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Ultrafast plasmonic photoemission 
in the single‑cycle and few‑cycle 
regimes
G. Zs Kiss1*, P. Földi2,3 & P. Dombi1,3

Due to the highly increased interest in the development of state-of-the-art applications of 
photoemission in ultrafast electron microscopy, development of photocathodes and many more 
applications, a correct theoretical understanding of the underlying phenomena is needed. Within the 
framework of the single active electron approximation the most accurate results can be obtained by 
the direct solution of the time-dependent Schrödinger equation (TDSE). In this work, after a brief 
presentation of a numerically improved version of a mixed 1D-TDSE method, we investigated the 
characteristics of electron spectra obtained from the surface of metal nanoparticles irradiated with 
ultrashort laser pulses. During our investigation different decay lengths of the plasmonic-enhanced 
incident field in the vicinity of the metal were considered. Using the simulated spectra we managed 
to identify the behavior of the cutoff energy as a function of decay length in the strong-field, 
multiphoton and transition regimes.

Developments in laser physics and nanotechnology opened new horizons in the last few decades in understanding 
the nature of light–matter interaction processes at ultrafast time scales on the nanoscale1. It was shown recently 
that by measuring the spectra of laser induced photoelectrons from nanotips, and nanostructured surfaces, the 
development of electron sources for ultrafast electron microscopy1–3 and high-brightness photocathodes4–6 can 
be performed. In addition, by analyzing the characteristic shapes of the acquired electron spectra one can dif-
ferentiate between various ultrafast light–metal interaction mechanisms, which can be later deployed to achieve 
different applications.

By measuring the photoemission spectra acquired from the surface of the laser-irradiated nanoparticles 
one can access information about the local electric fields on the nanoscale7,8, that is a major interest, since 
sthe incident fields in certain circumstances can be enhanced by order of magnitudes by the local plasmonic 
oscillations9–12.

For the deeper understanding of the underlying phenomena13–19, accurate theoretical methods that are acces-
sible with the current computational resources are needed. The most accurate results are based on the direct 
numerical solution of the time-dependent Schrödinger equation (TDSE), however, typically these type of cal-
culations are largely time-consuming, and practically unfeasible for many-electron systems of metal targets. 
Considering this, the many electron-system investigations are usually the subject of time-dependent density 
functional (TD-DFT) theory calculations. However, if one wants to decipher the single-electron response to the 
applied electric field (e.g., the field-induced electron dynamics), for certain circumstances, such as when the 
incident laser field is linearly polarized along a symmetry axis of an investigated system (e.g. along the direction 
of a nanotip, or of the edge of a nanotriangle) the solution of the 1D-TDSE can also deliver reliable and good 
results within an accessible CPU time.

Here, we analyze photoelectron emission induced by femtosecond laser pulses with 1D-TDSE in nanolocal-
ized electromagnetic fields. We show characteristic features of the spectra with increasing pulse length and laser 
intensity. We highlight the correspondence of the electron spectra and the wave-function evolution, as well.

The manuscript is constructed as follows. In “The theoretical method and numerics” section, a brief general 
description of a mixed, Split-Operator and Crank–Nicolson TDSE approach together with some important 
numerical aspects are presented. In “Photoelectron spectra and wavefunctions” section, we present and discuss 
the shape of the final photoelectron spectra and electronic wavefunctions obtained for different pulse lengths 
and values of the Keldysh-paramater. The final section is dedicated to the investigation of the field-decay effect 
on the spectra in the vicinity of the nanotargets.
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Throughout this paper atomic units (at.u.) are used ( � = me = e = 1 ), and for the incident laser fields we 
used Gaussian pulses having the same central wavelength � = 800 nm (IR pulse) but different peak intensities 
and pulse lengths.

Theoretical method and numerics
It was previously shown in preceding works20 that photoelectrons induced by laser pulses from different plas-
monic nanoparticles have the larger kinetic energies the closer to edges of the nanotargets they escaped from. 
This observation can be explained by the fact that the edges of a nanorods/nanotriangles, or the tips of a nanotip 
are acting like nanoantennas for the incident EM field, i.e., under certain conditions (due to plasmonic effects 
induced by the field itself in the metal) the incoming E(t) electric field in the close vicinity of the target can be 
enhanced. The resulting locally enhanced field can be given as Eloc(z; t) = Q(z)E(t) with Q(z) > 1 being the 
enhancement factor, which decays exponentially as a function of the distance from the surface.

The dynamics of these high energy electrons that probe the enhanced electric fields in the vicinity of the 
nanotargets’ sharp edges are modeled by assuming a simple 1D scheme. Within this model the motion of the 
photoelectron points in the 0z direction that is perpendicular to the local surface and it is induced by the electric 
component of the laser field parallel to 0z axis. Here, 0z represents the symmetry axis of the laser-nanotip/edge 
system that is assumed obeying cylindrical symmetry around the normal of the local surface.

The time‑dependent Schrödinger equation (TDSE).  By taking into account the aforementioned con-
siderations and in order to study more appropriately the dynamics of the laser emitted electron from the inves-
tigated nanorod (or nanotriangle) we employed the one-dimensional time-dependent Schrödinger equation 
(1D-TDSE) for an active electron located on the surface of the metal:

where T̂ = − ∂2z /2 is the kinetic energy operator of the electron represented by the �(z; t) wavefunction 
( ∂z,t = ∂/∂z, t).

We consider a gas of quasi free electrons, for which the boundary of the metal means a confining potential. 
Using single active electron approximation, the electron experiences the following potential (Fig. 1a):

where EF is the Fermi energy, W is the work function of the metal ( WAu ≃ 5.1 eV in our case for gold), while the 
parameter β represents the screening constant of the image potential, whose value was set to β = 0.6 as showed 
to reproduce numerical results in good agreement with the experimental data21. Considering a Gaussian incident 
laser pulse with the electric field component (Fig. 1b):

the laser–electron interaction potential was given within the dipole approximation and using its length gauge 
form: V̂le(z; t) = �r�E(t) ≡ zE(t) . In Eq. (3) τp = τFWHM was the pulse duration (in the full-width at half of the 
maximum intensity), ω0 the central circular frequency, and ϕCEP represents the carrier-envelope phase of the 
pulse. Furthermore, we assumed that the shielding-effect of the surrounding surface electrons onto the studied 
electron is sufficiently large, hence, the effect of the incident E(t) field inside the metal can be neglected: Vle = 0 

(1)
i∂t�(z; t) =Ĥ(t)�(z; t)

=
[

T̂ + V̂(z)+ V̂le(z; t)
]

�(z; t),

(2)V(z) = −
exp

(

− β(z + |z|)
)

2(z + |z|)+ 1/(EF +W)
,

(3)E(t) = E0 exp
[

−2 ln 2(t/τp)
2
]

cos(ω0t + ϕCEP),

Figure 1.   (a) The potential energy of the electron inside the electron bulk at the Fermi-level (lower blue curve) 
and its wavefunction’s absolute value (upper red curve). (b) The electric component of a � = 800 nm laser pulse 
having nOC = 2 optical cycles in the FWHM of peak intensity ( τ = 5.5 fs = 543 at.u.; note that the time and 
electric field axis have units of 102 and 10−2 , respectively).
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for z < 0 . The field-enhancing plasmonic effects were considered by multiplying the incoming field with the Q(z) 
decaying enhancement-curve, that fixes the laser-electron interaction term to V̂le(z; t) ∼= zQ(z)E(t) = zEloc(z; t).

From the numerical point of view, we are aware of that a 3D-TDSE calculation would provide us a much 
more complete study of the investigated photoemission phenomena, for instance also including the possibility 
of obtaining the angular energy distribution of the ejected electrons; nonetheless, such investigations concerning 
laser pulses with long wavelengths ( � ≥ 800 nm) and durations ( τ ≥ 2.6 fs) would imply unfeasible expensive 
computational demands. In contrast, by using the 1D procedure, the dominant photon-induced effects, including 
the photoemission, could be still properly investigated with a less time-consuming procedure.

The mixed split‑operator and Crank–Nicolson (SOCN) approach.  For the numerical representation 
of the wavefunction (WF) we employed the finite-difference grid method. Within this approach, the potential 
energy terms, V(z) and Vle(z; t) , are represented by diagonal matrices, while the second order differentiation 
operator ∂2z�(z)

∣

∣

∣

z=zi
 ≃ [�(zi−1)− 2�(zi)+�(zi+1)]/�z2 by a tridiagonal matrix. Thus, their sum, i.e., the 

Hamiltonian will be a sparse matrix having nonzero elements only on the three main diagonals. In the simplest 
approach the Û(t + δt, t) = exp{−iδtĤ(t)} time-evolution operator is temporally discretized ( δt → �t ) and 
approximated with its Taylor-expanded form Û ≃ exp{−i�tĤ(t)} = 

∑nmax
n=0 (−i�tĤ)n/n! . The main drawback 

of this approach consists in the fact that the stability of the WF’s temporal propagation can be achieved only for 
large values of nmax terms (a radiation field dependent parameter), which would imply a large number of matrix 
power calculations in each time-step, while the time propagation itself remains non-unitary by definition (i.e., 
the WF norm, ‖�‖ , is not conserved). This non-unitarity can be avoided with the use of the Crank–Nicolson 
(CN) procedure24, according to which a forward [ �(t ′) = Û(t ′, t)�(t) ] and a backward [ �(t ′) = 
Û†(t′, t +�t)�(t +�t) ] propagation step to an intermediate state at time t ′ = t +�t/2 is performed, and the 
WF is evaluated as �(t +�t) ≃ [Î + i(�t/2)Ĥ]−1[Î − i(�t/2)Ĥ]�(t) = ÛCN�(t) . In this way the unitarity is 
ensured. Although the CN is an unconditionally stable and unitary approach it still necessitates a considerable 
amount of computation time, because for each integration timestep the calculation of a matrix inverse is needed. 
This shortcoming becomes even more pronounced with the increase of the wavelength and/or intensity of the 
radiation field due to the increased active space the photon-emitted electron travels in.

In order to overcome these shortcomings (e.g., multiple matrix inversions) one may use some spectral 
method22,23, that on the other hand would imply additional convergence tests regarding the required number of 
basis functions for the correct dynamics; or, for instance, just a simple split-operator method, which however 
could not guarantee the stability during the temporal propagation. Hence, in order to avoid additional conver-
gence tests, or multiple matrix inversions, and to ensure stability in the laser-induced dynamics, we considered 
the combination of the two methods: (i) the CN approach24 and (ii) the split-operator25 technique. According 
to this mixed approach (SOCN)21 the WF is divided into a �0(z; t) field-free and a �̃(z; t) field-perturbed part: 
� = �0 + �̃ . The solution in time moment ti +�t of the stationary case ( i∂t�0 = Ĥ0�0 = [T̂ + V̂(z)]�0 ) 
within the CN approach read as:

For the field-perturbed part the following first-oder non-homogeneous linear differential equation (DE) can 
be deduced

which is generally solved by summing up a particular solution ( �̃p ) and the general solution of the corresponding 
homogeneous DE, i.e., �̃h(t +�t) = exp{−i

∫ t+�t
t [Ĥ0 + V̂le(t

′)]dt ′}�̃h(t) ≃ exp{−i�tVle(t +�t/2)}ÛCN
0 �̃(t) , 

where it is assumed that during the short �t time interval Vle(t) ≃ Vle(t +�t) ≈ Vle(t +�t/2) . In our 
approach, that considers this assumption, we deduced the solution of Eq. (5), first, by applying the CN scheme 
of the full WF:

Then, by equalling Eqs. (6) and (7), and using �t2 = �t/2 along with the split technique

the field-perturbed part in time step ti+1 = ti +�t can be given as

After employing the first-order Taylor expansions of the exponentials inside the square brackets, and of the 
exp{i�t2Ĥ0} term (in lhs of Eq. (8)) one finally obtains

(4)�0(z; ti +�t) ≃ e−i�tĤ0�0(z; ti) ≃ ÛCN
0 �0(z; ti).

(5)i∂t�̃ = [Ĥ0 + V̂le(t)]�̃ + V̂le(t)�0,

(6)�(ti +�t/2) = e−i �t
2 Ĥ(t)�(ti),

(7)�(ti +�t/2) = ei
�t
2 Ĥ(t+�t)�(ti +�t).

(8)
e
i�t2Ĥ0e

i�t2Vle(ti+�t)[�0(ti +�t)+ �̃(ti +�t)

≃ e
−i�t2Ĥ0e

−i�t2Vle(ti)[�0(ti)+ �̃(ti)],

(9)
�̃(ti +�t) = (Û†

0 )
−1e−i�t2Vle(ti+�t)[e−i�t2Vle(ti)

− ei�t2Vle(ti+�t)]Û0�0(ti)+ �̃h(ti +�t).
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where Û0 = [Î − i�t2Ĥ0(z)] , and (Û†
0 )

−1 is calculated by evaluating the inverse of the [Î + i�t2Ĥ0(z)]
−1 FD-

represented matrix. In accordance with the CN scheme the field-free evolution operator is obtained by evaluating 
the ÛCN

0 = (Û†
0 )

−1Û0 matrix–matrix multiplication, while by adopting the split technique the external time-
dependent field ( Vle ) is detached from the full ÛCN operator. As a consequence, the inverse calculation of the 
evolution operator in each integration step is avoided, saving this way an appreciable amount of computation 
time. Using SOCN the ÛCN

0 (�tj) matrices should be calculated only once, and stored in the computer’s memory 
at the very beginning of the simulation. Here �tj = �tinit/2

j−1 ( j = 1, 2, . . . ) represents the used discrete time 
intervals in the adaptive temporal propagation scheme ( �t1 = 10−3 at.u.).

The initial state’s wavefunction and the solution of the TDSE.  The initial state WF 
[ �0 = �(z; t = 0) ] was calculated by the direct diagonalization of the field-free Ĥ0 = T̂ + V̂(z) Hamiltonian 
(large and sparse matrix) with the use of the Scalable Library for Eigenvalue Problem Computations (SLEPc) 
package27,28. Before initiating the TDSE runs (solving Eqs. (4), (10)), we determined the optimum value for the 
numerical discretization parameters: �z (gridpoints separation) and ± zmax (grid-size). This was achieved using 
the SLEPc, and the value of the two discretization parameters was considered optimum when the calculated 
initial state WF converged. The SLEPc package can deliver that WF whose eigenenergy is the nearest to a user-
given target eigenenergy. Since we considered for the active electron a surface electron, for the target eigenvalue 
the energy of EF +W was used. Once �0(z) corresponding to the input energy was obtained, its accuracy was 
tested by defining the convergence parameter

where i ≥ 1 , and for the initial value of �z0 we arbitrarily chose 0.8  at.u., while for i > 0 values from 
�zi ∈ {0.7, 0.6, 0.5, . . . } . For the optimum gridpoint separation distance we fixed the value of �z = 0.5 at.u. 
when the d�0

conv(�z) < 10−8 condition was fulfilled.
In order to diminish the undesired spurious reflections from the ’walls’ of the simulation box during the 

temporal propagation, and to monitor the extent part of the WF, we employed at edges of the simulation grid 
complex absorbing potentials (CAP)of the form29:

where zcut is the first point of the absorbing region. The size of this region was zmax − zcut = 50 at.u. A similar 
CAP was used in the z < 0 direction as well, however the absorption/reflection here is much less probable since 
the accelerating effect of the laser field inside the metal is not considered. By performing an initial testing for 
the case of the highest field strength (with peak intensity I0 = 80 TW/cm2 ) and longest pulse (3 optical cycles), 
we calculated the amount of the absorbed WF at these far distances, and noticed that by increasing the simula-
tion space to zmax = 1500 at.u. ( ∼ 79.3 nm) in both directions ( z < 0 and z > 0 ) the sum of the two cumulative 
absorbed WF norms stayed below the value of 10−10 . This is an upper limit for all the considered laser intensities 
and pulse lengths, thus the full information of the system was maintained inside the simulated area. In this way 
a sufficiently large simulation ’box’ of z ∈ [− 1500, 1500] at.u. was constructed ensuring that even for the longest 
and the highest intensity pulse the relevant part of the ionized WF did not reach the boundaries (at z = ± zmax ). 
In this way nonphysical simulation events that could significantly alter the characteristics of the final WF was 
prevented. During the integration of the TDSE in each time step the value of �t was initially set to 10−3 and 
later on adaptively modified (decreased iteratively by half) as long as the temporal propagation error defined as

exceeded the value of 10−8 . However, since the calculation of (Û†
0 )

−1 is a strongly time-consuming part of the 
simulation, in order to save even more CPU time we tried to reduce the number of required numerical matrix 
inversions during the complete temporal propagation as much as possible. This was achieved by using for the 
time-stepping �t = 1

2 × 10−3 , a value for which the total number of required inversions was kept acceptably 
low even for the case of the highest peak intensity (i.e., when the induced electron dynamics was changing in 
the fastest way).

Photoelectron spectra and wavefunctions
By applying the aforementioned considerations in the solution of the TDSE, using the optimum values for the 
discretization parameters we solved Eqs. (4)–(10) for different peak intensity and central wavelength pulses in the 
single and few-cycle regime. As a result, the final electronic WFs �̃(z; t = τ) and their associated photoelectron 
spectra (PhES) were calculated. The PhES were obtained by projecting the ionized (departed) part of the final 

(10)

�̃(z; ti +�t) = (Û†
0 )

−1 exp [−i�t2Vle(z; ti +�t2)]

× [−2i�t2Vle(z; ti +�t2)]Û0�0(z; ti)

+ exp [−i�tVle(z; ti +�t2)]Û
CN
0 �̃(z; ti),

(11)
d�0
conv(�zi) = ��0(�zi)−�0(�zi−1)�

× ��0(�zi−1)�
−1,

(12)VCAP(z) = iα2
absorb log

[

cos
z − zcut

zmax − zcut

]

, (for z > 0)

(13)
d�t
conv(ti) = ��(ti−1 +�t/2)−�(ti−1 +�t)�

× ��(ti−1 +�t)�−1,
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wavefunction �̃+(τ ) = �̃(z > 0; τ) onto the continuum states |ψk(z)� = (2π)−1/2eikz (free plane waves) with 
kinetic momentum k:

where Wk(τ ) represents the ionization probability density at the end of the laser field.
In the first step, we omitted the decaying amplitude of the plasmonic field enhancements and by fixing the 

field strengths through the whole coordinate space to E(z; t) = E0(t) we oriented our investigation onto the final 
dynamics obtained in the proximity of three different intensity regions: multiphoton γ > 1 ( I0 = 5 TW/cm2 ; 
γ = 2.8 ), transition30 γ ∼ 1 ( I0 = 40 TW/cm2 ; γ = 1.02 ), and strong-field γ < 1 ( I0 = 80 TW/cm2 ; γ = 0.72 ) 
regime. We plotted in Fig. 2 the square of the final WF’s absolute value (thicker red curves) and the PhES (thin-
ner black curves) calculated according to Eq. (14) in this three distinguished regimes for different pulse lengths: 
nOC = 1 , nOC = 2 , nOC = 3 optical cycles at the FWHM of the intensity ( nOC = 1 corresponds to 2.66 fs).

As one may observe by increasing the incident field’s peak intensity, a plateau-like region of electrons start to 
build up in the PhES in the case of each pulse lengths. As long as for γ = 2.8 the shape of the obtained spectra 
are more triangle-like, when the value of the Keldysh-parameter drops (intensity is increased) higher and higher 
energy (momenta) electrons start to appear with more or less the same probability in the middle region of the 
momentum maps: 1 < k < 1.5 at.u. for γ = 1.02 Fig. 2d–f, and 1.2 < k < 2 at.u. for γ = 0.72 Fig. 2g–i. The data 
show that these values do not depend on the pulse duration but exclusively on the strength of the driving field 
(observe the similar plateau for each intensity and different nOC ). Moreover, as expected, the start and endpoint 
of this regions correspond to 2Up and 10Up energy values, respectively. Up = E2loc,0/4ω

2
0 is the ponderomotive 

(cycle-averaged quiver) energy of the photoelectron in the laser field, where ω0 = 2πc/� represents the circular 

(14)Wk(τ ) =
dP

dk
= |�ψk(z)|�̃

+τ)�|2,

Figure 2.   The final ( t = τ ) electronic wavefunctions (red) and their corresponding photoelectron spectra 
(black) obtained in different photoemission regions: 1st row γK = 2.8 ( I0 = 5 TW/cm2 ), 2nd row γK = 1.02 
( I0 = 40 TW/cm2 ), 3rd row γK = 0.7 ( I0 = 80 TW/cm2 ); and for different laser pulse lengths (number of 
optical cycles in the FWHM of I0 ): 1st column noc = 1 , 2nd column noc = 2 , 3rd column noc = 3 (one OC 
corresponds to τ = 2.66 fs).
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frequency and c is the speed of light. This means that upon 2Up the directly ejected and accelerated electrons 
are present (predominantly for the case of γ = 2.8 ), but by further increasing the pulse intensity higher energy 
electrons emerge in the PhES whose energy is greater than 2Up . This translates to the fact that a considerable 
portion of the ejected electrons are re-driven and accelerated back by the oscillating field onto the metal’s surface, 
where they collide with this by experiencing a field-modified potential. As the external field becomes reversed, 
the returning electron wave packet—provided that the potential-barrier’s distortion is strong enough—may 
experience a broaden and higher potential barrier (compared to the one when it was released in the continuum), 
and will undergo a forced and rapid deceleration phase. The newly emerged outward force due to the built-up 
barrier adds to the force exerted by the momentary field of the recently arrived optical half-cycle, and according 
to this the photoelectron will be accelerated even more in the outward direction due to the newly developed and 
increasing net force. In this way the electron may gain as much as ∼ 10Up kinetic energy at the end of the optical 
half-cycle (and eventually at the end of the laser pulse itself). The presented data in Fig. 2 undoubtedly proves the 
presence of this secondary dynamics of electrons starting from γ ≈ 1 and below 1. As seen, the increase of the 
pulse length does not have an important effect on this phenomenon, however since the more optical cycles are 
involved the more the electrons are ejected, and due to the increased number of electron wave packet trajectories 
interferences of these may recurrently occur bringing additional small wave-like features on top of the PhES.

While the cutoff energy is the same regardless of the pulse length (as already discussed previously), with 
the increase in the number of oscillating optical cycles the spectra show more and more sub-features, sub-
components. These presumably correspond to above-threshold-photoemission (ATP) peaks, and one can see 
that for higher incident intensities, when the plateau starts to build-up in the PhES, this emerging plateau region 
is basically represented by a train of ATP peaks having about the same probability amplitude. The appearance of 
these wiggle-like features is even more straightforward by looking at the curves of the WFs: with the increase in 
the number of applied optical cycles the details are more obviously present. In addition to that, if one considers 
the shape of the WFs may note that for nOC = 1 well distinguishable features/peaks can be identified, whereas 
by increasing nOC next to the increased extent of the electron wave packets its higher complexity can also be 
observed.

Another observation is, that until a pulse is shorter and has a smaller number of ionizing optical cycles, the 
shape of the WF and PhES are more similar to each other, both having well distinguishable segments in their 
curves. On the other hand, the longer pulses will bring more discrepancies into this correspondence, mostly 
because the characteristics of the WF’s shape is slightly more affected by this than the shape of its momentum 
counterpart (i.e., the PhES), where by the integration over the space may smooth out some of the wiggle-like 
features present in the curves of the electrons wave packets. Nevertheless, since a fine correspondence between 
the shape of the ionized WF and PhES can be determined for ultrashort (single, few cycle) pulses, this could 
promise novel possibilities for evaluating and comparing experimentally acquired PhES by simply calculating 
and investigating the electron’s WF.

Plasmonic effects and the cutoff law
In quite a many atomic physics paper a well known formula is used for defining the cutoff energy of the laser-
ionized photoelectron’s, which reads as:

where next to the 10Up (with Up ∼ I0�
2 ) a 0.537 W quantum correction term appears with W being the ioniza-

tion energy of the atom. Contrary to photoemission from metals, this formula was deduced for atomic potential 
and external radiation field that was considered homogeneous throughout the space.

Certainly, in the present work the potential (Fig. 1a) is different from the atomic one and in the case when 
plasmonic effects in the vicinity of the target are also taken into account the radiation field loses its homogeneity 
as well. In order to check the applicability of the referenced formula (Eq. (15)) for the plasmonic metallic targets 
we performed several runs where the decaying profile of the plasmon-enhanced field was considered in the 
three ionization regimes (multiphoton, transition, and strong-field). Here we considered an exponential decay 
along the 0z direction of the local E0,loc field by multiplying it with the exp{−z/lf } factor, where lf  represents the 
decay-length of the radiation field. The δ = lf /lq was introduced to quantitatively indicate the relation of the 
decay-length’s value to the amplitude of the quiver motion maintained by the laser field, lq = qE0/mω2.

In Fig. 3a–c we plotted the final spectra obtained for a set of the field-decay parameter values: δ ∈ {0.2, 0.5, 1, 5, 
10, 50, 100} ; and also for the case when the laser-field of nOC = 1 was considered homogeneous along the 0z 
direction at a constant value of E(z; t) = E(z = 0; t) = E(t) , which corresponds to δ = ∞ . As one can see, 
irrespective of the local value of γ in the PhES obtained for δ ≤ 1 the ionization yields are low and can be char-
acterized more with a triangle-like shape, i.e., given by the presence of the so-called roll-off electrons. Even in 
the case of the highest intensity where a large-scale plateau is already expected, only a short region of lower 
energy electrons are showing up with similar probability amplitudes. It is also obvious that as the value of δ 
becomes higher (the decay-length longer) the ionization probability density curves begin to rise until a final 
level is approached starting from δ ≥ 5 . This observation can be noticed more clearly from Fig. 3d where the 
calculated ionization yields (the integral of dP/dk over k is performed) converge to the value obtained for δ = ∞ 
homogeneous case. This convergence starts to take effect above δ = 1 , and is slightly faster for smaller γ values 
(higher intensities). By calculating the cutoff points given by Eq. (15) in each separate regime, we see that the 
expected cutoff momenta are attained only for δ > 10 , which proves that the cutoff formula derived for atomic 
targets and spatially homogeneous oscillating fields is valid only above δ ≥ 10 , and can be safely used starting 
from δ ≥ 50 for 800 nm ultrashort IR pulses.

(15)Ecutoff = 10Up + 0.537W ,
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Since for the lower δ values the correct identification of the cutoff point is hard or even impossible to achieve, 
we compared the obtained spectra when δ  = ∞ to the case of the homogeneous field ( δ = ∞ ) by defining the 
following equation:

which quantity tends to 1 for δ → 0 and to 0 for δ → ∞ . As one can see in Fig. 3e for δ ≥ 5 this quantity for 
each intensity cases is already below 0.1, however in subfigures (a–c) we can observe that the cutoff point is still 
relatively far from the 10Up value. Only starting from δ ≥ 50 we see very similar final spectra and cutoff point for 
each regimes. Moreover, we can observe that for higher local field amplitudes ( γloc = 0.72 ) the cutoff for δ = 50 
is located further away from the 10Up value than in the case of lower intensity ( γloc = 2.86 ). This observation 
indicates that the decaying profile of the plasmon enhanced electric field has more impact on the final spectra 
when the incident field has higher amplitude.

The explanation of this finding is encoded in the relationship between the extent of the emitted electronic 
wave packet and the decay-length of the plasmonic field. For lower δ values the incident field’s effect gets sup-
pressed for larger distances measured from the nanotarget surface, and the wave packets ionized in the first part 
of the pulses could reach far regions from where cannot be driven back by a fast decaying driving field, ruling out 
this way the recollision. Moreover, a more abruptly decaying field would transfer less energy for the motion of 
the electron, than a homogeneous constant field would do through the whole coordinate space. Another aspect 
constitutes in the lower yields obtained for the same local intensity but different decay-lengths. The reason why 
one gets smaller amount of ejected electrons after the completion of the laser pulse can be easily explained con-
sidering Fig. 3f, which shows the distortion suffered by the potential barrier at the top of the main/central optical 
half cycle. It is obvious that for lower δ parameter values the width of the field-distorted barrier is larger, hence 
the probability of ionizing an electron from the initial state drops. This translates to fewer electron-birth events 
in the continuum, decreasing in accordance with this the final ionization yields. However, in real-life scenarios 

(16)�
(δ)
rel =

∫ kmax

0 |W
(δ)
k (τ )−W

(δ=∞)
k (τ )|dk

∫ kmax

0 W
(δ=∞)(τ )
k dk

,

Figure 3.   The final photoelectron spectra for different δ = lf /lq parameter and local Keldysh-parameter 
values (a) γloc = 2.86 [ I0,loc = 5 TW/cm2] , (b) γloc = 1.02 [ I0,loc = 40 TW/cm2 ], (c) γloc = 0.71 
[ I0,loc = 80 TW/cm2 ]. The vertical solid lines indicate the positions of the cutoff momentum: (a) kcutoff ≃ 0.6 , 
(b) kcutoff ≃ 1.38 , (c) kcutoff ≃ 1.91 , calculated from the 10Up + 0.537W formula26. In (d) the total ionization 
rates obtained for different Keldysh and delta paramater values. In (e) the relative differences between the 
spectra calculated for a certain δ < ∞ to the PhES obtained when the field decay was absent ( δ = ∞ ) for the 
case of the three ionization regimes. Subfigure (f) illustrates the shape of the electron’s V(z) potential distorted 
by the maximum of the laser field for the cases of different δ decay-parameter values.
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it may happen that due to the field-disturbed surface even for the case of lower δ values the active electrons could 
reach levels of higher excited states before the ionization takes place. From this higher energy levels the prob-
ability amplitude of escaping a broader barrier is increased and the same the electron yields in the continuum. 
This may alter a bit the real convergence seen in Fig. 3d, however the position of the cutoff region wouldn’t be 
impacted much, since it is more affected by the driving field’s strength in the continuum, thus our statement 
regarding its dependence upon the value of δ can be considered to be still valid.

Conclusions and outlook
In the first part of this work, we presented a computationally efficient method to study the laser-initiated dynam-
ics from metallic nanotarget surfaces for a single active electron. The method was based on the direct solution 
of the one-dimensional Schrödinger equation represented on a finite-difference grid. We showed that by the 
diagonalization of the field-free Hamiltonian-matrix a set of (initial) eigenstates can be obtained at once at the 
start of our investigation. By considering the active electron initially on the Fermi-level we calculated the final 
wavefunction and ionization spectra resulting from the interaction with external (800 nm) laser fields of dif-
ferent durations and peak intensities, by covering the three intensity regimes: multiphoton, strong-field, and 
transition. It was shown that by increasing the incident field intensities and by entering more in the strong-field 
regime (with the Keldysh-parameter γ ≤ 1 ), a plateau of higher energy electrons started to appear in the calcu-
lated spectra (characterized by a traceable cutoff point, starting from which the highly energetic electrons start 
to disappear from the spectra). These are strong-field effects that results in a detectable amount of high energy 
electrons in the measurements that also encode information regarding the enhanced local fields in the close 
vicinity of plasmonic nanotargets. In the final part of the paper, we showed the applicability of a cutoff-law that 
was deduced for atomic potentials also for the case of photoemission taking place from plasmonic nanoobjects 
considering different field enhancement profiles (decay lengths). We showed that the referenced cutoff-law can 
be safely utilized for photoemission when the field-enhanced local fields have not so abrupt decrease ( δ ≥ 50 ) 
in the near vicinity of the surface.
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