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LDHA as a predictive biomarker and its association with the 
infiltration of immune cells in pancreatic adenocarcinoma
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Background: Lactate dehydrogenase A (LDHA) plays a crucial role in the final step of anaerobic 
glycolysis, converting L-lactate and NAD+ to pyruvate and nicotinamide adenine dinucleotide (NADH). Its 
high expression has been linked to tumorigenesis and patient survival in various human cancers. However, 
the full implications of LDHA’s role and its correlation with clinicopathological features in pancreatic 
adenocarcinoma (PAAD) remain to be fully understood. This study was thus conducted to elucidate the 
specific functions of LDHA in PAAD, with the aim of providing more robust evidence for clinical diagnosis 
and treatment.
Methods: In an extensive systems analysis, we searched through numerous databases, including The Cancer 
Genome Atlas (TCGA) and Oncomine. Our objective was to clarify the clinical implications and functional 
role of LDHA in PAAD. Bioinformatics was used to identify the biological function of LDHA expression and 
its correlation with tumor immune status. 
Results: Our analysis revealed that the LDHA gene is overexpressed in PAAD and that this upregulation 
was associated with a worse patient prognosis. Through gene set enrichment analysis, we found that LDHA’s 
influence on PAAD is linked to signaling pathways involving Kirsten rat sarcoma viral oncogene homolog 
(K-Ras), transforming growth factor-β (TGF-β), and hypoxia inducible factor-1 (HIF-1). Mutation of K-Ras 
could upregulate its own expression and was positively correlated with LDHA expression. Moreover, our 
data demonstrated that LDHA expression was linked to immune infiltration and poor prognosis in PAAD, 
indicating its role in disease pathogenesis. Overexpression of LDHA may suppress tumor immunity, 
suggesting it as a potential target for the diagnosis and treatment of PAAD, thus providing new insights into 
managing this aggressive cancer.
Conclusions: Overall, our results showed that LDHA as a prognostic biomarker could serve as a novel 
target for future PAAD immunotherapy.
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Introduction

Pancreatic adenocarcinoma (PAAD), a lethal subtype of 
pancreatic cancer, is a significant global cause of cancer 
mortality, demanding urgent research for improved 
diagnosis and treatment strategies to address its aggressive 
nature (1,2). Despite advancements in surgical procedures 
and chemotherapy, PAAD remains a leading cause of cancer 
death in developed countries and across the globe (2). 
Currently, the most common treatments for PAAD include 
surgical resection, radiotherapy, and chemotherapy, yet 
patients may exhibit varying progression-free survival (PFS) 
and overall survival (OS) outcomes despite receiving the 
same treatment, likely due to individual responses to tumor 
immune infiltrates (3). Prognostic biomarkers are essential 
for identifying patients at high risk of recurrence following 
radical surgery, as these can enhance personalized treatment 
strategies for those with PAAD (4-6). 

Under physiological oxygen conditions, pancreatic cancer 
cells predominantly rely on glycolysis for energy production, 
producing large amounts of lactic acid and small amounts 
of adenosine triphosphate, which is accompanied by 
glucose degradation, a phenomenon known as the Warburg  
effect (7). A study indicates tumor cells’ metabolic 
reprogramming is key contributor to the resistance of tumor 
cells to chemoradiotherapy (8). Reversing the abnormal 
metabolism of tumor cells can significantly improve 

the sensitivity of patients to treatment, which would 
significantly prolong the survival of patients and improve 
their quality of life (9). In line with this, accumulating 
evidence suggests that the tumor microenvironment, 
reprogrammed metabolism glucose, amino acid and 
lipid metabolism, and metabolic crosstalk contribute to 
unrestrained pancreatic tumor progression (10). The 
regulation of the entire glycolysis process is primarily 
governed by the key enzymes HK1, GAPDH, pyruvate 
kinase isozyme type M2 (PKM2), and lactate dehydrogenase 
A (LDHA) (11-14). 

LDHA is an important enzyme, as it is involved in 
the conversion of pyruvate to lactate and is a hallmark of 
aggressive cancers. Dysregulated expression of LDHA 
induces tumor cells to adopt lactate metabolism pathway, 
which is closely linked to tumor progression and treatment 
resistance. A hypoxic and acidic tumor microenvironment 
promote tumor immune escape while limiting the efficacy of 
immunotherapy (15). One study showed that overexpression 
LDHA is associated with poor prognosis in hepatocellular 
carcinoma (16), breast cancer (17), cholangiocarcinoma (18), 
papillary thyroid carcinoma (19), and pancreatic cancer 
and is correlated with a poor outcome. However, the 
pathological and clinical effects of LDHA expression and its 
immunological characteristics in PAAD still remain to be 
observed and investigated. Therefore, this study analyzed 
LDHA expression in PAAD using data from The Cancer 
Genome Atlas (TCGA) and investigated whether there is a 
correlation between LDHA expression and the progression 
of PAAD (20). Currently, immunotherapy provides limited 
efficacy for those with PAAD, and the underlying molecular 
mechanisms related its poor performance are unclear. 
Understanding the effects of LDHA in tumor energy 
metabolism and the immune microenvironment may 
improve the effectiveness of cancer immunotherapy (21-24). 
We present this article in accordance with the REMARK 
reporting checklist (available at https://jgo.amegroups.com/
article/view/10.21037/jgo-24-560/rc).

Methods

Analysis of the Oncomine and TCGA datasets

Clinical information and gene expression data were 
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downloaded from TCGA (https://cancergenome.nih.
gov/) and International Cancer Genome Consortium 
(ICGC; https://docs.icgc-argo.org/docs/data-access/daco/
applying.) databases. The Oncomine database (http://www.
oncomine.org) contains 264 independent datasets that 
include 35 cancer types and supports various methods of 
analysis. The expression of LDHA PPAD was investigated 
using the Human Protein Atlas (HPA) database (https://
www.proteinatlas.org/). To avoid bias, another three 
independent patient populations from the ICGC portal 
database (http://bioinfo.henu.edu.cn/PAAD/PAADList.jsp) 
and EMTAB6314 were validated for LDHA expression and 
prognosis (19-28). Our study used open-source data that 
are freely available for research and publication and have 
no associated ethical concerns or other limitations. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Analysis of clinicopathological characteristics 

RNA sequencing data from samples of 178 patients 
with PAAD and from adjacent tissues used as a normal 
control were obtained from TCGA. Corresponding 
clinicopathological data, including age, gender, pathological 
stage, tumor clinical stage, and OS, were also obtained from 
the database. Due to the missing of clinical data in some 
patients, the overall number of patients in each group was 
not completely consistent.

Survival analysis of LDHA expression in patients with 
PAAD

By analyzing the survival data of PAAD from TCGA 
database, we established a Cox proportional hazards model 
that considered all variables and their pairwise interactions. 
This model retained variables and interactions that were 
clinically significant and statistically significant (P<0.05) 
during the simplification process, allowing us to account 
for the complex interactions in the survival analysis of 
patients with PAAD. This model could potentially facilitate 
the precise treatment of individual patients and identify 
the dynamic factors affecting survival using unique tumor 
characteristics.

Functional enrichment analysis

The application of Gene Ontology (GO) frameworks allows 
researchers to systematically describe the functions of gene 

products across all forms of life. This approach provides 
a comprehensive understanding of the characteristic 
biological traits and transcript data derived from high-
throughput genomic studies. In this analysis, we used the 
“ggplot2” package (version 3.3.3) and “cluster Profiler” 
package (version 3.14.3) in R (The R Foundation to 
Statistical Computing) to conduct a detailed examination of 
biological processes (BPs) and molecular functions (MFs).

Furthermore, we employed Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis to 
identify specific pathways that were differentially expressed 
between gene sets, providing higher-order functional 
insights that are essential for the functional interpretation 
and practical application of genomic information.

To clarify the potential BPs underlying the expression of 
LDHA, we conducted gene set enrichment analysis (GSEA). 
This analysis aimed to highlight the differences in BPs 
between groups with high and low LDHA expression levels, 
using a P value cutoff of <0.05 and a false discovery rate 
(FDR) of <0.25. To ensure the robustness of our findings, 
we set the number of permutations to 1,000, allowing for 
a reliable assessment of the significance of the observed 
differences.

Tumor immune microenvironment analysis 

Single-sample GSEA via R package was used to calculate 
the proportional amounts of 22 invading immune cell types 
in each tumor sample (25). The ESTIMATE algorithm was 
used to deduce the immune scores for each sample. The 
relation of LDHA gene expression with immune infiltration 
was also analyzed with the Tumor Immune Estimation 
Resource 2.0 (TIMER2.0; http://timer.cistrome.org/). 
TIMER2.0 is a comprehensive resource for the systematic 
analysis of immune infiltrates across diverse cancer types. 

Statistical analysis

All statistical analyses were conducted using GraphPad 
Prism version 13.0 (GraphPad Software, Inc., La Jolla, 
CA, USA) and R software (http://www.r-project.org/). 
Association coefficients were determined via the Pearson 
correlation method. Statistical comparisons among groups 
were conducted using the Wilcoxon rank-sum test or the 
Mann-Whitney test. Data are presented as the mean ± 
standard deviation. The prognostic significance of LDHA 
in pancreatic cancer was evaluated via receiver operating 
characteristic (ROC) curves and the area under the ROC 
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curve (AUC). The relationship between LDHA expression 
and patient clinicopathological characteristics was assessed 
via the Chi-squared test. Both univariate and multivariate 
survival analyses were performed employing the Cox 
proportional hazards regression model. Variables identified 
as significant in the univariate analysis were subsequently 
included in the multivariate survival analysis. Statistical 
significance was determined at a P value less than 0.05.

Results

Overexpression of LDHA in various malignancies 

The details  of the LDHA  expression analyses are 
summarized in Figure 1 and include the ROC curves for the 
ability of LDHA expression to identify tumor and normal 
tissue (Figure 2A). Additionally, the protein expression 
information from the HPA database indicated that LDHA 
was highly expressed in PAAD specimens at the protein 
level as compared to its expression in normal controls 
(https://www.proteinatlas.org/ENSG00000134333-LDHA/

pathology/pancreatic+cancer#img). Unfortunately, the 
protein expression data for LDHA in the adjacent normal 
tissues were not available in this database. The ROC curve 
also showed that LDHA was highly expressed in tumor 
tissues, while the expression was relatively low in adjacent 
normal tissues [AUC =0.95; 95% confidence interval (CI): 
0.92–0.97] (Figure 2A).

The relationship between LDHA expression and 
clinicopathological characteristics in PAAD was analyzed 
with TCGA database (Table 1). There were no significant 
relationships between LDHA expression and lymph node or 
distance metastasis. However, the high expression of LDHA 
correlated significantly with age and T stage (P<0.05). 

High LDHA expression was associated with poor prognosis

To investigate the relationship between LDHA expression 
and prognosis in patients with PADD, we collected four 
independent databases (EMTAB6134, TCGA, ICGC-
sequence and ICGC-array group). According to the 
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Figure 2 LDHA expression was high in tumor tissue and was associated with clinical prognosis. (A) ROC curve of LDHA high expression 
in tumor tissue specifically (AUC =0.95; 95% CI: 0.92–0.97; P<0.001). (B-E) Kaplan-Meier survival curves comparing the high and low 
expression of LDHA in OSpaad databases. (F-H) Survival curves of DFI in three independent PAAD cohorts. TPR, true positive rate; FPR, 
false positive rate; LDHA, lactate dehydrogenase A; AUC, area under the curve; HR, hazard ratio; CI, confidence interval; OS, overall 
survival; PAAD, pancreatic adenocarcinoma; DFI, disease-free interval; TCGA, The Cancer Genome Atlas; ICGC, International Cancer 
Genome Consortium; ROC, receiver operating characteristic; IHC, immunohistochemistry.
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Table 1 Clinical characteristics of the patients with pancreatic cancer

Characteristic Low expression of LDHA (n=89) High expression of LDHA (n=89) P value*

T stage 0.02

T1 + T2 21 (11.9) 10 (5.7)

T3 + T4 66 (37.5) 79 (44.9)

N stage 0.19

N0 30 (17.3) 20 (11.6)

N1 56 (32.4) 67 (38.7)

M stage 0.67

M0 37 (44) 42 (50.0)

M1 3 (3.6) 2 (2.4)

Age (years) 66.36±9.71 63.13±11.62 0.046

Note: some of the patient’s data parameters were missing. Data are expressed as n (%) or mean ± standard deviation. *, compared via the 
Pearson Chi-squared test or Fisher exact test. LDHA, lactate dehydrogenase A.

median expression level of LDHA, patients were stratified 
into two groups: low and high expression. Kaplan-Meier 
survival analysis revealed that patients with higher LDHA 
expression levels experienced a reduced PFS rate [hazard 
ratio (HR) =1.92, 95% confidence interval (CI): 1.23–3.0; 
P=0.004; Figure 2B] and poorer OS (HR =2.02, 95% CI: 
1.34–3.03; P<0.001; Figure 2C). Univariate Cox regression 
analysis demonstrated a significant correlation between the 
upregulation of LDHA and adverse PFS and OS (P<0.001; 
Tables 2,3) (26). Other clinical features, including N stage, 
T stage, histologic grade, primary therapy outcome, and 
residual tumor were also found to be associated with 
poor PFS and OS (P<0.05). Moreover, multivariate Cox 
proportional hazard regression analysis demonstrated 
that high LDHA expression (P<0.001 for PFS and OS) 
and primary therapy outcome and residual tumor (P<0.05 
for OS and PFS) were independent risk factors for poor 
prognosis. Radiation therapy and lower histological grade 
served as an independent predictor of better OS (P<0.05); 
however, they were not associated with PFS. To avoid 
patient population bias, three additional independent 
samples (EMTAB6134, ICGC_Seq, and ICGC_array) 
were included and analyzed with the OSpaad program 
(27), which confirmed the high expression of LDHA to be 
significantly associated with OS (ICGC_Seq: HR =1.48, 
95% CI: 1.12–1.95, P=0.005; ICGC_array: HR =2.18, 95% 
CI: 1.58–3.02, P<0.001; EMTAB6134: HR =1.50, 95% CI: 
1.12–2.01, P=0.006) (Figure 2D-2F), but non-significantly 
associated with PFS (HR =1.37, 95% CI: 0.97–1.93, P=0.07; 

HR =1.32, 95% CI: 0.89–1.97, P=0.16) (Figure 2G,2H). 
Collectively, these results show that LDHA expression may 
be a prognostic biomarker of PAAD.

GO and KEGG enrichment analyses

The GO enrichment analysis indicated that high LDHA 
expression was linked with the hypoxia inducible factor-1 
(HIF-1) signaling pathway, glycolysis, coenzyme binding, 
and the pyruvate and nicotinamide nucleotide and 
pyridine nucleotide metabolic processes (Figure 3A). 
Cell composition enrichment analysis indicated LDHA 
expression was closely related with cell-cell junction, 
cell-substrate junction, cell-substrate adherent junction, 
collagen-containing extracellular matrix, and focal adhesion 
(Figure 3B). These results suggest that the LDHA gene 
is involved in anaerobic fermentation and tumor energy 
and material metabolism. A high expression of LDHA can 
remodel the connection between cells and extracellular 
matrix, which may lead to tumor invasion and distant 
metastasis.

LDHA expression was correlated with activation of the 
glycolysis, HIF-1, and Kirsten rat sarcoma viral oncogene 
homolog (K-Ras) pathways 

GSEA revealed that the LDHA gene was significantly 
enriched in glycolysis [normalized enrichment score 
(NES) =1.84; adjusted P value (P.adjust) =0; FDR =0.002;  

http://dict.cn/correlation
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Table 2 Univariate and multivariate analysis of progression-free survival in patients with pancreatic cancer

Characteristics Total (N)
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value 

T stage (T3 + T4 vs. T1 + T2) 176 2.414 (1.309–4.452) 0.005* 1.282 (0.667–2.466) 0.45

N stage (N1 vs. N0) 173 1.735 (1.113–2.705) 0.015* 1.492 (0.886–2.513) 0.13

Pathologic stage (stage III–IV vs. stage I–II) 175 1.109 (0.484–2.540) 0.81 – –

M stage (M1 vs. M0) 84 0.837 (0.300–2.336) 0.73 – –

Primary therapy outcome (PR + CR vs. PD + SD) 139 2.975 (1.908–4.640) <0.001* 2.113 (1.303–3.426) 0.002*

Gender (male vs. female) 178 0.968 (0.658–1.423) 0.87 – –

Radiation therapy (yes vs. no) 163 0.744 (0.474–1.168) 0.20 – –

Residual tumor (R1 + R2 vs. R0) 164 2.253 (1.494–3.398) <0.001* 1.968 (1.203–3.219) 0.007*

Age (>65 vs. ≤65 years) 178 1.256 (0.848–1.861) 0.26 – –

Histologic grade (G3 + G4 vs. G1 + G2) 176 1.684 (1.114–2.546) 0.01* 1.562 (0.964–2.531) 0.07

Smoker (yes vs. no) 144 1.048 (0.683–1.606) 0.83 – –

Alcohol history (yes vs. no) 166 1.217 (0.799–1.851) 0.36 – –

History of diabetes (yes vs. no) 146 0.783 (0.460–1.333) 0.37 – –

History of chronic pancreatitis (yes vs. no) 141 0.885 (0.426–1.840) 0.74 – –

LDHA (high vs. low) 178 2.250 (1.516–3.339) <0.001* 2.081 (1.282–3.377) 0.003*

*, statistically significant P value <0.05. HR, hazard ratio; CI, confidence interval; PR, partial response; CR, complete response; PD, 
progressive disease; SD, stable disease; LDHA, lactate dehydrogenase A.

Table 3 Univariate and multivariate analysis of LDHA expression on overall survival in patients with pancreatic cancer

Characteristics Total (N)

OS

Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

T stage (T3 + T4 vs. T1 + T2) 176 2.023 (1.072–3.816) 0.03* 1.139 (0.554–2.344) 0.72

N stage (N1 vs. N0) 173 2.154 (1.282–3.618) 0.004* 1.728 (0.912–3.273) 0.09

Pathologic stage (stage III–IV vs. stage I–II) 175 0.673 (0.212–2.135) 0.50

M stage (M1 vs. M0) 84 0.756 (0.181–3.157) 0.70

Primary therapy outcome (PR + CR vs. PD + SD) 139 0.425 (0.267–0.677) <0.001* 0.526 (0.315–0.877) 0.01*

Gender (male vs. female) 178 0.809 (0.537–1.219) 0.31

Radiation therapy (yes vs. no) 163 0.508 (0.298–0.866) 0.01* 0.514 (0.270–0.981) 0.04*

Residual tumor (R1 + R2 vs. R0) 164 1.645 (1.056–2.561) 0.03* 1.765 (1.026–3.038) 0.04*

Age (>65 vs. ≤65 years) 178 1.290 (0.854–1.948) 0.22

Histologic grade (G3 + G4 vs. G1 + G2) 176 1.538 (0.996–2.376) 0.05* 1.792 (1.042–3.080) 0.03*

Smoker (yes vs. no) 144 1.086 (0.687–1.719) 0.72

Alcohol history (yes vs. no) 166 1.147 (0.738–1.783) 0.54

History of diabetes (yes vs. no) 146 0.927 (0.532–1.615) 0.79

History of chronic pancreatitis (yes vs. no) 141 1.177 (0.562–2.464) 0.67

LDHA (high vs. low) 178 2.566 (1.668–3.948) <0.001* 1.911 (1.120–3.260) 0.01*

*, statistically significant P value <0.05. LDHA, lactate dehydrogenase A; OS, overall survival; HR, hazard ratio; CI, confidence interval; PR, 
partial response; CR, complete response; PD, progressive disease; SD, stable disease.
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Figure 3 Functional enrichment analysis of DEGs in TCGA-PAAD patients. (A,B) GO enrichment analysis of the target module genes, 
biological process analysis, and cellular component analysis. The y-axis represents the enriched KEGG terms. The x-axis represents the fold 
of enrichment. The size of the dot represents the number of genes under a specific term, and the color of the dots represents the adjusted P 
value. (C-E) HIF-1, TGF-β, and K-Ras gene sets with statistically significant differences in GSEA analysis. HIF-1, hypoxia inducible factor-1; 
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Figure 3C], HIF-1 (NES =1.97; P.adjust <0.001; FDR =0; 
Figure 3D), and K-Ras pathway (NES =−1.442; P.adjust = 
0.04; FDR =0.018; Figure 3E). Indeed, we found that there 
was a positive correlation between LDHA and transforming 
growth factor-β (TGF-β) pathway activation (Figure 4A,4B) 
and the K-Ras gene mutation upregulated its own expression 
(Figure 4C), and the expression level of LDHA was positively 
correlated with K-Ras gene expression and mutation status 
(Figure 4D). Similarly, these findings indicate that LDHA 
plays a crucial role in tumor cell metabolic reprogramming.

Relationship between LDHA expression and the tumor 
immune microenvironment

The immune status and cell infiltration associated 
with LDHA expression was analyzed (Figure 5A). After 
adjustments were made according to purity, the T helper 
2 (Th2) cell subpopulation was found to be positively 
correlated with LDHA expression, while most immune cells, 
including dendritic cells (DCs), interstitial DCs (iDCs), 
CD8+ T cells, B cells, T cells, and plasmacytoid DCs 
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(pDCs) were negatively correlated with gene expression. 
The immune score of tumors was negatively correlated with 
LDHA expression (P<0.05; Figure 5B). After the correlation 
was adjusted according to purity, the results revealed the 
LDHA expression level had significant positive correlations 
with infiltrating levels of CD4+ Th2 cells (r=0.282; 
P=1.87e−04), M1 macrophages (r=0.401; P=5.53e−08), 
and myeloid-derived suppressor cells (MDSCs) (r=0.568; 
P=5.25e−16). Meanwhile, LDHA expression was negatively 
correlated with CD4+ memory T cells  (r=−0.153; 
P=4.53e−02), CD8+ effector memory T cells (r=−0.185; 
P=1.55e−02, class-switched memory B cells (r =−0.19; 

P=1.27e−02), M2 macrophages (r=−0.283; P=1.78e−04), and 
natural killer (NK) T cells (r=−0.155; P=4.34e−2). Finally, 
LDHA expression showed no significant correlations with 
tumor purity or infiltration levels of CD4+ Th1 (r=−0.004; 
P=9.61e−01) (Figure 5C). These results strongly suggest 
that LDHA plays a certain role in immune infiltration in 
PAAD and may contribute to the limited curative effect of 
immunotherapy and poor prognosis.

Discussion

The current treatments for pancreatic cancer are not 
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Figure 5 Correlation of LDHA expression with immune depression status in patients with PAAD. (A) LDHA expression demonstrated a 
significantly positive correlation with the infiltration levels of Th2 T cells and CD56 bright NK cells and negatively correlations with NK 
cells, cytotoxic T cells, CD8+ T cells, B cells T cells, Th17 cells, and pDCs (n=179). (B) LDHA expression demonstrated a significantly 
negative correlation with tumor ESTIMATE score and immune score. (C) LDHA expression demonstrated a significantly positive 
correlation with CD4+ Th2 cells, M1 macrophages and MDSC, and a significantly negative correlation with the infiltration levels of CD4+ 
memory T cells, CD8+ effector memory T cells, class-switched memory B cells, M2 macrophages, and NK T cells. Th, T helper; NK, 
natural killer; aDC, activated dendritic cell; TReg, regulatory T cell; Tcm, central memory T cell; DC, dendritic cell; Tgd, gamma delta 
T cell; Tem, effector memory T cell; iDC, immature dendritic cell; TFH, follicular helper T cell; pDC, plasmacytoid dendritic cell; TPM, 
transcripts per million; LDHA, lactate dehydrogenase A; PAAD, pancreatic adenocarcinoma; MDSC, myeloid-derived suppressor cell.
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satisfactory, with the efficacy of immunotherapy being 
particularly poor. Cancer metabolism is heavily reliant on 
the dysregulation of enzymatic pathways, with oxidative 
glycolysis remaining a prominent characteristic (28,29). In 
this study, we observed an increased expression of LDHA 
in multiple types of cancerous tumors, encompassing 
PAAD. The ROC curve analysis indicated that LDHA may 
have strong diagnostic ability in differentiating healthy 
individuals from those with PAAD, thus highlighting the 
pivotal function of LDHA in the process of cancerous 
transformation (15,30) and its potential as a target for 
treatment.

Immunosuppression in cancer has become a significant 
challenge to the efficacy of immunotherapeutic strategies 
and stems from both oncogene-induced signaling within 
the tumor and immune cells associated with the tumor. 
Nevertheless, the involvement of LDHA in the onset and 
advancement of PAAD remains inadequately clarified. 
LDHA fosters the aggressive development of cancer 
by enhancing lactate generation, accelerating glucose 
absorption, and controlling various cancer-related 
molecules, making it a crucial enzyme in the regulation of 
anaerobic glycolysis (31-34). To determine the correlation 
between the levels of LDHA expression and the progression 
of PAAD, we analyzed datasets from the Oncomine 
database and TCGA. TCGA database was employed to 
examine the pathological attributes and prognosis associated 
with LDHA expression (22). It was found that the abnormal 
expression of LDHA was related to the age of patients, 
and a prognostic model was subsequently constructed to a 
provide basis for clinical evaluation of patient prognosis. 
Through enrichment analysis, it was found that LDHA was 
related to K-Ras pathway, and the expression of LDHA was 
positively correlated with K-Ras. K-Ras gene mutation could 
upregulate the expression of LDHA. 

The concomitant expression of SIP1 and LDHA might 
indicate the presence of both epithelial-mesenchymal 
transition and the Warburg effect in the progression of 
PAAD. Additionally, we observed that the levels of LDHA 
expression were significantly linked to patient age. Survival 
analysis revealed that the higher expression of LDHA 
was associated with a significantly reduced OS. In our 
investigation, regression analyses highlighted a stronger 
correlation between LDHA expression and clinical outcome. 
Although these findings may seem counterintuitive, 
they are statistically valid but could be attributed to the 
limited sample size, and thus further validation is required. 

Collectively, our data suggest that LDHA expression serves 
as an independent prognostic factor for OS in patients with 
PAAD.

K-Ras is a Ras protein and plays a key role in cancer. 
Enabling somatic K-Ras mutations are linked to more than 
15% of all human cancers, and their incidence can reach 
as high as 90% in certain tumor categories, including 
PAAD. Consequently, effectively blocking the abnormal 
K-Ras signaling pathway would constitute a paradigm shift 
in cancer treatment (35). Previous research suggests that 
the expression levels underlying the metabolic alterations 
in oncogenic K-Ras conversion can be attributed to the 
modifications in the activity of key enzymes in NIH-
3T3 cells. These modifications, along with the metabolic 
shifts following oncogenic transformation—including 
heightened glycolysis, activation of the oxidative arm of the 
pentose-phosphate pathway, and reduced levels of sugar 
phosphates—might be correlated with the enhanced activity 
of glucose-6-phosphate dehydrogenase, pyruvate kinase, 
and lactate dehydrogenase as well as the diminished activity 
for transketolase (36). K-Ras gene polymorphisms are 
associated with susceptibility to non-Hodgkin lymphoma 
and gene expression and levels of LDHA (37). In our study, 
through enrichment analysis, it was found that LDHA was 
related to the K-Ras pathway, and the expression of LDHA 
was positively correlated with K-Ras. K-Ras mutation may 
upregulate the expression of LDHA and play an important 
role in PAAD carcinogenesis and prognosis. Thus, the 
relationship of LDHA with the K-Ras pathway warrants 
further investigation.

Immune cells are critically involved in cancer progression 
and treatment, and the tumor immune microenvironment 
exerts significant immunologically relevant changes 
by inducing severe immune-mediated toxicities (38). 
Overexpression of LDHA is closely associated with 
aberrant activation of the K-Ras gene pathway, glycolysis, 
and HIF-1, indicating that tumor cells undergo metabolic 
reprogramming (39). This results in a negative immune 
microenvironment and tumor immunosuppression, 
ultimately leading to poor prognosis for patients. Most 
glycolytic inhibitors not only inhibit the glycolysis of cancer 
but also that of immune cells (40).

Serganova et al. reported that reduction in LDHA 
inhibits the development of metastases and extends the 
survival of mice by altering the tumor microenvironment, 
which in turn regulates the immune response (41). In 
our study, DCs, iDCs, CD8+ T cells, B cells, T cells, and 
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pDCs were negatively correlated with LDHA expression, 
which is consistent with and can be explained by previous 
studies (42-44). Although our study suggested no 
significant correlation between LDHA expression and total 
neutrophil count (as shown in Figure 5), Wang et al. (10) 
demonstrated a positive correlation with cancer-promoting 
neutrophil subtypes through single gene sequencing. 
The discrepancy in findings may stem from variations in 
research methodologies, which could be further elucidated 
through single cell sequencing in subsequent studies. The 
overexpression of LDHA in PAAD may interact with 
immune cell mechanisms in the following ways (45,46): 
firstly, it can promote glycolytic metabolism and generate 
lactic acid to fuel tumor energy needs, thereby influencing 
immune cells through changes in the microenvironment. 
Secondly, it can contribute to an immunosuppressive 
microenvironment by directly inhibiting or inducing 
immunosuppressive cells and weakening anti-tumor 
responses. Lastly, metabolites such as lactic acid may impact 
the metabolism and function of immune cells through 
specific pathways, leading to inhibition of activation and 
proliferation. The optimal therapeutic agents are capable 
of destroying tumor cells and remodeling the tumor 
immune microenvironment, conferring both anticancer and 
immunostimulatory effects (47-49).

There are certain limitations related to this study 
which should be noted. First, due to the retrospective 
nature of the analyses, a certain degree of selection bias 
was unavoidable. Second, all the laboratory metrics were 
confined to preoperative assessments, and additional data 
from prospective trials are needed to validate these findings. 
Third, it should be noted that this study was purely 
observational in design, and thus it is necessary to devise 
animal experiments to further examine the effect of LDHA 
intervention on tumor metabolism and tumor immune 
microenvironment remodeling in vivo.

Conclusions

In summary, LDHA expression was increased in PAAD 
tissue, which was related to patient prognosis and immune 
infiltration. Furthermore, elevated expression of LDHA 
was linked to activation of the K-Ras signaling pathway 
and the presence of immune cell populations in PAAD. 
Consequently, PDCD1 could function as a predictive 
biomarker for PAAD. Our findings may lead to the 
development of an immunologically targeted antitumor 
approach that encompasses metabolic rewiring of either the 

tumor cells themselves or the immune cells infiltrating the 
tumor microenvironment.
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