τk) if the case whose event time is τk is in the subcohort and ncc(τk) = 

nS(τk) + 1 otherwise. This is a useful result, because HCC
∗ (t) can be obtained directly by 

applying the Nelson–Aalen estimator to the case-cohort data.

5.2 MI-SMC

As explained in Supplementary Section S2, MI-SMC involves estimating p(X2 | X1, Z) and 

the (population) baseline cumulative hazard, H0(t). The distribution of X2 given (X1, Z) and 

S = 1 and the baseline cumulative hazard given S = 1 will typically differ from p(X2 | X1, Z) 

and H0(t). For this reason, modified estimators of these latter quantities are needed when 

applying MI-SMC to just the substudy. In a case-cohort study H0(t) can be estimated using 

the modified Breslow estimator (Borgan and Samuelsen, 2014) 
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H0
CC(t) =

nS(0)
n ∑τk ≤ t

1
∑l ∈ Sk

exp(βX1X1l + βX2X2l + βZZl)
, where Sk denotes the set of 

subcohort members who are at risk at time τk. This uses the subcohort sampling fraction 

nS(0)/n, which is typically known. The model for p(X2 | X1, Z) can be fitted to the subcohort 

(because it is a random sample from the full cohort).

In a nested case-control study, H0(t) can be estimated using (Langholz and Borgan, 1997) 

H0
NCC(t) = ∑τk ≤ t

1
∑l ∈ Rk

{n(τk)/(c(τk) + 1)}exp(βX1X1l + βX2X2l + βZZl)
, where n(τk) is the 

number at risk in the full cohort at time τk and c(τk) is the number of controls selected for 

the case at time τk. This requires information on (T, D) in the full cohort and can therefore 

be used in the maximum and time-only information settings. There are two ways of 

estimating the parameters of p(X2|X1, Z). The first is to assume that the outcome is rare, so 

that p(X2|X1, Z) ≈ p(X2|X1, Z, D = 0). p(X2|X1, Z) can then be estimated using just the 

controls. The second uses all the individuals in the nested case-control sample to fit p(X2|X1, 

Z) via inverse probability weighted (IPW) estimation. Non-cases are weighted by the 

reciprocal of their probability of ever being sampled as a control. For individual i with right-

censoring time Ti, this probability is (Samuelsen, 1997) 1 − ∏ j = 1
J I(τ j ≤ T i) 1 −

c(τ j)
n(τ j) − 1 .

5.3 “MI Matched Set”: An Alternative for Nested Case-Control Studies

We now outline a method that can be used for nested case-control studies in the minimum 

information setting. Nested case-control studies are a type of matched case-control study and 

the traditional partial likelihood analysis is equivalent to conditional logistic regression. 

Seaman and Keogh (2015) described two MI methods for missing data in matched studies 

analysed using conditional logistic regression. We apply their “MI matched set” method to 

nested case-control studies. This involves imputing the missing data on each individual in a 

given set using the data on that individual and all the other individuals in the same set, as 

follows. Assuming that the same number of controls is selected for each case, let {X1jk, 

X2jk, Zjk} (k = 1,…, K) denote the explanatory variables for the kth individual in the 

sampled risk set at event time τj, where the data are arranged so that {X1j1, X2j1, Zj1} denote 

the values for the individual who is the case at time τj and {X1jk, X2jk, Zjk} (k = 2,…, K) are 

the values for the individuals sampled as controls at that time. The imputation model for 

X2jk (k = 1,…, K) includes X1jk, Zjk, ∑l≠k X1jl, ∑l≠k X2jl, and ∑l≠k Zjl. Variable numbers of 

controls per case can be accommodated (Seaman and Keogh, 2015).

6 Simulation Study

6.1 Simulating the Data

Data were generated for full cohorts of 15,000 individuals. We consider three correlated 

explanatory variables: X1 (normally distributed), X2 (binary), and Z (binary). Event times 

were generated from a Weibull hazard: h(t|X1, X2, Z) = tλ exp {βX1X1 + βX2X2 + βZZ}. We 

considered values βX1 = βX2 = βZ = 0.2 or 0.7. From each cohort, we sampled a case-cohort 

study using a subcohort of 750 individuals, and a nested case-control study with 1 or 4 
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controls for each case. Z is fully observed in the full cohort. X1 is observed only in the 

substudy. Missingness by chance was generated in X2 for 10% or 50% of individuals in the 

full cohort, with the probability of missingness depending on Z and D and their interaction. 

Full details are in Supplementary Section S3. 1000 simulated data sets were generated.

6.2 Analyses Performed

In each simulated data set, we performed a full-cohort analysis and standard substudy 

analysis before introducing the missing data. These are the “complete-data” analyses. After 

introducing missing data a complete-case analysis was performed on the substudy, omitting 

individuals with data missing by chance in X2. Analyses were performed using the full-

cohort, intermediate and substudy approaches. Table 1 summarizes the analyses. For the MI-

approx substudy approach used for a case-cohort study, we present results using HCC
∗ , since 

differences between results obtained using the three different estimates described in Section 

5.1 were negligible and HCC
∗  is arguably the simplest to obtain. MI methods used 10 imputed 

data sets.

We summarize the results for βX1, βX2, and βZ in terms of bias, coverage of 95% confidence 

intervals, and efficiency relative to the complete-data substudy analysis (ratio of empirical 

variances from the complete-data substudy analysis and the comparison analysis). Figures 1 

and 2 show results from the simulation scenarios with 50% missing data in X2, and for 1 

control per case in the nested case-control study. Results from other scenarios are shown in 

Supplementary Figures S1–S4.

6.3 Results: Case-Cohort Study

As expected, the complete-data full-cohort analysis and complete-data case-cohort analysis 

give approximately unbiased estimates, though for large effect sizes (Figure 1b) there is 

some small finite-sample bias in the estimate for βX1. The complete-data full-cohort analysis 

gives correct coverage. The same is true for the complete-data case-cohort analysis, except 

for βX1 when the effect size is large; then there is minor under-coverage. The complete-case 

case-cohort analysis gives biased estimates, particularly for βZ, but also for βX1 and βX2 

when the effect size is large. There is also below nominal level coverage.

In the full-cohort approach, both MI-approx and MI-SMC give unbiased estimates for small 

effect sizes. MI-SMC also gives unbiased estimates for larger effect sizes, while MI-approx 

gives minor bias towards the null due to the approximations used, leading to some under-

coverage, especially for βX1. Previous investigations of MI-approx have made similar 

findings, which are due to the approximate nature of this MI method (White and Royston, 

2009). Standard errors (SEs) from both methods are approximately unbiased, but for larger 

effects sizes MI-SMC tends slightly to underestimate SEs, leading to slight under-coverage. 

The full-cohort approach gives large efficiency gains for all three parameters relative to the 

complete-data substudy analysis. The gain is greatest for βZ, because Z is observed in the 

full cohort. There is also a substantial gain in efficiency for βX1 when the effect size is large.

For small effect size the substudy approach, using both MI-approx and MI-SMC, gives 

unbiased estimates, correct SEs and good coverage. For larger effect sizes, we again see 
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approximately unbiased estimates, though there is small bias away from the null for βX1 (as 

in the complete-data substudy analysis), which we attribute to finite sample bias. The SE for 

βX1 is slightly underestimated and there is slight under-coverage, again as in the complete 

data case-cohort analysis.

The intermediate approach, using both MI-approx and MI-SMC, gives approximately 

unbiased estimates for small and large effect sizes and large gains in efficiency for all three 

parameters relative to the complete-case analysis, bringing the efficiency close to 100% 

relative to the complete-data substudy analysis, although the efficiency gains are not as 

substantial as under the full-cohort approach. The SE for βX2 tends to be over estimated, 

resulting in slight over-coverage for this parameter. This is a situation in which the imputer 

is assuming that certain associations between variables are the same in the full cohort as they 

are in the substudy, and therefore assuming more than the analyst, which is known to result 

in Rubin’s Rule for the variance overestimating the SEs (Robins and Wang, 2000).

Across all the MI analyses, results from MI-approx are very similar to the corresponding 

results from MI-SMC. An exception is the MI analysis using the full cohort when the effect 

sizes are large; here the MI-approx estimates are slightly biased towards the null.

We observed under-coverage from several methods, including the complete-data analysis, 

when the effect size is large. This is believed to be due to finite sample size. In sensitivity 

analyses, we increased the size of the cohort or the relative size of the subcohort 

(Supplementary Figure S5). With a larger cohort the coverage for the complete-data full-

cohort and complete-data case-cohort analysis was improved. For the full-cohort approach 

using MI-SMC the coverage improved as the relative size of the subcohort increased. 

Increasing the sample size or the relative subcohort size did not reduce the bias in estimates 

from the full-cohort approach using MI-approx when the effect size is large. Increasing the 

sample size or the relative subcohort size improved the coverage from the substudy approach 

using MI-SMC and MI-approx.

6.4 Results: Nested Case-Control Study

The relative performances of methods used for nested case-control studies are similar to 

what was found for case-cohort studies (Figure 2, Supplementary Figure S2). MI matched 

set also gives approximately unbiased estimates and good coverage, with the SEs being 

similar to those using MI-approx and MI-SMC in the substudy approach. When there are 4 

controls per case (Supplementary Figures S3 and S4) there is less to be gained by using the 

full-cohort data, though the gains are still substantial. In MI-SMC using the substudy 

approach, fitting the covariate model p(X2|X1, Z) using the controls performed slightly 

better than fitting it using the IPW method described in Section 5.2.

6.5 Additional Simulation Scenario: Model Misspecification

We investigated the performance of the methods under imputation model misspecification, 

focussing on case-cohort studies. Other aspects of the simulations were as above with βX1 = 

βX2 = βZ = 0.7. X1 was generated from a log normal distribution with log X1 having mean 

0.25Z and standard deviation 0.65. X2 was generated using logit 
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Pr(X2 = 1 X1, Z) = 0.5Z + 0.25(X1 + X1
2) . In MI-approx, we used a misspecified normal 

imputation model for X1 and a misspecified logistic imputation model for X2. MI-SMC 

allows imputed variables to be used on a transformed scale in the substantive model. We 

considered two forms for the model for X1|X2, Z, one correctly specified and one 

misspecified. In both cases, we used a misspecified model for X2|X1, Z. See Supplementary 

Section S4 for details.

Results are shown in Figure 3. The impact of using misspecified imputation models is severe 

under the MI full-cohort approach: there is large bias and poor coverage, especially for βX1. 

The MI-SMC analyses that use a correctly specified model in the proposal distribution for 

X1 perform better, demonstrating the important feature of this imputation method that it 

allows a transformed covariate to be imputed assuming that it follows a conditional normal 

distribution, but with the untransformed covariate entering the substantive model linearly. As 

expected, the intermediate approach is less affected by the imputation model 

misspecification, particularly for βX1. The substudy approach performs well despite the 

misspecification of the imputation model for X2, with only small bias in βX2.

7 Application to the ARIC Study Cohort

We applied the methods to data from the ARIC Study cohort to investigate the association 

between death due to cardiovascular disease and the traditional risk factors of systolic blood 

pressure (mmHG), total and HDL cholesterol (mmol/l), smoking and body mass index 

(BMI), with adjustment for sex, age, race, and education level. The cohort comprises 15,792 

individuals and there were 1089 cardiovascular deaths over the course of follow-up. We 

created a case-cohort study by sampling a subcohort of 650 individuals, and a nested case-

control study with one control per case, reflecting real examples (Atherosclerosis Risk in 

Communities Study, 2011; Sanders et al., 2015). Measurements of total and HDL 

cholesterol were set to be missing outside of the substudy, creating missingness by design. 

Missingness by chance was introduced in systolic blood pressure, smoking status, body 

mass index, race, and education level; the probability of missingness depended on sex and 

age, and we generated 10% missing data conditionally independently in each variable in the 

full cohort.

Age, systolic blood pressure, total cholesterol, HDL cholesterol and BMI are continuous 

variables and were assumed to have linear effects on the log hazard. The remaining variables 

were treated as categorical. Results are shown in Table 2. In the case-cohort setting the log 

hazard ratio estimates are broadly similar across the different analyses. The MI full-cohort 

approach gives SEs that are typically less than half those obtained in the complete-case 

analysis, with the gain in efficiency being somewhat less for the two cholesterol variables, 

which are missing by design in the full cohort. The MI substudy and intermediate 

approaches give smaller but still substantial gains in efficiency. The results are similar in the 

nested case-control setting. Using MI matched set gives results similar to those obtained 

using MI-approx and MI-SMC under the substudy approach. The following explanatory 

variables are statistically significantly associated with an increased hazard for CVD death 

(p< 0.05) in all analyses: being male, older age, smoking, non-white race, higher BMI. The 
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following additional explanatory variables are statistically significantly associated with an 

increased hazard in the complete-data full cohort analysis and in all MI analyses, but not in 

the complete-case analyses: lower level of education (not in MI-approx and MI-SMC in the 

substudy and intermediate approaches), higher SBP, lower HDL cholesterol.

8 Alternative Approaches

In the maximum information setting, our full-cohort approach using MI followed by a partial 

likelihood analysis is one way of making efficient use of data available on the full cohort. An 

alternative is a full maximum likelihood approach, which incorporates full cohort data by 

considering the full cohort and the substudy as a two-phase design in which some covariates 

are observed in the phase-one sample (the full cohort) and other expensive covariates are 

observed only in the phase-two sample (the substudy). An overview is given by Borgan and 

Samuelsen (2014). The full likelihood involves the conditional distribution of the phase-two 

covariates conditional on the phase-one covariates (X1|X2, Z). Scheike and Martinussen 

(2004) and Scheike and Juul (2004) described this method in the context of case-cohort and 

nested case-control studies respectively, using a non-parametric approach in which the 

phase-one covariates are discrete and the conditional distribution has point masses at the 

observed covariate values. Estimation is via the EM Algorithm. Zeng and Lin (2014) 

presented a similar method which accommodates continuous phase-one covariates via an 

approximation. The full maximum likelihood methods require assumptions about the 

distribution of phase-two covariates conditional on phaseone covariates. This is similar to 

the modeling assumptions required for the conditional covariate distributions used in MI-

SMC. In some situations MI-SMC should be as efficient as a full maximum likelihood 

analysis. There does not appear to exist any ready-made software for implementing the full 

maximum likelihood methods.

Another general approach described for making efficient use of data in two-phase studies 

uses an inverse probability weighted (IPW) partial likelihood. Full-cohort information is 

used only in the construction of the weights. Kulich and Lin (2004) and Breslow et al. 

(2009) described this for case-cohort studies. IPW approaches for nested case-control 

studies were described by Samuelsen (1997) and Støer and Samuelsen (2013). These IPW 

methods have been found to be less efficient then the MI approach (Keogh and White, 2013; 

Borgan and Keogh, 2015). The IPW methods are closely related to developments for 

handling of missing data in full cohort studies analysed using Cox regression (Robins et al., 

1994). Rose and van der Laan (2011) proposed an approach to using full-cohort data in 

nested case-control and case-cohort studies by using targeted maximum likelihood 

estimation (TMLE); this does not appear to have been used in practice and is not based on 

widely familiar concepts.

As noted earlier, none of the methods mentioned above have, to our knowledge, considered 

data missing by chance as well as data missing by design, though extensions to that would 

likely be possible. Nor have there been previous methods designed for handling of missing 

data in the sub-study only. Several methods have been described for handling missing data in 

matched case-control studies, as summarized in the introduction of Seaman and Keogh 

(2015), some of which could potentially be extended for nested case-control studies.
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9 Discussion

We have shown how to use MI to handle missing covariate data in case-cohort and nested 

case-cohort studies, including data missing by design and missing by chance. We adapted 

the methods of White and Royston (2009) (MI-approx) and Bartlett et al. (2015) (MI-SMC), 

and applied a method for matched case-control studies (Seaman and Keogh, 2015) (MI 

matched set) to nested case-control studies. All the methods described can be applied using 

readily available software, including new additions we have made to the smcfcs package in 

R. See Supplementary Section S5. Several extensions to accommodate covariate-dependent 

censoring, left-truncation, nested case-control studies with additional matching and case-

cohort studies with stratified subcohort sampling depending on Z are described in 

Supplementary Section S6.

Our simulations show that MI works well at handling missing data in case-cohort and nested 

case-control studies when the imputation models are (approximately) correctly specified. 

Relative to a complete-case substudy analysis, substantial gains in efficiency as well as bias-

correction are possible by making use of full-cohort data. An intermediate approach, in 

which the imputation is performed on the full cohort but the substantive model is fitted only 

in the substudy, is more robust to imputation model misspecification than the full cohort 

approach. For data missing by chance in the substudy, gains in efficiency and bias-correction 

are possible by applying MI to the substudy only. MI matched set works well for nested 

case-control studies, and does not require full-cohort information. MI-approx and MI-SMC 

both performed well in the settings considered. An advantage of MI-SMC over MI-approx is 

that it allows variable transformations and interactions in the substantive model.

Several non-MI methods have been described for making use of full cohort data in case-

cohort and nested case-control studies in Section 8, and a detailed comparison is merited, 

particularly to investigate the impact of model misspecfication. A major advantage of MI is 

that it can be applied in standard software and is familiar to many researchers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Simulation study results: case-cohort study within a cohort with 50% missing X2. The points 

are the means of the point estimates from 1000 simulated data sets. Horizontal lines around 

each point are the 95% confidence intervals obtained based on Monte Carlo errors. The 

relative efficiency is relative to the complete-data substudy analysis.
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Figure 2. 
Simulation study results: nested case-control (NCC) study with one control per case within a 

cohort with 50% missing X2. The points are the means of the point estimates from 1000 

simulated data sets. Horizontal lines around each point are the 95% confidence intervals 

obtained based on Monte Carlo errors. The relative efficiency is relative to the complete-data 

substudy analysis.
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Figure 3. 
Simulation study results from the additional scenario in which the imputation model is 

misspecified: case-cohort study within a cohort with βX1 = βX2 = βZ = 0.7 and 50% missing 

X2. In “MI-SMC full-cohort approach (1)” and “MI-SMC intermediate approach (1)” the 

model used for the proposal distribution p(X1|X2, Z) was a normal distribution (with main 

effects of X2 and Z) and in “MI-SMC full-cohort approach (2)” and “MI-SMC intermediate 

approach (2)” the model used for the proposal distribution for p(log X1|X2, Z) was a normal 

distribution (with main effects of X2 and Z). In both (1) and (2), and in “MI-SMC substudy 

approach,” the model used for the proposal distribution p(X2|X1, Z) was a logistic regression 

with main effects of X1 and Z. The horizontal lines around each point are the 95% 

confidence intervals obtained based on Monte Carlo errors. Coverage for X1 in “MI-approx 
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full-cohort approach” and “MI-SMC full-cohort approach (1)” is 0% and not shown on the 

plot.

Keogh et al. Page 17

Biometrics. Author manuscript; available in PMC 2019 April 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Keogh et al. Page 18

Table 1
Analyses performed in each simulated data set. NCC indicates “nested case-control.”

Analysis Variables with missing data Imputation Analysis

Case-cohort sample within a full cohort

Complete-data case-cohort NA NA Case-cohort

Complete-data full cohort NA NA Full cohort

Complete-case case-cohort X2 NA Case-cohort

MI-approx: full-cohort approach X1, X2 Full cohort Full cohort

MI-SMC: full-cohort approach X1, X2 Full cohort Full cohort

MI-approx: intermediate approach X1, X2 Full cohort Case-cohort

MI-SMC: intermediate approach X1, X2 Full cohort Case-cohort

MI-approx: substudy approach X2 Case-cohort Case-cohort

MI-SMC: substudy approach X2 Case-cohort Case-cohort

Nested case-control sample within a full cohort

Complete-data NCC NA NA NCC

Complete-data full cohort NA NA Full cohort

Complete-case NCC X2 NA NCC

MI-approx: full-cohort approach X1, X2 Full cohort Full cohort

MI-SMC: full-cohort approach X1, X2 Full cohort Full cohort

MI-approx: intermediate approach X1, X2 Full cohort NCC

MI-SMC: intermediate approach X1, X2 Full cohort NCC

MI-approx: substudy approach X2 NCC NCC

MI-SMC: substudy approach X2 NCC NCC

MI matched set X2 NCC NCC
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